Technical Papers
Jul 12, 2021

Identification and Quantification of a Wide Variety of Inorganic Nanoparticles in Municipal Wastewater

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 4

Abstract

Increasing use of inorganic nanoparticles in consumer products and industrial processes has resulted in greater presence of these nanoparticles in wastewater, and it is important to understand the occurrence and characteristics of this material in wastewater. The objectives of this research were to further develop and improve techniques to identify, quantify, and characterize these inorganic nanoparticles, and investigate their presence in wastewater from a large community with diverse wastewater sources. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was utilized, along with other nanoparticle characterization techniques. Wastewater samples were collected over monthly time intervals from a local wastewater treatment facility. Extraction and concentration protocols were developed to prepare samples for analysis using ICP-MS, scanning electron microscopy (SEM), dynamic light scattering (DLS), and atomic force microscopy (AFM). Results indicated the presence of detectable quantities of a wide range of inorganic nanoparticles in wastewater samples, with significant variability over time. As treated municipal wastewater is frequently discharged to the environment, the findings of this research are of importance to those determining environmental impacts.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors express their appreciation to the Department of Civil and Environmental Engineering at Worcester Polytechnic Institute for the assistantship awarded to Y. Chen that enabled this research. We also thank Dr. Wenwen Yao at WPI for her support with laboratory procedures.

References

Alkahtane, A. A. 2015. “Nanosilica exerts cytotoxicity and apoptotic response via oxidative stress in mouse embryonic fibroblasts.” Toxicol. Environ. Chem. 97 (5): 651–662. https://doi.org/10.1080/02772248.2015.1058050.
Auffan, M., et al. 2009. “CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro.” Nanotoxicology 3 (2): 161–171. https://doi.org/10.1080/17435390902788086.
Bäuerlein, P. S., E. Emke, P. Tromp, J. A. M. H. Hofman, A. Carboni, F. Schooneman, P. de Voogt, and A. P. van Wezel. 2017. “Is there evidence for man-made nanoparticles in the Dutch environment?” Sci. Total Environ. 576: 273–283. https://doi.org/10.1016/j.scitotenv.2016.09.206.
Berry, C. C., S. Wells, S. Charles, G. Aitchison, and A. S. G. Curtis. 2004. “Cell response to dextran-derivatised iron oxide nanoparticles post internalisation.” Biomaterials 25 (23): 5405–5413. https://doi.org/10.1016/j.biomaterials.2003.12.046.
Brar, S. K., and M. Verma. 2011. “Measurement of nanoparticles by light-scattering techniques.” TrAC, Trends Anal. Chem. 30 (1): 4–17. https://doi.org/10.1016/j.trac.2010.08.008.
Bregoli, L., F. Chiarini, A. Gambarelli, G. Sighinolfi, A. M. Gatti, P. Santi, A. M. Martelli, and L. Cocco. 2009. “Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines.” Toxicology 262 (2): 121–129. https://doi.org/10.1016/j.tox.2009.05.017.
Bvrith, M. V., and V. B. Reddy. 2013. “An overview on research trends in remediation of chromium.” Res. J. Recent Sci. 2277: 2502.
Choi, S., M. V. Johnston, G.-S. Wang, and C. P. Huang. 2017. “Looking for engineered nanoparticles (ENPs) in wastewater treatment systems: Qualification and quantification aspects.” Sci. Total Environ. 590–591: 809–817. https://doi.org/10.1016/j.scitotenv.2017.03.061.
Choi, S., M. V. Johnston, G.-S. Wang, and C. P. Huang. 2018. “A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO2 and ZnO.” Sci. Total Environ. 625: 1321–1329. https://doi.org/10.1016/j.scitotenv.2017.12.326.
Chowdhury, P., G. Malekshoar, and A. K. Ray. 2017. “Dye-sensitized photocatalytic water splitting and sacrificial hydrogen generation: Current status and future prospects.” Inorganics 5 (2): 34. https://doi.org/10.3390/inorganics5020034.
de Castro, I. A., R. S. Datta, J. Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, and K. Kalantar-zadeh. 2017. “Molybdenum oxides—From fundamentals to functionality.” Adv. Mater. 29 (40): 1701619. https://doi.org/10.1002/adma.201701619.
Egerton, T. A., and I. R. Tooley. 2012. “UV absorption and scattering properties of inorganic-based sunscreens.” Int. J. Cosmet. Sci. 34 (2): 117–122. https://doi.org/10.1111/j.1468-2494.2011.00689.x.
Elsaesser, A., and C. V. Howard. 2012. “Toxicology of nanoparticles.” Adv. Drug Delivery Rev. 64 (2): 129–137. https://doi.org/10.1016/j.addr.2011.09.001.
Faure, B., G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y. R. De Miguel, and L. Bergström. 2013. “Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens.” Sci. Technol. Adv. Mater. 14 (2): 023001. https://doi.org/10.1088/1468-6996/14/2/023001.
Fei Yin, Z., L. Wu, H. Gui Yang, and Y. Hua Su. 2013. “Recent progress in biomedical applications of titanium dioxide.” PCCP 15 (14): 4844. https://doi.org/10.1039/c3cp43938k.
Foss Hansen, S., L. R. Heggelund, P. Revilla Besora, A. Mackevica, A. Boldrin, and A. Baun. 2016. “Nanoproducts—What is actually available to European consumers?” Environ. Sci. Nano 3 (1): 169–180. https://doi.org/10.1039/C5EN00182J.
Gomoll, A. H., W. Fitz, R. D. Scott, T. S. Thornhill, and A. Bellare. 2008. “Nanoparticulate fillers improve the mechanical strength of bone cement.” Acta Orthopaedica 79 (3): 421–427. https://doi.org/10.1080/17453670710015349.
Gondikas, A. P., F. von der Kammer, R. B. Reed, S. Wagner, J. F. Ranville, and T. Hofmann. 2014. “Release of TiO2 nanoparticles from sunscreens into surface waters: A one-year survey at the old Danube recreational lake.” Environ. Sci. Technol. 48 (10): 5415–5422. https://doi.org/10.1021/es405596y.
Hadioui, M., V. Merdzan, and K. J. Wilkinson. 2015. “Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS.” Environ. Sci. Technol. 49 (10): 6141–6148. https://doi.org/10.1021/acs.est.5b00681.
Hadioui, M., C. Peyrot, and K. J. Wilkinson. 2014. “Improvements to single particle ICPMS by the online coupling of ion exchange resins.” Anal. Chem. 86 (10): 4668–4674. https://doi.org/10.1021/ac5004932.
Helsper, J. P. F. G., R. J. B. Peters, M. E. M. van Bemmel, Z. E. H. Rivera, S. Wagner, F. von der Kammer, P. C. Tromp, T. Hofmann, and S. Weigel. 2016. “Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.” Anal. Bioanal. Chem. 408 (24): 6679–6691. https://doi.org/10.1007/s00216-016-9783-6.
Heuer, A. H. 1987. “Transformation toughening in ZrO2-containing ceramics.” J. Am. Ceram. Soc 70 (10): 689–698. https://doi.org/10.1111/j.1151-2916.1987.tb04865.x.
Huang, Y., A. A. Keller, P. Cervantes-Avilés, and J. Nelson. 2021. “Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS.” ACS ES&T Water 1 (1): 205–213. https://doi.org/10.1021/acsestwater.0c00083.
Jeng, H. A., and J. Swanson. 2006. “Toxicity of metal oxide nanoparticles in mammalian cells.” J. Environ. Sci. Health., Part A 41 (12): 2699–2711. https://doi.org/10.1080/10934520600966177.
Jung, H., D. B. Kittelson, and M. R. Zachariah. 2005. “The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation.” Combust. Flame 142 (3): 276–288. https://doi.org/10.1016/j.combustflame.2004.11.015.
Kaegi, R., B. Sinnet, S. Zuleeg, H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller, and M. Burkhardt. 2010. “Release of silver nanoparticles from outdoor facades.” Environ. Pollut. 158 (9): 2900–2905. https://doi.org/10.1016/j.envpol.2010.06.009.
Kaegi, R., et al. 2008. “Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.” Environ. Pollut. 156 (2): 233–239. https://doi.org/10.1016/j.envpol.2008.08.004.
Keller, A. A., S. McFerran, A. Lazareva, and S. Suh. 2013. “Global life cycle releases of engineered nanomaterials.” J. Nanopart. Res. 15 (6): 1692. https://doi.org/10.1007/s11051-013-1692-4.
Kiser, M. A., D. A. Ladner, K. D. Hristovski, and P. K. Westerhoff. 2012. “Nanomaterial transformation and association with fresh and freeze-dried wastewater activated sludge: Implications for testing protocol and environmental fate.” Environ. Sci. Technol. 46 (13): 7046–7053. https://doi.org/10.1021/es300339x.
Kiser, M. A., P. Westerhoff, T. Benn, Y. Wang, J. Pérez-Rivera, and K. Hristovski. 2009. “Titanium nanomaterial removal and release from wastewater treatment plants.” Environ. Sci. Technol. 43 (17): 6757–6763. https://doi.org/10.1021/es901102n.
Lahouij, I., E. W. Bucholz, B. Vacher, S. B. Sinnott, J. M. Martin, and F. Dassenoy. 2012. “Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: Coupling experimental and computational works.” Nanotechnology 23 (37): 375701. https://doi.org/10.1088/0957-4484/23/37/375701.
Lam, C.-W., J. T. James, R. McCluskey, and R. L. Hunter. 2004. “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation.” Toxicol. Sci. 77 (1): 126–134. https://doi.org/10.1093/toxsci/kfg243.
Li, F., Q. Li, and H. Kim. 2013a. “Spray deposition of electrospun TiO2 nanoparticles with self-cleaning and transparent properties onto glass.” Appl. Surf. Sci. 276: 390–396. https://doi.org/10.1016/j.apsusc.2013.03.103.
Li, L., G. Hartmann, M. Döblinger, and M. Schuster. 2013b. “Quantification of nanoscale silver particles removal and release from municipal wastewater treatment plants in Germany.” Environ. Sci. Technol. 47 (13): 7317–7323. https://doi.org/10.1021/es3041658.
Mohn, D., M. Zehnder, T. Imfeld, and W. J. Stark. 2010. “Radio-opaque nanosized bioactive glass for potential root canal application: Evaluation of radiopacity, bioactivity and alkaline capacity.” Int. Endodontic J. 43 (3): 210–217. https://doi.org/10.1111/j.1365-2591.2009.01660.x.
Navratilova, J., A. Praetorius, A. Gondikas, W. Fabienke, F. von der Kammer, and T. Hofmann. 2015. “Detection of engineered copper nanoparticles in soil using single particle ICP-MS.” Int. J. Environ. Res. Public Health 12 (12): 15756–15768. https://doi.org/10.3390/ijerph121215020.
Oberdörster, G., et al. 2005. “Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy.” Part. Fibre Toxicol. 2 (1): 8. https://doi.org/10.1186/1743-8977-2-8.
Peters, R. J. B., G. van Bemmel, Z. Herrera-Rivera, H. P. F. G. Helsper, H. J. P. Marvin, S. Weigel, P. C. Tromp, A. G. Oomen, A. G. Rietveld, and H. Bouwmeester. 2014. “Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles.” J. Agric. Food. Chem. 62 (27): 6285–6293. https://doi.org/10.1021/jf5011885.
Polesel, F., J. Farkas, M. Kjos, P. Almeida Carvalho, X. Flores-Alsina, K. V. Gernaey, S. F. Hansen, B. G. Plósz, and A. M. Booth. 2018. “Occurrence, characterisation and fate of (nano)particulate Ti and Ag in two Norwegian wastewater treatment plants.” Water Res. 141: 19–31. https://doi.org/10.1016/j.watres.2018.04.065.
Qian, W. Y., D. M. Sun, R. R. Zhu, X. L. Du, H. Liu, and S. L. Wang. 2012. “pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release.” Int. J. Nanomed. 7: 5781–5792. https://doi.org/10.2147/IJN.S34773.
Rompelberg, C., M. B. Heringa, G. van Donkersgoed, J. Drijvers, A. Roos, S. Westenbrink, R. Peters, G. van Bemmel, W. Brand, and A. G. Oomen. 2016. “Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population.” Nanotoxicology 10 (10): 1404–1414. https://doi.org/10.1080/17435390.2016.1222457.
Semaan, M. E., C. A. Quarles, and L. Nikiel. 2002. “Carbon black and silica as reinforcers of rubber polymers: Doppler broadening spectroscopy results.” Polym. Degrad. Stab. 75 (2): 259–266. https://doi.org/10.1016/S0141-3910(01)00227-0.
Shandilya, N., O. Le Bihan, C. Bressot, and M. Morgeneyer. 2015. “Emission of titanium dioxide nanoparticles from building materials to the environment by wear and weather.” Environ. Sci. Technol. 49 (4): 2163–2170. https://doi.org/10.1021/es504710p.
Shi, L., and F. Du. 2007. “Solvothermal synthesis of SrCO3 hexahedral ellipsoids.” Mater. Lett. 61 (14–15): 3262–3264. https://doi.org/10.1016/j.matlet.2006.11.050.
Smeraldi, J., R. Ganesh, T. Hosseini, L. Khatib, B. H. Olson, and D. Rosso. 2017. “Fate and toxicity of zinc oxide nanomaterial in municipal wastewaters.” Water Environ. Res. 89 (9): 880–889. https://doi.org/10.2175/106143017X14902968254773.
Somiya, S. 1988. Science and technology of zirconia III. Westerville, OH: American Ceramic Society.
Song, Y., X. Li, and X. Du. 2009. “Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma.” Eur. Respir. J. 34 (3): 559–567. https://doi.org/10.1183/09031936.00178308.
Toro, P., R. Quijada, M. Yazdani-Pedram, and J. L. Arias. 2007. “Eggshell, a new bio-filler for polypropylene composites.” Mater. Lett. 61 (22): 4347–4350. https://doi.org/10.1016/j.matlet.2007.01.102.
Tuoriniemi, J., G. Cornelis, and M. Hassellöv. 2012. “Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles.” Anal. Chem. 84 (9): 3965–3972. https://doi.org/10.1021/ac203005r.
Villalobos-Hernández, J. R., and C. C. Müller-Goymann. 2005. “Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media.” Eur. J. Pharm. Biopharm. 60 (1): 113–122. https://doi.org/10.1016/j.ejpb.2004.11.002.
Yamaguchi, T. 1994. “Application of ZrO2 as a catalyst and a catalyst support.” Catal. Today 20 (2): 199–217. https://doi.org/10.1016/0920-5861(94)80003-0.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 4October 2021

History

Received: Feb 23, 2021
Accepted: Jun 5, 2021
Published online: Jul 12, 2021
Published in print: Oct 1, 2021
Discussion open until: Dec 12, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Yinduo Chen, S.M.ASCE
Doctoral Candidate, Dept. of Civil and Environmental Engr., Worcester Polytechnic Institute, Worcester, MA 01609.
John Bergendahl, Ph.D., M.ASCE [email protected]
P.E.
Associate Professor, Dept. of Civil and Environmental Engr., Worcester Polytechnic Institute, Worcester, MA 01609 (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share