Technical Papers
Dec 17, 2020

Microbial Electrochemical System: A Sustainable Approach for Mitigation of Toxic Dyes and Heavy Metals from Wastewater

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

Anthropogenic activities have lead to the accumulation of toxic and hazardous waste materials, such as dyes and heavy metals, into the environment. The entry of these waste materials into the food chain have emerged as a threat to food and health security. As a result, several conventional physical and chemical-based systems were developed to remove these toxic dyes and heavy metals from wastewater. However, because the conventional methods were costly, energy intensive, and ineffective, microbe-based bioremediation systems gained attention of the scientific community. Among several bioremediations approaches, the microbial electrochemical system (MES) has shown promising results in the selective removal of dyes and heavy metals from wastewater. The chemical energy of the biodegradable substrates is converted to electrical energy using the inherited electrochemical system of the electroactive microorganisms. This is collectively termed a “microbial electrochemical/bioelectrochemical system” (MES/BES). The MES in presence of electroactive microbes can remediate the toxic compounds from a wide range of wastewaters. Thus, the present review provides detailed insight into the principle, mechanisms, electrochemistry, and biochemical capabilities of electroactive microbes during bioremediation of heavy metals and dyes. In addition, the paper discusses the challenges faced in designing large-scale MES and its implementation/commercialization. The future prospect and strategies for the development of a self-sustainable multipurpose MES for bioremediation and recovery of toxic and value-added compounds, respectively, have also been elaborated.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Bikash Kumar and Komal Agrawal have contributed equally to this work. Authors acknowledge the Department of Biotechnology, Government of India, for financially supporting the work (BT/304/NE/TBP/2012 & BT/PR7333/PBD/26/373/2012). B.K. acknowledges the Jawaharlal Nehru Memorial Fund, New Delhi, and Council of Scientific & Industrial Research for providing JNMF-Scholarship and CSIR-SRF (Direct) respectively for Doctoral Studies.

References

Abdi, J., M. Vossoughi, N. M. Mahmoodi, and I. Alemzadeh. 2017. “Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal.” Chem. Eng. J. 326: 1145–1158. https://doi.org/10.1016/j.cej.2017.06.054.
Abdullah, N., N. Yusof, W. J. Lau, J. Jaafar, and A. F. Ismail. 2019. “Recent trends of heavy metal removal from water/wastewater by membrane technologies.” J. Ind. Eng. Chem. 76: 17–38. https://doi.org/10.1016/j.jiec.2019.03.029.
Abid, B. A., M. M. BrbootI, and N. M. Al-ShuwaikI. 2011. “Removal of heavy metals using chemicals precipitation.” Eng. Technol. J. 29 (3): 595–612.
Abid, M. F., M. A. Zablouk, and A. M. Abid-Alameer. 2012. “Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration.” Iran. J. Chem. Chem. Eng. 9 (1): 17. https://doi.org/10.1186/1735-2746-9-17.
Abourached, C., T. Catal, and H. Liu. 2014. “Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production.” Water Res. 51: 228–233. https://doi.org/10.1016/j.watres.2013.10.062.
Acher, A. J., and B. J. Juven. 1977. “Destruction of coliforms in water and sewage water by dye-sensitized photooxidation.” Appl. Environ. Microbiol. 33 (5): 1019–1022. https://doi.org/10.1128/AEM.33.5.1019-1022.1977.
Agrawal, K., N. Bhardwaj, B. Kumar, V. Chaturvedi, and P. Verma. 2019. “Microbial fuel cell: A boon in bioremediation of wastes.” In Microbial wastewater treatment, edited by M. P. Shah, and S. Rodriguez-Couto, 175–194. Amsterdam, Netherlands: Elsevier.
Agrawal, K., and P. Verma. 2019a. “Biodegradation of synthetic dye alizarin cyanine green by yellow laccase producing strain Stropharia sp. ITCC-8422.” Biocatal. Agric. Biotechnol. 21: 101291. https://doi.org/10.1016/j.bcab.2019.101291.
Agrawal, K., and P. Verma. 2019b. “Column bioreactor of immobilized Stropharia sp. ITCC 8422 on natural biomass support of L. cylindrica for biodegradation of anthraquinone violet R.” Bioresour. Technol. Rep. 8:100345. https://doi.org/10.1016/j.biteb.2019.100345.
Agrawal, K., and P. Verma. 2020. “Myco-valorization approach using entrapped Myrothecium verrucaria ITCC-8447 on synthetic and natural support via column bioreactor for the detoxification and degradation of anthraquinone dyes.” Int. Biodeterior. Biodegrad. 153: 105052. https://doi.org/10.1016/j.ibiod.2020.105052.
Agarwal, M., and K. Singh. 2017. “Heavy metal removal from wastewater using various adsorbents: A review.” J. Water Reuse Desalin. 7 (4): 387–419. https://doi.org/10.2166/wrd.2016.104.
Ahad, S., A. Bashir, T. Manzoor, and A. H. Pandith. 2016. “Exploring the ion exchange and separation capabilities of thermally stable acrylamide zirconium (IV) sulphosalicylate (AaZrSs) composite material.” RSC Adv. 6 (42): 35914–35927. https://doi.org/10.1039/C6RA03077G.
Ahmad, A., S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafatullah. 2015. “Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater.” RSC Adv. 5 (39): 30801–30818. https://doi.org/10.1039/C4RA16959J.
Ahmed, I. M., A. A. Nayl, and J. A. Daoud. 2016. “Leaching and recovery of zinc and copper from brass slag by sulfuric acid.” J. Saudi Chem. Soc. 20: S280–S285. https://doi.org/10.1016/j.jscs.2012.11.003.
Aklil, A., M. Mouflih, and S. Sebti. 2004. “Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent.” J. Hazard. Mater. 112 (3): 183–190. https://doi.org/10.1016/j.jhazmat.2004.05.018.
Alekhina, M. B., K. A. Khabirova, T. V. Kon’kova, and I. P. Prosvirin. 2017. “Y-Type zeolites for the catalytic oxidative degradation of organic azo dyes in wastewater.” Kinet. Catal. 58 (5): 506–512. https://doi.org/10.1134/S0023158417050019.
Ali, H., E. Khan, and I. Ilahi. 2019. “Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation.” J. Chem. 2019: 6730305. https://doi.org/10.1155/2019/6730305.
Ali, M., A. Sarkar, M. D. Pandey, and S. Pandey. 2006. “Efficient precipitation of dyes from dilute aqueous solutions of ionic liquids.” Anal. Sci. 22 (8): 1051–1053. https://doi.org/10.2116/analsci.22.1051.
An, T., H. Yang, G. Li, W. Song, W. J. Cooper, and X. Nie. 2010. “Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water.” Appl. Catal., B 94 (3–4): 288–294. https://doi.org/10.1016/j.apcatb.2009.12.002.
Andleeb, S., N. Atiq, G. D. Robson, and S. Ahmed. 2012. “An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor.” Environ. Sci. Pollut. Res. 19 (5): 1728–1737. https://doi.org/10.1007/s11356-011-0687-x.
Angioni, S., L. Millia, G. Bruni, D. Ravelli, P. Mustarelli, and E. Quartarone. 2017. “Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells.” J. Power Sources 348: 57–65. https://doi.org/10.1016/j.jpowsour.2017.02.084.
Arruti, A., I. Fernández-Olmo, and Á Irabien. 2010. “Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain).” J. Environ. Monit. 12 (7): 1451–1458. https://doi.org/10.1039/b926740a.
Aulenta, F., A. Canosa, M. Majone, S. Panero, P. Reale, and S. Rossetti. 2008. “Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system.” Environ. Sci. Technol. 42 (16): 6185–6190. https://doi.org/10.1021/es800265b.
Azimi, A., A. Azari, M. Rezakazemi, and M. Ansarpour. 2017. “Removal of heavy metals from industrial wastewaters: A review.” ChemBioEng Rev. 4 (1): 37–59. https://doi.org/10.1002/cben.201600010.
Babel, S., and T. A. Kurniawan. 2003. “Low-cost adsorbents for heavy metals uptake from contaminated water: A review.” J. Hazard. Mater. 97 (1–3): 219–243. https://doi.org/10.1016/S0304-3894(02)00263-7.
Bagchi, S., and M. Behera. 2020. “Assessment of heavy metal removal in different bioelectrochemical systems: A review.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020010. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000500.
Bajracharya, S., M. Sharma, G. Mohanakrishna, X. D. Benneton, D. P. B. T. B. Strik, P. M. Sarma, and D. Pant. 2016. “An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond.” Renewable Energy 98: 153–170. https://doi.org/10.1016/j.renene.2016.03.002.
Bakshi, D. K., and P. Sharma. 2003. “Genotoxicity of textile dyes evaluated with Ames test and rec-assay.” J. Environ. Pathol. Toxicol. Oncol. 22 (2): 10. https://doi.org/10.1615/JEnvPathToxOncol.v22.i2.30.
Barakat, M. A. 2005. “Adsorption behavior of copper and cyanide ions at TiO2–solution interface.” J. Colloid Interface Sci. 291 (2): 345–352. https://doi.org/10.1016/j.jcis.2005.05.047.
Barakat, M. A. 2011. “New trends in removing heavy metals from industrial wastewater.” Arabian J. Chem. 4 (4): 361–377. https://doi.org/10.1016/j.arabjc.2010.07.019.
Bashir, A., L. A. Malik, S. Ahad, T. Manzoor, M. A. Bhat, G. N. Dar, and A. H. Pandith. 2019. “Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods.” Environ. Chem. Lett. 17 (2): 729–754. https://doi.org/10.1007/s10311-018-00828-y.
Beretta, G., M. Daghio, A. Espinoza Tofalos, A. Franzetti, A. F. Mastorgio, S. Saponaro, and E. Sezenna. 2020. “Microbial assisted hexavalent chromium removal in bioelectrochemical systems.” Water 12 (2): 466. https://doi.org/10.3390/w12020466.
Bernhardt, P. V., and J. M. Santini. 2006. “Protein film voltammetry of arsenite oxidase from the chemolithoautotrophic arsenite-oxidizing bacterium NT-26.” Biochemistry 45 (9): 2804–2809. https://doi.org/10.1021/bi0522448.
Bi, X., X. Feng, Y. Yang, G. Qiu, G. Li, F. Li, T. Liu, Z. Fu, and Z. Jin. 2006. “Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China.” Environ. Int. 32 (7): 883–890. https://doi.org/10.1016/j.envint.2006.05.010.
Bouabidi, Z. B., M. H. El-Naas, D. Cortes, and G. McKay. 2018. “Steel-making dust as a potential adsorbent for the removal of lead (II) from an aqueous solution.” Chem. Eng. J. 334: 837–844. https://doi.org/10.1016/j.cej.2017.10.073.
Bouyakoub, A. Z., B. S. Lartiges, R. Ouhib, S. Kacha, A. G. El Samrani, J. Ghanbaja, and O. Barres. 2011. “Mncl2 and MgCl2 for the removal of reactive dye Levafix Brilliant Blue EBRA from synthetic textile wastewaters: An adsorption/aggregation mechanism.” J. Hazard. Mater. 187 (1–3): 264–273. https://doi.org/10.1016/j.jhazmat.2011.01.008.
Brastad, K. S., and Z. He. 2013. “Water softening using microbial desalination cell technology.” Desalination 309: 32–37. https://doi.org/10.1016/j.desal.2012.09.015.
Brillas, E., and C. A. Mart. 2011. Synthetic diamond films: Preparation, electrochemistry, characterization, and applications. Hoboken, NJ: John Wiley & Sons.
Brillas, E., and C. A. Martínez-Huitle. 2015. “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review.” Appl. Catal., B 166–167: 603–643. https://doi.org/10.1016/j.apcatb.2014.11.016.
Brillas, E., I. Sirés, and M. A. Oturan. 2009. “Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry.” Chem. Rev. 109 (12): 6570–6631. https://doi.org/10.1021/cr900136g.
Campos, J. L., D. Valenzuela-Heredia, A. Pedrouso, A. Val del Rio, M. Belmonte, and A. Mosquera-Corral. 2016. “Greenhouse gases emissions from wastewater treatment plants: Minimization, treatment, and prevention.” J. Chem. 2016: 3796352. https://doi.org/10.1155/2016/3796352.
Capodaglio, A. G., A. Callegari, and D. Molognoni. 2016. “Online monitoring of priority and dangerous pollutants in natural and urban waters.” Manage. Environ. Qual. 27 (5): 507–536. https://doi.org/10.1108/MEQ-01-2015-0009.
Catal, T., H. Bermek, and H. Liu. 2009. “Removal of selenite from wastewater using microbial fuel cells.” Biotechnol. Lett. 31 (8): 1211–1216. https://doi.org/10.1007/s10529-009-9990-8.
Cecconet, D., A. Callegari, and A. G. Capodaglio. 2018. “Bioelectrochemical systems for removal of selected metals and perchlorate from groundwater: A review.” Energies 11 (10): 2643. https://doi.org/10.3390/en11102643.
Charerntanyarak, L. 1999. “Heavy metals removal by chemical coagulation and precipitation.” Water Sci. Technol. 39 (10–11): 135–138. https://doi.org/10.2166/wst.1999.0642.
Chaturvedi, V., and P. Verma. 2016. “Microbial fuel cell: A green approach for the utilization of waste for the generation of bioelectricity.” Bioresour. Bioprocess. 3 (1): 38. https://doi.org/10.1186/s40643-016-0116-6.
Chen, S.-T., D. K. Stevens, and G. Kang. 1999. “Pentachlorophenol and crystal violet degradation in water and soils using heme and hydrogen peroxide.” Water Res. 33 (17): 3657–3665. https://doi.org/10.1016/S0043-1354(99)00262-6.
Chen, S.-T., D. K. Stevens, G. Kang, J.-C. Hsu, and S.-J. Wu. 2009. “kinetics of pentachlorophenol degradation in soil using heme and peroxide.” J. Environ. Eng. 135 (4): 279–284. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:4(279).
Chen, Y., J. Shen, L. Huang, Y. Pan, and X. Quan. 2016. “Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3.” Int. J. Hydrogen Energy 41 (31): 13368–13379. https://doi.org/10.1016/j.ijhydene.2016.06.200.
Cheng, S., D. Xing, D. F. Call, and B. E. Logan. 2009. “Direct biological conversion of electrical current into methane by electromethanogenesis.” Environ. Sci. Technol. 43 (10): 3953–3958. https://doi.org/10.1021/es803531g.
Cheng, S.-A., B.-S. Wang, and Y.-H. Wang. 2013. “Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters.” Bioresour. Technol. 147: 332–337. https://doi.org/10.1016/j.biortech.2013.08.040.
Chiao, M., K. B. Lam, Y.-C. Su, and L. Lin. 2002. “A miniaturized microbial fuel cell.” In Technical Digest of Solid State Sensors and Actuators Workshop, Hilton Head Island, 59–60. South Carolina, SC: Transducers Research Foundation.
Cho, K. S., and H. W. Ryu. 2015. “Biodecolorization and biodegradation of dye by fungi: A review.” KSBB J. 30 (5): 203–222. https://doi.org/10.7841/ksbbj.2015.30.5.203.
Choi, C., and Y. Cui. 2012. “Recovery of silver from wastewater coupled with power generation using a microbial fuel cell.” Bioresour. Technol. 107: 522–525. https://doi.org/10.1016/j.biortech.2011.12.058.
Choi, C., and N. Hu. 2013. “The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell.” Bioresour. Technol. 133: 589–598. https://doi.org/10.1016/j.biortech.2013.01.143.
Choi, C., N. Hu, and B. Lim. 2014. “Cadmium recovery by coupling double microbial fuel cells.” Bioresour. Technol. 170: 361–369. https://doi.org/10.1016/j.biortech.2014.07.087.
Choi, O., and B.-I. Sang. 2016. “Extracellular electron transfer from cathode to microbes: Application for biofuel production.” Biotechnol. Biofuels 9 (1): 11. https://doi.org/10.1186/s13068-016-0426-0.
Christoforidis, K. C., M. Louloudi, and Y. Deligiannakis. 2010. “Complete dechlorination of pentachlorophenol by a heterogeneous SiO2–Fe–porphyrin catalyst.” Appl. Catal., B 95 (3–4): 297–302. https://doi.org/10.1016/j.apcatb.2010.01.007.
Clauwaert, P., K. Rabaey, P. Aelterman, L. De Schamphelaire, T. H. Pham, P. Boeckx, N. Boon, and W. Verstraete. 2007. “Biological denitrification in microbial fuel cells.” Environ. Sci. Technol. 41 (9): 3354–3360. https://doi.org/10.1021/es062580r.
Colantonio, N. 2016. “Heavy metal removal from wastewater using microbial electrolysis cells.” Ph.D. thesis, Civil Engineering, McMaster Univ.
Colantonio, N., and Y. Kim. 2016. “Cadmium (II) removal mechanisms in microbial electrolysis cells.” J. Hazard. Mater. 311: 134–141. https://doi.org/10.1016/j.jhazmat.2016.02.062.
Coman, V., B. Robotin, and P. Ilea. 2013. “Nickel recovery/removal from industrial wastes: A review.” Resour. Conserv. Recycl. 73: 229–238. https://doi.org/10.1016/j.resconrec.2013.01.019.
Cook, S. M. F., and D. R. Linden. 1997. “Use of rhodamine WT to facilitate dilution and analysis of atrazine samples in short-term transport studies.” J. Environ. Qual. 26 (5): 1438–1440. https://doi.org/10.2134/jeq1997.00472425002600050035x.
Cotillas, S., J. Llanos, P. Cañizares, D. Clematis, G. Cerisola, M. A. Rodrigo, and M. Panizza. 2018. “Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation.” Electrochim. Acta 263: 1–7. https://doi.org/10.1016/j.electacta.2018.01.052.
Crini, G. 2006. “Non-conventional low-cost adsorbents for dye removal: A review.” Bioresour. Technol. 97 (9): 1061–1085. https://doi.org/10.1016/j.biortech.2005.05.001.
Cui, D., M.-H. Cui, B. Liang, W.-Z. Liu, Z.-E. Tang, and A.-J. Wang. 2020. “Mutual effect between electrochemically active bacteria (EAB) and azo dye in bio-electrochemical system (BES).” Chemosphere 239: 124787. https://doi.org/10.1016/j.chemosphere.2019.124787.
Cui, M.-H., D. Cui, L. Gao, H.-Y. Cheng, and A.-J. Wang. 2016. “Analysis of electrode microbial communities in an up-flow bioelectrochemical system treating azo dye wastewater.” Electrochim. Acta 220: 252–257. https://doi.org/10.1016/j.electacta.2016.10.121.
Davis, J. B. 1963. “Generation of electricity by microbial action.” Adv. Appl. Microbiol. 5: 51–64. https://doi.org/10.1016/S0065-2164(08)70006-6.
Davis, J. B., and H. F. Yarbrough. 1962. “Preliminary experiments on a microbial fuel cell.” Science 137 (3530): 615–616. https://doi.org/10.1126/science.137.3530.615.
de Luna, L. A. V., T. H. G. da Silva, R. F. P. Nogueira, F. Kummrow, and G. A. Umbuzeiro. 2014. “Aquatic toxicity of dyes before and after photo-Fenton treatment.” J. Hazard. Mater. 276: 332–338. https://doi.org/10.1016/j.jhazmat.2014.05.047.
Deng, H., Z. Chen, and F. Zhao. 2012. “Energy from plants and microorganisms: Progress in plant–microbial fuel cells.” ChemSusChem 5 (6): 1006–1011. https://doi.org/10.1002/cssc.201100257.
de Ulson, S. M. d. A. G. U., K. A. S. Bonilla, A. A. U. de Souza. 2010. “Removal of COD and color from hydrolyzed textile azo dye by combined ozonation and biological treatment.” J. Hazard. Mater. 179 (1–3): 35–42. https://doi.org/10.1016/j.jhazmat.2010.02.053.
Ditzig, J., H. Liu, and B. E. Logan. 2007. “Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR).” Int. J. Hydrogen Energy 32 (13): 2296–2304. https://doi.org/10.1016/j.ijhydene.2007.02.035.
Dong, Y., W. Dong, Y. Cao, Z. Han, and Z. Ding. 2011. “Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation.” Catal. Today 175 (1): 346–355. https://doi.org/10.1016/j.cattod.2011.03.035.
dos Santos, A. B., F. J. Cervantes, and J. B. van Lier. 2007. “ Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology.” Bioresour. Technol. 98 (12): 2369–2385. https://doi.org/10.1016/j.biortech.2006.11.013.
Doyle, L. E., and E. Marsili. 2018. “Weak electricigens: A new avenue for bioelectrochemical research.” Bioresour. Technol. 258: 354–364. https://doi.org/10.1016/j.biortech.2018.02.073.
Du, Z., H. Li, and T. Gu. 2007. “A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.” Biotechnol. Adv. 25 (5): 464–482. https://doi.org/10.1016/j.biotechadv.2007.05.004.
Ertugay, N., and F. N. Acar. 2017. “Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study.” Arabian J. Chem. 10: S1158–S1163. https://doi.org/10.1016/j.arabjc.2013.02.009.
Ezziat, L., A. Elabed, S. Ibnsouda, and S. El Abed. 2019. “Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater.” Front. Energy Res. 7: 1–13. https://doi.org/10.3389/fenrg.2019.00001.
Fan, L., Y. Zhou, W. Yang, G. Chen, and F. Yang. 2008. “Electrochemical degradation of aqueous solution of Amaranth azo dye on ACF under potentiostatic model.” Dyes Pigm. 76 (2): 440–446. https://doi.org/10.1016/j.dyepig.2006.09.013.
Fan, Y., S.-K. Han, and H. Liu. 2012. “Improved performance of CEA microbial fuel cells with increased reactor size.” Energy Environ. Sci. 5 (8): 8273–8280. https://doi.org/10.1039/c2ee21964f.
Fanchiang, J.-M., and D.-H. Tseng. 2009. “Degradation of anthraquinone dye C.I. reactive blue 19 in aqueous solution by ozonation.” Chemosphere 77 (2): 214–221. https://doi.org/10.1016/j.chemosphere.2009.07.038.
Fang, C., and V. Achal. 2019. “The potential of microbial fuel cells for remediation of heavy metals from soil and water—Review of application.” Microorganisms 7 (12): 697. https://doi.org/10.3390/microorganisms7120697.
Fernando, E., T. Keshavarz, and G. Kyazze. 2014. “Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature.” Bioresour. Technol. 156: 155–162. https://doi.org/10.1016/j.biortech.2014.01.036.
Field, M. S., R. G. Wilhelm, J. F. Quinlan, and T. J. Aley. 1995. “An assessment of the potential adverse properties of fluorescent tracer dyes used for groundwater tracing.” Environ. Monit. Assess. 38 (1): 75–96. https://doi.org/10.1007/BF00547128.
Flimban, S. G. A., S. H. A. Hassan, M. M. Rahman, and S.-E. Oh. 2020. “The effect of Nafion membrane fouling on the power generation of a microbial fuel cell.” Int. J. Hydrogen Energy 45 (25): 13643–13651. https://doi.org/10.1016/j.ijhydene.2018.02.097.
Forgacs, E., T. Cserhati, and G. Oros. 2004. “Removal of synthetic dyes from wastewaters: A review.” Environ. Int. 30 (7): 953–971. https://doi.org/10.1016/j.envint.2004.02.001.
Fornero, J. J., M. Rosenbaum, M. A. Cotta, and L. T. Angenent. 2010. “Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.” Environ. Sci. Technol. 44 (7): 2728–2734. https://doi.org/10.1021/es9031985.
Ganiyu, S. A., O. O. Ajumobi, S. A. Lateef, K. O. Sulaiman, I. A. Bakare, M. Qamaruddin, and K. Alhooshani. 2017. “Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4,6-dimethyldibenzothiophene.” Chem. Eng. J. 321: 651–661. https://doi.org/10.1016/j.cej.2017.03.132.
Garcia-Segura, S., and E. Brillas. 2011. “Mineralization of the recalcitrant oxalic and oxamic acids by electrochemical advanced oxidation processes using a boron-doped diamond anode.” Water Res. 45 (9): 2975–2984. https://doi.org/10.1016/j.watres.2011.03.017.
Gorby, Y. A., et al. 2006. “Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.” Proc. Natl. Acad. Sci. 103 (30): 11358–11363. https://doi.org/10.1073/pnas.0604517103.
Goyer, R. A., and T. W. Clarkson. 1996. “Toxic effects of metals.” Casarett Doull’s Toxicol. Basic Sci. Poisons 5: 696–698.
Grattieri, M., K. Hasan, and S. D. Minteer. 2017. “Bioelectrochemical systems as a multipurpose biosensing tool: Present perspective and future outlook.” ChemElectroChem 4 (4): 834–842. https://doi.org/10.1002/celc.201600507.
Gupta, S., A. Yadav, and N. Verma. 2017. “Simultaneous Cr(VI) reduction and bioelectricity generation using microbial fuel cell based on alumina-nickel nanoparticles-dispersed carbon nanofiber electrode.” Chem. Eng. J. 307: 729–738. https://doi.org/10.1016/j.cej.2016.08.130.
Gupta, V. K., R. Jain, S. Agarwal, and M. Shrivastava. 2011a. “Kinetics of photo-catalytic degradation of hazardous dye Tropaeoline 000 using UV/TiO2 in a UV reactor.” Colloids Surf., A 378 (1–3): 22–26. https://doi.org/10.1016/j.colsurfa.2011.01.046.
Gupta, V. K., R. Jain, A. Nayak, S. Agarwal, and M. Shrivastava. 2011b. “Removal of the hazardous dye—tartrazine by photodegradation on titanium dioxide surface.” Mater. Sci. Eng.: C 31 (5): 1062–1067. https://doi.org/10.1016/j.msec.2011.03.006.
Gupta, V. K., and Suhas. 2009. “Application of low-cost adsorbents for dye removal–a review.” J. Environ. Manage. 90 (8): 2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017.
Habibul, N., Y. Hu, Y.-K. Wang, W. Chen, H.-Q. Yu, and G.-P. Sheng. 2016. “Bioelectrochemical chromium (VI) removal in plant-microbial fuel cells.” Environ. Sci. Technol. 50 (7): 3882–3889. https://doi.org/10.1021/acs.est.5b06376.
Harnisch, F., and U. Schröder. 2010. “From MFC to MXC: Chemical and biological cathodes and their potential for microbial bioelectrochemical systems.” Chem. Soc. Rev. 39 (11): 4433–4448. https://doi.org/10.1039/c003068f.
Hassani, A. H., R. Mirzayee, S. Nasseri, M. Borghei, M. Gholami, and B. Torabifar. 2008. “Nanofiltration process on dye removal from simulated textile wastewater.” Int. J. Environ. Sci. Technol. 5 (3): 401–408. https://doi.org/10.1007/BF03326035.
He, F., W. Hu, and Y. Li. 2004. “Biodegradation mechanisms and kinetics of azo dye 4BS by a microbial consortium.” Chemosphere 57 (4): 293–301. https://doi.org/10.1016/j.chemosphere.2004.06.036.
He, L., P. Du, Y. Chen, H. Lu, X. Cheng, B. Chang, and Z. Wang. 2017. “Advances in microbial fuel cells for wastewater treatment.” Renewable Sustainable Energy Rev. 71: 388–403. https://doi.org/10.1016/j.rser.2016.12.069.
He, Z., J. Kan, F. Mansfeld, L. T. Angenent, and K. H. Nealson. 2009. “Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria.” Environ. Sci. Technol. 43 (5): 1648–1654. https://doi.org/10.1021/es803084a.
He, Z. L., X. E. Yang, and P. J. Stoffella. 2005. “Trace elements in agroecosystems and impacts on the environment.” J. Trace Elem. Med. Biol. 19 (2–3): 125–140. https://doi.org/10.1016/j.jtemb.2005.02.010.
Heijne, A. T., F. Liu, R. van der Weijden, J. Weijma, C. J. N. Buisman, and H. V. M. Hamelers. 2010. “Copper recovery combined with electricity production in a microbial fuel cell.” Environ. Sci. Technol. 44 (11): 4376–4381. https://doi.org/10.1021/es100526g.
Herawati, N., S. Suzuki, K. Hayashi, I. F. Rivai, and H. Koyama. 2000. “Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type.” Bull. Environ. Contam. Toxicol. 64 (1): 33–39. https://doi.org/10.1007/s001289910006.
Hernandez, C. A., and J. F. Osma. 2020. “Microbial electrochemical systems: Deriving future trends from historical perspectives and characterization strategies.” Front. Environ. Sci. 8: 44. https://doi.org/10.3389/fenvs.2020.00044.
Holkar, C. R., A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit. 2016. “A critical review on textile wastewater treatments: Possible approaches.” J. Environ. Manage. 182: 351–366. https://doi.org/10.1016/j.jenvman.2016.07.090.
Hou, X., L. Huang, P. Zhou, H. Xue, and N. Li. 2018. “Response of indigenous Cd-tolerant electrochemically active bacteria in MECs toward exotic Cr(VI) based on the sensing of fluorescence probes.” Front. Environ. Sci. Eng. 12 (4): 7. https://doi.org/10.1007/s11783-018-1057-4.
Huang, G., Y. Zhang, J. Tang, and Y. Du. 2020. “Remediation of Cd contaminated soil in microbial fuel cells: Effects of Cd concentration and electrode spacing.” J. Environ. Eng. 146 (7): 04020050. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001732.
Huang, L., X. Chai, G. Chen, and B. E. Logan. 2011a. “Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells.” Environ. Sci. Technol. 45 (11): 5025–5031. https://doi.org/10.1021/es103875d.
Huang, L., X. Chai, S. Cheng, and G. Chen. 2011b. “Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation.” Chem. Eng. J. 166 (2): 652–661. https://doi.org/10.1016/j.cej.2010.11.042.
Huang, L., J. Chen, X. Quan, and F. Yang. 2010. “Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.” Bioprocess. Biosyst. Eng. 33 (8): 937–945. https://doi.org/10.1007/s00449-010-0417-7.
Huang, L., Q. Wang, L. Jiang, P. Zhou, X. Quan, and B. E. Logan. 2015. “Adaptively evolving bacterial communities for complete and selective reduction of Cr (VI), Cu (II), and Cd (II) in biocathode bioelectrochemical systems.” Environ. Sci. Technol. 49 (16): 9914–9924. https://doi.org/10.1021/acs.est.5b00191.
Hubicki, Z., and D. Kołodyńska. 2012. “Selective removal of heavy metal ions from waters and waste waters using ion exchange methods.” In Ion exchange technologies, edited by A. Kilislioglu, 193–240. London, UK: IntechOpen.
Ibrahim, S. M., A. A. Badawy, and H. A. Essawy. 2019. “Improvement of dyes removal from aqueous solution by Nanosized cobalt ferrite treated with humic acid during coprecipitation.” J. Nanostruct. Chem. 9 (4): 281–298. https://doi.org/10.1007/s40097-019-00318-9.
Isosaari, P., and M. Sillanpää. 2017. “Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water.” Sep. Purif. Rev. 46 (1): 1–20. https://doi.org/10.1080/15422119.2016.1156548.
Jadhav, D. A., S. G. Ray, and M. M. Ghangrekar. 2017. “Third generation in bio-electrochemical system research–A systematic review on mechanisms for recovery of valuable by-products from wastewater.” Renewable Sustainable Energy Rev. 76: 1022–1031. https://doi.org/10.1016/j.rser.2017.03.096.
Jaishankar, M., T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda. 2014. “Toxicity, mechanism and health effects of some heavy metals.” Interdiscip. Toxicol. 7 (2): 60–72. https://doi.org/10.2478/intox-2014-0009.
Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon, K. S. Cho, and B. H. Kim. 2004. “Construction and operation of a novel mediator-and membrane-less microbial fuel cell.” Process Biochem. 39 (8): 1007–1012. https://doi.org/10.1016/S0032-9592(03)00203-6.
Javaid, R., and U. Y. Qazi. 2019. “Catalytic oxidation process for the degradation of synthetic dyes: An overview.” Int. J. Environ. Res. Public Health 16 (11): 2066. https://doi.org/10.3390/ijerph16112066.
Ji, Z., M. He, Z. Huang, U. Ozkan, and Y. Wu. 2013. “Photostable p-type dye-sensitized photoelectrochemical cells for water reduction.” J. Am. Chem. Soc. 135 (32): 11696–11699. https://doi.org/10.1021/ja404525e.
Johnson, P. D., P. Girinathannair, K. N. Ohlinger, S. Ritchie, L. Teuber, and J. Kirby. 2008. “Enhanced removal of heavy metals in primary treatment using coagulation and flocculation.” Water Environ. Res. 80 (5): 472–479. https://doi.org/10.2175/106143007X221490.
Joshni, T. C., and K. Subramaniam. 2011. “Enzymatic degradation of azo dyes-a review.” Int. J. Environ Sci. 1: 1250–1260.
Kabbani, A., M. Karnib, H. Holail, and Z. Olama. 2014. “Heavy metals removal using activated carbon, silica and silica activated carbon composite.” Energy Procedia 50: 113–120. https://doi.org/10.1016/j.egypro.2014.06.014.
Kahloul, M., J. Chekir, and A. Hafiane. 2019. “Dye removal using keggin polyoxometalates assisted ultrafi ltration: Characterization and UV visible study.” Arch. Environ. Prot. 45 (4): 30–39. https://doi.org/10.24425/aep.2019.130239.
Kalathil, S., J. Lee, and M. H. Cho. 2013. “Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.” ChemSusChem 6 (2): 246–250. https://doi.org/10.1002/cssc.201200747.
Kant, R. 2012. “Textile dyeing industry an environmental hazard.” Nat. Sci. 4 (1): 22–26. https://doi.org/10.4236/ns.2012.41004.
Kapusta, P., and L. Sobczyk. 2015. “Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions.” Sci. Total Environ. 536: 517–526. https://doi.org/10.1016/j.scitotenv.2015.07.086.
Karcher, S., A. Kornmüller, and M. Jekel. 2002. “Anion exchange resins for removal of reactive dyes from textile wastewaters.” Water Res. 36 (19): 4717–4724. https://doi.org/10.1016/S0043-1354(02)00195-1.
Katheresan, V., J. Kansedo, and S. Y. Lau. 2018. “Efficiency of various recent wastewater dye removal methods: A review.” J. Environ. Chem. Eng. 6 (4): 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060.
Khataee, A., B. Kayan, P. Gholami, D. Kalderis, and S. Akay. 2017. “Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite.” Ultrason. Sonochem. 39: 120–128. https://doi.org/10.1016/j.ultsonch.2017.04.018.
Khayet, M., A. Y. Zahrim, and N. Hilal. 2011. “Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology.” Chem. Eng. J. 167 (1): 77–83. https://doi.org/10.1016/j.cej.2010.11.108.
Khorramfar, S., N. M. Mahmoodi, M. Arami, and H. Bahrami. 2011. “Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide.” Desalination 279 (1–3): 183–189. https://doi.org/10.1016/j.desal.2011.06.005.
Khosravi, M., N. Mehrdadi, G. Nabi bidhendi, and M. Baghdadi. 2019. “Optimization of ozonation/adsorption combined method for the removal of toxic metals and COD using sewage sludge based carbon/TiO2/ZnO nanocomposite.” Mater. Res. Express 6 (12): 125531. https://doi.org/10.1088/2053-1591/ab5aaa.
Khouni, I., B. Marrot, P. Moulin, and A. R. Ben. 2011. “Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes.” Desalination 268 (1–3): 27–37. https://doi.org/10.1016/j.desal.2010.09.046.
Khulbe, K. C., and T. Matsuura. 2018. “Removal of heavy metals and pollutants by membrane adsorption techniques.” Appl. Water Sci. 8 (1): 19. https://doi.org/10.1007/s13201-018-0661-6.
Kilicarslan, A., M. N. Saridede, S. Stopić, and B. Friedrich. 2013. “Recovery of copper and zinc from brass wastes via ionic liquid leach.” In European Metallurgical Conf., 1167–1172. Clausthal-Zellerfeld, Germany: GDMB.
Kim, B. H., I. S. Chang, and G. M. Gadd. 2007. “Challenges in microbial fuel cell development and operation.” Appl. Microbiol. Biotechnol. 76 (3): 485–494. https://doi.org/10.1007/s00253-007-1027-4.
Kim, C., C. R. Lee, Y. E. Song, J. Heo, S. M. Choi, D.-H. Lim, J. Cho, C. Park, M. Jang, and J. R. Kim. 2017. “Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater.” Chem. Eng. J. 328: 703–707. https://doi.org/10.1016/j.cej.2017.07.077.
Kim, Y., and B. E. Logan. 2011. “Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells.” Proc. Natl. Acad. Sci. 108 (39): 16176–16181. https://doi.org/10.1073/pnas.1106335108.
Koók, L., T. Rózsenberszki, N. Nemestóthy, K. Bélafi-Bakó, and P. Bakonyi. 2016. “Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization.” J. Cleaner Prod. 112: 4406–4412. https://doi.org/10.1016/j.jclepro.2015.06.116.
Koroglu, E. O., H. C. Yoruklu, A. Demir, and B. Ozkaya. 2019. “Scale-up and commercialization issues of the MFCs: Challenges and implications.” In Microbial electrochemical technology, edited by S. Venkata Mohan, S. Varjani, and A. Pandey, 565–583. Amsterdam, Netherlands: Elsevier.
Kross, B. C., H. F. Nicholson, and L. K. Ogilvie. 1996. “Methods development study for measuring pesticide exposure to golf course workers using video imaging techniques.” Appl. Occup. Environ. Hygiene 11 (11): 1346–1350. https://doi.org/10.1080/1047322X.1996.10389423.
Kumar, B., K. Agrawal, N. Bhardwaj, V. Chaturvedi, and P. Verma. 2018. “Advances in concurrent bioelectricity generation and bioremediation through microbial fuel cells.” In Microbial fuel cell technology for bioelectricity, edited by V. Sivasankarm, P. Mylsamy, and K. Omine, 211–239. Cham, Switzerland: Springer.
Kumar, B., K. Agrawal, N. Bhardwaj, V. Chaturvedi, and P. Verma. 2019. “Techno-economic assessment of microbe-assisted wastewater treatment strategies for energy and value-added product recovery.” In Microbial technology for the welfare of society, edited by P. K. Arora, 147–181. Singapore: Springer.
Kumar, R., L. Singh, and A. W. Zularisam. 2016. “Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications.” Renewable Sustainable Energy Rev. 56: 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029.
Kumar, R., S. Yadav, and S. A. Patil. 2020. “Bioanode-assisted removal of Hg2+ at the cathode of microbial fuel cells.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020034. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000533.
Kurniawan, T. A., G. Y. S. Chan, W.-H. Lo, and S. Babel. 2006. “Physico–chemical treatment techniques for wastewater laden with heavy metals.” Chem. Eng. J. 118 (1–2): 83–98. https://doi.org/10.1016/j.cej.2006.01.015.
Lakherwal, D. 2014. “Adsorption of heavy metals: A review.” Int. J. Environ. Res. Dev. 4 (1): 41–48.
Le, A. T., S.-Y. Pung, S. Sreekantan, and A. Matsuda. 2019. “ Mechanisms of removal of heavy metal ions by ZnO particles.” Heliyon 5 (4): e01440. https://doi.org/10.1016/j.heliyon.2019.e01440.
Leiva, E., E. Leiva-Aravena, C. Rodríguez, J. Serrano, and I. Vargas. 2018. “Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells.” Sci. Total Environ. 645: 471–481. https://doi.org/10.1016/j.scitotenv.2018.06.378.
Li, H., Y. Feng, X. Zou, and X. Luo. 2009. “Study on microbial reduction of vanadium matallurgical waste water.” Hydrometallurgy 99 (1–2): 13–17. https://doi.org/10.1016/j.hydromet.2009.05.019.
Li, M., S. Zhou, and Y. Xu. 2019. “Performance of Pb(II) reduction on different cathodes of microbial electrolysis cell driven by Cr(VI)-reduced microbial fuel cell.” J. Power Sources 418: 1–10. https://doi.org/10.1016/j.jpowsour.2019.02.032.
Li, M., S. Zhou, Y. Xu, Z. Liu, F. Ma, L. Zhi, and X. Zhou. 2018. “Simultaneous Cr(VI) reduction and bioelectricity generation in a dual chamber microbial fuel cell.” Chem. Eng. J. 334: 1621–1629. https://doi.org/10.1016/j.cej.2017.11.144.
Li, Y., B. Zhang, M. Cheng, Y. Li, L. Hao, and H. Guo. 2016. “Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells.” J. Hazard. Mater. 306: 8–12. https://doi.org/10.1016/j.jhazmat.2015.12.003.
Li, Z., X. Zhang, and L. Lei. 2008. “Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell.” Process Biochem. 43 (12): 1352–1358. https://doi.org/10.1016/j.procbio.2008.08.005.
Liang, M., H. C. Tao, S. F. Li, W. Li, L. J. Zhang, and J. R. Ni. 2011. “Treatment of Cu2+-containing wastewater by microbial fuel cell with excess sludge as anodic substrate.” Huanjing Kexue 32: 179–185.
Liu, L., Y. Yang, and D. L. Li. 2012. “Accelerated hexavalent chromium [Cr (VI)] reduction with electrogenerated hydrogen peroxide in microbial fuel cells.” In Advanced materials research, 1525–1528. Zurich, Switzerland: Trans Tech Publications.
Liu, L., Y. Yuan, F. Li, and C. Feng. 2011. “In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria.” Bioresour. Technol. 102 (3): 2468–2473. https://doi.org/10.1016/j.biortech.2010.11.013.
Liu, L., J. Zhang, Y. Tan, Y. Jiang, M. Hu, S. Li, and Q. Zhai. 2014. “Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: Catalytic mechanism, analysis of products and degradation route.” Chem. Eng. J. 244: 9–18. https://doi.org/10.1016/j.cej.2014.01.063.
Liu, Y., L. Shen, P. Song, D. Chang, Z. Lu, Y. Liu, L. Cai, and L. Zhang. 2019. “Nickel(II) removal from wastewater by Microbial Fuel Cell.” Int. J. Electrochem. Sci. 14: 196–204. https://doi.org/10.20964/2019.01.31.
Logan, B. E. 2009. “Exoelectrogenic bacteria that power microbial fuel cells.” Nat. Rev. Microbiol. 7 (5): 375–381. https://doi.org/10.1038/nrmicro2113.
Logan, B. E. 2010. “Scaling up microbial fuel cells and other bioelectrochemical systems.” Appl. Microbiol. Biotechnol. 85 (6): 1665–1671. https://doi.org/10.1007/s00253-009-2378-9.
Logan, B. E., M. J. Wallack, K.-Y. Kim, W. He, Y. Feng, and P. E. Saikaly. 2015. “Assessment of microbial fuel cell configurations and power densities.” Environ. Sci. Technol. Lett. 2 (8): 206–214. https://doi.org/10.1021/acs.estlett.5b00180.
Lovley, D. R. 2006. “Bug juice: Harvesting electricity with microorganisms.” Nat. Rev. Microbiol. 4 (7): 497–508. https://doi.org/10.1038/nrmicro1442.
Lovley, D. R. 2011. “Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination.” Energy Environ. Sci. 4 (12): 4896–4906. https://doi.org/10.1039/c1ee02229f.
Lovley, D. R., and K. P. Nevin. 2011. “A shift in the current: New applications and concepts for microbe-electrode electron exchange.” Curr. Opin. Biotechnol. 22 (3): 441–448. https://doi.org/10.1016/j.copbio.2011.01.009.
Ma, S., et al. 2015. “Efficient uranium capture by polysulfide/layered double hydroxide composites.” J. Am. Chem. Soc. 137 (10): 3670–3677. https://doi.org/10.1021/jacs.5b00762.
Maleki, A., U. Hamesadeghi, H. Daraei, B. Hayati, F. Najafi, G. McKay, and R. Rezaee. 2017. “Amine functionalized multi-walled carbon nanotubes: Single and binary systems for high capacity dye removal.” Chem. Eng. J. 313: 826–835. https://doi.org/10.1016/j.cej.2016.10.058.
Mani, P., V. T. Fidal, K. Bowman, M. Breheny, T. S. Chandra, T. Keshavarz, and G. Kyazze. 2019. “Degradation of azo dye (Acid orange 7) in a microbial fuel cell: Comparison between anodic microbial-mediated reduction and cathodic laccase-mediated oxidation.” Front. Energy Res. 7: 101. https://doi.org/10.3389/fenrg.2019.00101.
Marin, M. L., L. Santos-Juanes, A. Arques, A. M. Amat, and M. A. Miranda. 2012. “Organic photocatalysts for the oxidation of pollutants and model compounds.” Chem. Rev. 112 (3): 1710–1750. https://doi.org/10.1021/cr2000543.
Marsili, E., D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick, and D. R. Bond. 2008. “Shewanella secretes flavins that mediate extracellular electron transfer.” Proc. Natl. Acad. Sci. 105 (10): 3968–3973. https://doi.org/10.1073/pnas.0710525105.
Mathuriya, A. S., and V. N. Sharma. 2010a. “Bioelectricity production from various wastewaters through microbial fuel cell technology.” J. Biochem. Technol. 2 (1): 133–137.
Mathuriya, A. S., and V. N. Sharma. 2010b. “Treatment of brewery wastewater and production of electricity through microbial fuel cell technology.” Int. J. Biotechnol. Biochem. 6 (1): 71–80.
Mathuriya, A. S., and J. V. Yakhmi. 2014. “Microbial fuel cells to recover heavy metals.” Environ. Chem. Lett. 12 (4): 483–494. https://doi.org/10.1007/s10311-014-0474-2.
Mehdi, Y., J.-L. Hornick, L. Istasse, and I. Dufrasne. 2013. “Selenium in the environment, metabolism and involvement in body functions.” Molecules 18 (3): 3292–3311. https://doi.org/10.3390/molecules18033292.
Miled, W., A. H. Said, and S. Roudesli. 2010. “Decolorization of high polluted textile wastewater by indirect electrochemical oxidation process.” J. Text. Apparel Technol. Manage. 6 (3): 1–6.
Miller, L. G., J. S. Blum, and R. S. Oremland. 2006. “Microbial fuel cell as life detector: Arsenic cycling in hypersaline environments.” In AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union.
Milliken, C. E., and H. D. May. 2007. “Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2.” Appl. Microbiol. Biotechnol. 73 (5): 1180–1189. https://doi.org/10.1007/s00253-006-0564-6.
Miran, W., J. Jang, M. Nawaz, A. Shahzad, S. E. Jeong, C. O. Jeon, and D. S. Lee. 2017. “Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.” Chemosphere 189: 134–142. https://doi.org/10.1016/j.chemosphere.2017.09.048.
Mirzaienia, F., A. Asadipour, A. J. Jafari, and M. Malakootian. 2017. “Removal efficiency of nickel and lead from industrial wastewater using microbial desalination cell.” Appl. Water Sci. 7 (7): 3617–3624. https://doi.org/10.1007/s13201-016-0505-1.
Moawad, H., W. M. A. El-Rahim, and M. Khalafallah. 2003. “Evaluation of biotoxicity of textile dyes using two bioassays.” J. Basic Microbiol. 43 (3): 218–229. https://doi.org/10.1002/jobm.200390025.
Modestra, J. A., P. Chiranjeevi, and S. V. Mohan. 2016. “Cathodic material effect on electron acceptance towards bioelectricity generation and wastewater treatment.” Renewable Energy 98: 178–187. https://doi.org/10.1016/j.renene.2016.03.066.
Modin, O., X. Wang, X. Wu, S. Rauch, and K. K. Fedje. 2012. “Bioelectrochemical recovery of Cu, Pb, Cd, and Zn from dilute solutions.” J. Hazard. Mater. 235–236: 291–297. https://doi.org/10.1016/j.jhazmat.2012.07.058.
Moghaddam, S. S., M. R. A. Moghaddam, and M. Arami. 2011. “Response surface optimization of acid red 119 dye from simulated wastewater using Al based waterworks sludge and polyaluminium chloride as coagulant.” J. Environ. Manage. 92 (4): 1284–1291. https://doi.org/10.1016/j.jenvman.2010.12.015.
Mohammed, A. A., S. E. Ebrahim, and A. I. Alwared. 2013. “Flotation and sorptive-flotation methods for removal of lead ions from wastewater using SDS as surfactant and barley husk as biosorbent.” J. Chem. 2013: 1–6. https://doi.org/10.1155/2013/413948.
Nancharaiah, Y. V., S. V. Mohan, and P. N. L. Lens. 2015. “Metals removal and recovery in bioelectrochemical systems: A review.” Bioresour. Technol. 195: 102–114. https://doi.org/10.1016/j.biortech.2015.06.058.
Narasingarao, P., and M. M. Häggblom. 2007. “Identification of anaerobic selenate-respiring bacteria from aquatic sediments.” Appl. Environ. Microbiol. 73 (11): 3519–3527. https://doi.org/10.1128/AEM.02737-06.
Nealson, K. H. 2017. “Bioelectricity (electromicrobiology) and sustainability.” Microb. Biotechnol. 10 (5): 1114–1119. https://doi.org/10.1111/1751-7915.12834.
Nguyen, T. A., C.-C. Fu, and R.-S. Juang. 2016a. “Biosorption and biodegradation of a sulfur dye in high-strength dyeing wastewater by Acidithiobacillus thiooxidans.” J. Environ. Manage. 182: 265–271. https://doi.org/10.1016/j.jenvman.2016.07.083.
Nguyen, T. A., and R.-S. Juang. 2013. “Treatment of waters and wastewaters containing sulfur dyes: A review.” Chem. Eng. J. 219: 109–117. https://doi.org/10.1016/j.cej.2012.12.102.
Nguyen, V. K., Y. Park, J. Yu, and T. Lee. 2016b. “Simultaneous arsenite oxidation and nitrate reduction at the electrodes of bioelectrochemical systems.” Environ. Sci. Pollut. Res. 23 (19): 19978–19988. https://doi.org/10.1007/s11356-016-7225-9.
Nguyen, V. K., H. T. Tran, Y. Park, J. Yu, and T. Lee. 2017. “Microbial arsenite oxidation with oxygen, nitrate, or an electrode as the sole electron acceptor.” J. Ind. Microbiol. Biotechnol. 44 (6): 857–868. https://doi.org/10.1007/s10295-017-1910-7.
Noori, M. T., A. Ganta, and B. R. Tiwari. 2020. “Recent advances in the design and architecture of bioelectrochemical systems to treat wastewater and to produce choice-based byproducts.” J. Hazard. Toxic Radioact. Waste 24 (3): 04020023. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000510.
Nyankson, E., and R. V. Kumar. 2019. “Removal of water-soluble dyes and pharmaceutical wastes by combining the photocatalytic properties of Ag3PO4 with the adsorption properties of halloysite nanotubes.” Mater. Today Adv. 4: 100025. https://doi.org/10.1016/j.mtadv.2019.100025.
O’Connell, D. W., C. Birkinshaw, and T. F. O’Dwyer. 2008. “Heavy metal adsorbents prepared from the modification of cellulose: A review.” Bioresour. Technol. 99 (15): 6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036.
Oh, S., B. Min, and B. E. Logan. 2004. “Cathode performance as a factor in electricity generation in microbial fuel cells.” Environ. Sci. Technol. 38 (18): 4900–4904. https://doi.org/10.1021/es049422p.
Oladoja, N. A., I. O. Raji, S. E. Olaseni, and T. D. Onimisi. 2011. “In situ hybridization of waste dyes into growing particles of calcium derivatives synthesized from a Gastropod shell (Achatina achatina).” Chem. Eng. J. 171 (3): 941–950. https://doi.org/10.1016/j.cej.2011.04.044.
Pacyna, J. M. 1996. “Monitoring and assessment of metal contaminants in the air.” In Toxicology of metals, edited by L. Magos, L. W. Chang, and T. Suzuki, 9–28, London, UK: Lewis Publishers.
Pang, F. M., S. P. Teng, T. T. Teng, and A. K. M. Omar. 2009. “Heavy metals removal by hydroxide precipitation and coagulation-flocculation methods from aqueous solutions.” Water Qual. Res. J. 44 (2): 174–182. https://doi.org/10.2166/wqrj.2009.019.
Panizza, M., and G. Cerisola. 2009a. “Electrochemical degradation of gallic acid on a BDD anode.” Chemosphere 77 (8): 1060–1064. https://doi.org/10.1016/j.chemosphere.2009.09.007.
Panizza, M., and G. Cerisola. 2009b. “Direct and mediated anodic oxidation of organic pollutants.” Chem. Rev. 109 (12): 6541–6569. https://doi.org/10.1021/cr9001319.
Paraknowitsch, J. P., A. Thomas, and M. Antonietti. 2010. “A zero-emission fuel cell that uses carbonaceous colloids from biomass waste as fuel source.” ChemSusChem 3 (2): 223–225. https://doi.org/10.1002/cssc.200900168.
Park, D. H., and J. G. Zeikus. 2000. “Electricity generation in microbial fuel cells using neutral red as an electronophore.” Appl. Environ. Microbiol. 66 (4): 1292–1297. https://doi.org/10.1128/AEM.66.4.1292-1297.2000.
Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang. 2001. “A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell.” Anaerobe 7 (6): 297–306. https://doi.org/10.1006/anae.2001.0399.
Park, J.-D., and Z. Ren. 2012. “Hysteresis controller based maximum power point tracking energy harvesting system for microbial fuel cells.” J. Power Sources 205: 151–156. https://doi.org/10.1016/j.jpowsour.2012.01.053.
Patel, H., and R. T. Vashi. 2012. “Removal of Congo Red dye from its aqueous solution using natural coagulants.” J. Saudi Chem. Soc. 16 (2): 131–136. https://doi.org/10.1016/j.jscs.2010.12.003.
Polat, H., and D. Erdogan. 2007. “Heavy metal removal from waste waters by ion flotation.” J. Hazard. Mater. 148 (1–2): 267–273. https://doi.org/10.1016/j.jhazmat.2007.02.013.
Potter, M. C. 1911. “Electrical effects accompanying the decomposition of organic compounds.” Proc. R. Soc. London, Ser. B 84 (571): 260–276. https://doi.org/10.1098/rspb.1911.0073.
Pous, N., M. D. Balaguer, J. Colprim, and S. Puig. 2018. “Opportunities for groundwater microbial electro-remediation.” Microb. Biotechnol. 11 (1): 119–135. https://doi.org/10.1111/1751-7915.12866.
Pous, N., B. Casentini, S. Rossetti, S. Fazi, S. Puig, and F. Aulenta. 2015. “Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater.” J. Hazard. Mater. 283: 617–622. https://doi.org/10.1016/j.jhazmat.2014.10.014.
Puvaneswari, N., J. Muthukrishnan, and P. Gunasekaran. 2006. “Toxicity assessment and microbial degradation of azo dyes.” Indian J. Exp. Biol. 44: 618–626.
Qin, B., H. Luo, G. Liu, R. Zhang, S. Chen, Y. Hou, and Y. Luo. 2012. “Nickel ion removal from wastewater using the microbial electrolysis cell.” Bioresour. Technol. 121: 458–461. https://doi.org/10.1016/j.biortech.2012.06.068.
Qiu, R., B. Zhang, J. Li, Q. Lv, S. Wang, and Q. Gu. 2017. “Enhanced vanadium (V) reduction and bioelectricity generation in microbial fuel cells with biocathode.” J. Power Sources 359: 379–383. https://doi.org/10.1016/j.jpowsour.2017.05.099.
Rabaey, K., N. Boon, M. Höfte, and W. Verstraete. 2005. “Microbial phenazine production enhances electron transfer in biofuel cells.” Environ. Sci. Technol. 39 (9): 3401–3408. https://doi.org/10.1021/es048563o.
Rabaey, K., and R. A. Rozendal. 2010. “Microbial electrosynthesis—revisiting the electrical route for microbial production.” Nat. Rev. Microbiol. 8 (10): 706–716. https://doi.org/10.1038/nrmicro2422.
Rabaey, K., and W. Verstraete. 2005. “Microbial fuel cells: Novel biotechnology for energy generation.” Trends Biotechnol. 23 (6): 291–298. https://doi.org/10.1016/j.tibtech.2005.04.008.
Rafatullah, M., O. Sulaiman, R. Hashim, and A. Ahmad. 2010. “Adsorption of methylene blue on low-cost adsorbents: A review.” J. Hazard. Mater. 177 (1–3): 70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047.
Rajabi, M., K. Mahanpoor, and O. Moradi. 2017. “Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: Critical review.” RSC Adv. 7 (74): 47083–47090. https://doi.org/10.1039/C7RA09377B.
Rangabhashiyam, S., N. Anu, and N. Selvaraju. 2013. “Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents.” J. Environ. Chem. Eng. 1 (4): 629–641. https://doi.org/10.1016/j.jece.2013.07.014.
Rasalingam, S., R. Peng, and R. T. Koodali. 2014. “Removal of hazardous pollutants from wastewaters: Applications of TiO2-SiO2 mixed oxide materials.” J. Nanomater. 2014: 1–42. https://doi.org/10.1155/2014/617405.
Rasmussen, M., and S. D. Minteer. 2015. “Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.” Bioelectrochemistry 106: 207–212. https://doi.org/10.1016/j.bioelechem.2015.03.009.
Rauf, M. A., and S. S. Ashraf. 2012. “Survey of recent trends in biochemically assisted degradation of dyes.” Chem. Eng. J. 209: 520–530. https://doi.org/10.1016/j.cej.2012.08.015.
Reimers, C. E., L. M. Tender, S. Fertig, and W. Wang. 2001. “Harvesting energy from the marine sediment- water interface.” Environ. Sci. Technol. 35 (1): 192–195. https://doi.org/10.1021/es001223s.
Rengaraj, S., C. K. Joo, Y. Kim, and J. Yi. 2003. “Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H.” J. Hazard. Mater. 102 (2–3): 257–275. https://doi.org/10.1016/S0304-3894(03)00209-7.
Rittmann, B. E. 2008. “Opportunities for renewable bioenergy using microorganisms.” Biotechnol. Bioeng. 100 (2): 203–212. https://doi.org/10.1002/bit.21875.
Robinson, T., G. McMullan, R. Marchant, and P. Nigam. 2001. “Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative.” Bioresour. Technol. 77 (3): 247–255. https://doi.org/10.1016/S0960-8524(00)00080-8.
Rodenas Motos, P., A. ter Heijne, R. van der Weijden, M. Saakes, C. J. N. Buisman, and T. H. J. A. Sleutels. 2015. “High rate copper and energy recovery in microbial fuel cells.” Front. Microbiol. 6: 527. https://doi.org/10.3389/fmicb.2015.00527.
Rodrigo, M. A., P. Canizares, J. Lobato, R. Paz, C. Sáez, and J. J. Linares. 2007. “Production of electricity from the treatment of urban waste water using a microbial fuel cell.” J. Power Sources 169 (1): 198–204. https://doi.org/10.1016/j.jpowsour.2007.01.054.
Rodríguez, F. A., E. P. Rivero, and I. González. 2017. “Electrogeneration of active chlorine in a filter-press-type reactor using a new Sb2O5 doped Ti/RuO2-ZrO2 electrode: Indirect indigoid dye oxidation.” Int. J. Chem. React. Eng. 15 (2): 1–13. https://doi.org/10.1515/ijcre-2016-0095.
Rodríguez-Couto, S., J. F. Osma, and J. L. Toca-Herrera. 2009. “Removal of synthetic dyes by an eco-friendly strategy.” Eng. Life Sci. 9 (2): 116–123. https://doi.org/10.1002/elsc.200800088.
Rozendal, R. A., H. V. M. Hamelers, K. Rabaey, J. Keller, and C. J. N. Buisman. 2008. “Towards practical implementation of bioelectrochemical wastewater treatment.” Trends Biotechnol. 26 (8): 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008.
Ryu, E.-Y., M. Kim, and S.-J. Lee. 2011. “Characterization of microbial fuel cells enriched using Cr(VI)-containing sludge.” J. Microbiol. Biotechnol. 21 (2): 187–191. https://doi.org/10.4014/jmb.1008.08019.
Saba, B., A. D. Christy, T. Park, Z. Yu, K. Li, and O. H. Tuovinen. 2018. “Decolorization of reactive black 5 and reactive blue 4 dyes in microbial fuel cells.” Appl. Biochem. Biotechnol. 186 (4): 1017–1033. https://doi.org/10.1007/s12010-018-2774-7.
Salleh, M. A. M., D. K. Mahmoud, W. A. W. A. Karim, and A. Idris. 2011. “Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review.” Desalination 280 (1–3): 1–13. https://doi.org/10.1016/j.desal.2011.07.019.
Sampathkumar, K., and S. Yesudas. 2009. “Hair dye poisoning and the developing world.” J. Emergencies Trauma Shock 2 (2): 129. https://doi.org/10.4103/0974-2700.50749.
Sathishkumar, K., M. S. AlSalhi, E. Sanganyado, S. Devanesan, A. Arulprakash, and A. Rajasekar. 2019. “Sequential electrochemical oxidation and bio-treatment of the azo dye congo red and textile effluent.” J. Photochem. Photobiol., B 200: 111655. https://doi.org/10.1016/j.jphotobiol.2019.111655.
Scott, K., and C. Murano. 2007. “Microbial fuel cells utilising carbohydrates.” J. Chem. Technol. Biotechnol. 82: 92–100.
Seo, S. H., B. W. Sung, G. J. Kim, K. H. Chu, C. Y. Um, S. L. Yun, Y. H. Ra, and K. B. Ko. 2010. “Removal of heavy metals in an abandoned mine drainage via ozone oxidation: A pilot-scale operation.” Water Sci. Technol. 62 (9): 2115–2120. https://doi.org/10.2166/wst.2010.406.
Shaalan, H. F., M. H. Sorour, and S. R. Tewfik. 2001. “Simulation and optimization of a membrane system for chromium recovery from tanning wastes.” Desalination 141 (3): 315–324. https://doi.org/10.1016/S0011-9164(01)85008-6.
Shaban, M., M. R. Abukhadra, A. Hamd, R. R. Amin, and A. A. Khalek. 2017. “Photocatalytic removal of Congo red dye using MCM-48/Ni2O3 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application.” J. Environ. Manage. 204: 189–199. https://doi.org/10.1016/j.jenvman.2017.08.048.
Shallari, S., C. Schwartz, A. Hasko, and J.-L. Morel. 1998. “Heavy metals in soils and plants of serpentine and industrial sites of Albania.” Sci. Total Environ. 209 (2): 133–142. https://doi.org/10.1016/S0048-9697(97)00312-4.
Shikuku, V. O., and W. N. Nyairo. 2020. “Advanced oxidation processes for dye removal from wastewater.” In Impact of textile dyes on public health and the environment, edited by K. A. Wani, N. K. Jangid, and A. R. Bhat, 205–238. Hershey, PA: IGI Global.
Shore, J. 1995. Cellulosics dyeing. Bradford, UK: Society of Dyers and Colorists.
Simões, M. F., A. E. Maiorano, J. G. dos Santos, L. Peixoto, R. F. B. de Souza, A. O. Neto, A. G. Brito, and C. A. Ottoni. 2019. “Microbial fuel cell-induced production of fungal laccase to degrade the anthraquinone dye Remazol Brilliant Blue R.” Environ. Chem. Lett. 17 (3): 1413–1420. https://doi.org/10.1007/s10311-019-00876-y.
Singhvi, P., and M. Chhabra. 2013. “Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell.” J. Biorem. Biodegrad. 4 (5): 1000190.
Sisler, F. D. 1961. “Electrical energy from biochemical fuel cells.” New Sci. 12: 110–111.
Sisler, F. D. 1962. “Electrical energy from microbiological processes.” J. Washington Acad. Sci. 52: 181–187.
Sleutels, T. H. J. A., A. Ter Heijne, C. J. N. Buisman, and H. V. M. Hamelers. 2012. “Bioelectrochemical systems: An outlook for practical applications.” ChemSusChem 5 (6): 1012–1019. https://doi.org/10.1002/cssc.201100732.
Smith, P. G., and P. Coackley. 1983. “A method for determining specific surface area of activated sludge by dye adsorption.” Water Res. 17 (5): 595–598. https://doi.org/10.1016/0043-1354(83)90120-3.
Solís, M., A. Solís, H. I. Pérez, N. Manjarrez, and M. Flores. 2012. “Microbial decolouration of azo dyes: A review.” Process Biochem. 47 (12): 1723–1748. https://doi.org/10.1016/j.procbio.2012.08.014.
Sophia, A. C., and S. Sai. 2016. “Modified microbial fuel cell for Cr(VI) reduction and simultaneous bio-electricity production.” J. Environ. Chem. Eng. 4 (2): 2402–2409. https://doi.org/10.1016/j.jece.2016.04.025.
Specht, K., and T. Platzek. 1995. Textile dyes and finishes-remarks to toxicological and analytical aspects. Stuttgart, Germany: Deutsche Lebensmittel-Rundschau.
Sponza, D. T. 2002. “Necessity of toxicity assessment in Turkish industrial discharges (examples from metal and textile industry effluents).” Environ. Monit. Assess. 73 (1): 41–66. https://doi.org/10.1023/A:1012663213153.
Sträter, E., A. Westbeld, and O. Klemm. 2010. “Pollution in coastal fog at Alto Patache, northern Chile.” Environ. Sci. Pollut. Res. 17 (9): 1563–1573. https://doi.org/10.1007/s11356-010-0343-x.
Strik, D. P. B. T. B., R. A. Timmers, M. Helder, K. J. J. Steinbusch, H. V. M. Hamelers, and C. J. N. Buisman. 2011. “Microbial solar cells: Applying photosynthetic and electrochemically active organisms.” Trends Biotechnol. 29 (1): 41–49. https://doi.org/10.1016/j.tibtech.2010.10.001.
Sumisha, A., J. Ashar, A. Asok, S. Karthick, and K. Haribabu. 2019. “Reduction of copper and generation of energy in double chamber microbial fuel cell using Shewanella putrefaciens.” Sep. Sci. Technol. 55: 2391–2399.
Summers, Z. M., H. E. Fogarty, C. Leang, A. E. Franks, N. S. Malvankar, and D. R. Lovley. 2010. “Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria.” Science 330 (6009): 1413–1415. https://doi.org/10.1126/science.1196526.
Tamburlini, G., O. S. von Ehrenstein, R. Bertollini, and World Health Organization. 2002. “Children’s health and environment: a review of evidence: a joint report from the European Environment Agency and the WHO Regional Office for Europe.”
Tandukar, M., U. Tezel, and S. G. Pavlostathis. 2009. “Biological chromium(VI) reduction in microbial fuel cell: A three in One approach.” Proc. Water Environ. Fed. 2009 (17): 527–535. https://doi.org/10.2175/193864709793955744.
Tang, L., J. Yu, Y. Pang, G. Zeng, Y. Deng, J. Wang, X. Ren, S. Ye, B. Peng, and H. Feng. 2018. “Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal.” Chem. Eng. J. 336: 160–169. https://doi.org/10.1016/j.cej.2017.11.048.
Tang, X., H. Zheng, H. Teng, Y. Sun, J. Guo, W. Xie, Q. Yang, and W. Chen. 2016. “Chemical coagulation process for the removal of heavy metals from water: A review.” Desalin. Water Treat. 57 (4): 1733–1748. https://doi.org/10.1080/19443994.2014.977959.
Tao, H.-C., Z.-Y. Gao, H. Ding, N. Xu, and W.-M. Wu. 2012. “Recovery of silver from silver (I)-containing solutions in bioelectrochemical reactors.” Bioresour. Technol. 111: 92–97. https://doi.org/10.1016/j.biortech.2012.02.029.
Tao, H.-C., W. Li, M. Liang, N. Xu, J.-R. Ni, and W.-M. Wu. 2011a. “A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation.” Bioresour. Technol. 102 (7): 4774–4778. https://doi.org/10.1016/j.biortech.2011.01.057.
Tao, H.-C., M. Liang, W. Li, L.-J. Zhang, J.-R. Ni, and W.-M. Wu. 2011b. “Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.” J. Hazard. Mater. 189 (1–2): 186–192. https://doi.org/10.1016/j.jhazmat.2011.02.018.
Tchounwou, P. B., C. G. Yedjou, A. K. Patlolla, and D. J. Sutton. 2012. “Heavy metal toxicity and the environment.” In Molecular, clinical and environmental toxicology, edited by A. Luch, 133–164. Basel, Switzerland: Springer.
Thamaraiselvan, C., and M. Noel. 2015. “Membrane processes for dye wastewater treatment: Recent progress in fouling control.” Crit. Rev. Environ. Sci. Technol. 45 (10): 1007–1040. https://doi.org/10.1080/10643389.2014.900242.
Thrash, J. C., J. I. Van Trump, K. A. Weber, E. Miller, L. A. Achenbach, and J. D. Coates. 2007. “Electrochemical stimulation of microbial perchlorate reduction.” Environ. Sci. Technol. 41 (5): 1740–1746. https://doi.org/10.1021/es062772m.
Thurston, C. F., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. D. Roller, and J. L. Stirling. 1985. “Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields.” Microbiology 131 (6): 1393–1401. https://doi.org/10.1099/00221287-131-6-1393.
Torres, C. I., R. Krajmalnik-Brown, P. Parameswaran, A. K. Marcus, G. Wanger, Y. A. Gorby, and B. E. Rittmann. 2009. “Selecting anode-respiring bacteria based on anode potential: Phylogenetic, electrochemical, and microscopic characterization.” Environ. Sci. Technol. 43 (24): 9519–9524. https://doi.org/10.1021/es902165y.
Upadhyay, K., and J. K. Srivastava. 2005. “Application of ozone in the treatment of indstrial and municipal wastewater.” I Pollut. Control 21 (2): 234–246.
Upadhyay, R. K., N. Soin, and S. S. Roy. 2014. “Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review.” RSC Adv. 4 (8): 3823–3851. https://doi.org/10.1039/C3RA45013A.
Vareda, J. P., A. J. M. Valente, and L. Durães. 2019. “Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review.” J. Environ. Manage. 246: 101–118. https://doi.org/10.1016/j.jenvman.2019.05.126.
von Canstein, H., J. Ogawa, S. Shimizu, and J. R. Lloyd. 2008. “Secretion of flavins by Shewanella species and their role in extracellular electron transfer.” Appl. Environ. Microbiol. 74 (3): 615–623. https://doi.org/10.1128/AEM.01387-07.
Wagner, R. W., and J. S. Lindsey. 1996. “Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays.” Pure Appl. Chem. 68 (7): 1373–1380. https://doi.org/10.1351/pac199668071373.
Wahyuni, E. T., N. H. Aprilita, H. Hatimah, A. M. Wulandari, and M. Mudasir. 2015. “Removal of toxic metal ions in water by photocatalytic method.” Chem. Sci. Int. J. 5 (2): 194–201. https://doi.org/10.9734/ACSJ/2015/13807.
Wang, G., L. Huang, and Y. Zhang. 2008. “Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.” Biotechnol. Lett. 30 (11): 1959–1966. https://doi.org/10.1007/s10529-008-9792-4.
Wang, H., and Z. J. Ren. 2013. “A comprehensive review of microbial electrochemical systems as a platform technology.” Biotechnol. Adv. 31 (8): 1796–1807. https://doi.org/10.1016/j.biotechadv.2013.10.001.
Wang, H., and Z. J. Ren. 2014. “Bioelectrochemical metal recovery from wastewater: A review.” Water Res. 66: 219–232. https://doi.org/10.1016/j.watres.2014.08.013.
Wang, Q., L. Huang, Y. Pan, X. Quan, and G. L. Puma. 2017. “Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.” J. Hazard. Mater. 321: 896–906. https://doi.org/10.1016/j.jhazmat.2016.10.011.
Wang, Q., L. Huang, Y. Pan, P. Zhou, X. Quan, B. E. Logan, and H. Chen. 2016. “Cooperative cathode electrode and in situ deposited copper for subsequent enhanced Cd (II) removal and hydrogen evolution in bioelectrochemical systems.” Bioresour. Technol. 200: 565–571. https://doi.org/10.1016/j.biortech.2015.10.084.
Wang, S., and Y. Peng. 2010. “Natural zeolites as effective adsorbents in water and wastewater treatment.” Chem. Eng. J. 156 (1): 11–24. https://doi.org/10.1016/j.cej.2009.10.029.
Wang, Y.-F., B.-Y. Gao, Q.-Y. Yue, Y. Wang, and Z.-L. Yang. 2012. “Removal of acid and direct dye by epichlorohydrin–dimethylamine: Flocculation performance and floc aggregation properties.” Bioresour. Technol. 113: 265–271. https://doi.org/10.1016/j.biortech.2011.11.106.
Wang, Y.-H., B.-S. Wang, B. Pan, Q.-Y. Chen, and W. Yan. 2013a. “Electricity production from a bio-electrochemical cell for silver recovery in alkaline media.” Appl. Energy 112: 1337–1341. https://doi.org/10.1016/j.apenergy.2013.01.012.
Wang, Y.-Z., A.-J. Wang, W.-Z. Liu, D.-Y. Kong, W.-B. Tan, and C. Liu. 2013b. “Accelerated azo dye removal by biocathode formation in single-chamber biocatalyzed electrolysis systems.” Bioresour. Technol. 146: 740–743. https://doi.org/10.1016/j.biortech.2013.07.082.
Wang, Z., B. Lim, and C. Choi. 2011. “Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell.” Bioresour. Technol. 102 (10): 6304–6307. https://doi.org/10.1016/j.biortech.2011.02.027.
Wang, Z., B.-S. Lim, H. Lu, J. Fan, and C.-S. Choi. 2010. “Cathodic reduction of Cu2+.” Bull. Korean Chem. Soc. 31 (7): 2025–2030. https://doi.org/10.5012/bkcs.2010.31.7.2025.
Wang, Z., B. Zhang, Y. Jiang, Y. Li, and C. He. 2018. “Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells.” Appl. Energy 209: 33–42. https://doi.org/10.1016/j.apenergy.2017.10.075.
Watanabe, K. 2008. “Recent developments in microbial fuel cell technologies for sustainable bioenergy.” J. Biosci. Bioeng. 106 (6): 528–536. https://doi.org/10.1263/jbb.106.528.
Webster, D. P., M. A. TerAvest, D. F. R. Doud, A. Chakravorty, E. C. Holmes, C. M. Radens, S. Sureka, J. A. Gralnick, and L. T. Angenent. 2014. “An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system.” Biosens. Bioelectron. 62: 320–324. https://doi.org/10.1016/j.bios.2014.07.003.
Wu, M. S., X. Xu, Q. Zhao, and Z. Y. Wang. 2017. “Simultaneous removal of heavy metals and biodegradation of organic matter with sediment microbial fuel cells.” RSC Adv. 7 (84): 53433–53438. https://doi.org/10.1039/C7RA11103G.
Wu, Y., X. Zhao, M. Jin, Y. Li, S. Li, F. Kong, J. Nan, and A. Wang. 2018. “Copper removal and microbial community analysis in single-chamber microbial fuel cell.” Bioresour. Technol. 253: 372–377. https://doi.org/10.1016/j.biortech.2018.01.046.
Wuana, R. A., and F. E. Okieimen. 2011. “Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation.” Isrn Ecol. 2011: 402647. https://doi.org/10.5402/2011/402647.
Xafenias, N., Y. Zhang, and C. J. Banks. 2013. “Enhanced performance of hexavalent chromium reducing cathodes in the presence of Shewanella oneidensis MR-1 and lactate.” Environ. Sci. Technol. 47 (9): 4512–4520. https://doi.org/10.1021/es304606u.
Xu, Y.-S., T. Zheng, X.-Y. Yong, D.-D. Zhai, R.-W. Si, B. Li, Y.-Y. Yu, and Y.-C. Yong. 2016. “Trace heavy metal ions promoted extracellular electron transfer and power generation by Shewanella in microbial fuel cells.” Bioresour. Technol. 211: 542–547. https://doi.org/10.1016/j.biortech.2016.03.144.
Xue, A., Z.-Z. Shen, B. Zhao, and H.-Z. Zhao. 2013. “Arsenite removal from aqueous solution by a microbial fuel cell–zerovalent iron hybrid process.” J. Hazard. Mater. 261: 621–627. https://doi.org/10.1016/j.jhazmat.2013.07.072.
Yadav, A. K., P. Dash, A. Mohanty, R. Abbassi, and B. K. Mishra. 2012. “Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal.” Ecol. Eng. 47: 126–131. https://doi.org/10.1016/j.ecoleng.2012.06.029.
Yagub, M. T., T. K. Sen, S. Afroze, and H. M. Ang. 2014. “Dye and its removal from aqueous solution by adsorption: A review.” Adv. Colloid Interface Sci. 209: 172–184. https://doi.org/10.1016/j.cis.2014.04.002.
Yang, Q., S. Liang, J. Liu, J. Lv, and Y. Feng. 2017. “Analysis of anodes of microbial fuel cells when carbon brushes are preheated at different temperatures.” Catalysts 7 (11): 312. https://doi.org/10.3390/catal7110312.
Yang, W., J. Li, D. Ye, L. Zhang, X. Zhu, and Q. Liao. 2016. “A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control.” J. Power Sources 306: 685–691. https://doi.org/10.1016/j.jpowsour.2015.12.073.
Yaqoob, A. A., A. Khatoon, S. H. Mohd Setapar, K. Umar, T. Parveen, M. N. Mohamad Ibrahim, A. Ahmad, and M. Rafatullah. 2020. “Outlook on the role of microbial fuel cells in remediation of environmental pollutants with electricity generation.” Catalysts 10 (8): 819. https://doi.org/10.3390/catal10080819.
Yasri, N., E. P. L. Roberts, and S. Gunasekaran. 2019. “The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells.” Energy Rep. 5: 1116–1136. https://doi.org/10.1016/j.egyr.2019.08.007.
You, S. J., Q. L. Zhao, J. Q. Jiang, J. N. Zhang, and S. Q. Zhao. 2006. “Sustainable approach for leachate treatment: Electricity generation in microbial fuel cell.” J. Environ. Sci. Health, Part A 41 (12): 2721–2734. https://doi.org/10.1080/10934520600966284.
Zeng, G., Z. Ye, Y. He, X. Yang, J. Ma, H. Shi, and Z. Feng. 2017. “Application of dopamine-modified halloysite nanotubes/PVDF blend membranes for direct dyes removal from wastewater.” Chem. Eng. J. 323: 572–583. https://doi.org/10.1016/j.cej.2017.04.131.
Zhang, B., C. Feng, J. Ni, J. Zhang, and W. Huang. 2012a. “Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology.” J. Power Sources 204: 34–39. https://doi.org/10.1016/j.jpowsour.2012.01.013.
Zhang, G., X. Li, Y. Li, T. Wu, D. Sun, and F. Lu. 2011a. “Removal of anionic dyes from aqueous solution by leaching solutions of white mud.” Desalination 274 (1–3): 255–261. https://doi.org/10.1016/j.desal.2011.02.016.
Zhang, L.-J., H.-C. Tao, X.-Y. Wei, T. Lei, J.-B. Li, A.-J. Wang, and W.-M. Wu. 2012b. “Bioelectrochemical recovery of ammonia–copper (II) complexes from wastewater using a dual chamber microbial fuel cell.” Chemosphere 89 (10): 1177–1182. https://doi.org/10.1016/j.chemosphere.2012.08.011.
Zhang, S., Y. Hui, and B. Han. 2015a. “The influence of pH spitting on the internal resistance in microbial fuel cells.” In 2015 Int. Conf. on Mechatronics, Electronic, Industrial and Control Engineering. Amsterdam, Netherlands: Atlantis Press.
Zhang, Y., L. Yu, D. Wu, L. Huang, P. Zhou, X. Quan, and G. Chen. 2015b. “Dependency of simultaneous Cr(VI), Cu(II) and Cd(II) reduction on the cathodes of microbial electrolysis cells self-driven by microbial fuel cells.” J. Power Sources 273: 1103–1113. https://doi.org/10.1016/j.jpowsour.2014.09.126.
Zhang, Y., Z. Wu, Q. Wang, L. Yang, M. Li, Z. Q. Lin, and G. Bañuelos. 2013. “Removal of selenite from wastewater using microbial fuel cells inoculated with Shewanella oneidensis MR-1.” In Selenium in the environment and human health, edited by G. S. Banuelos, Z.-Q. Lin, and X. Yin. London: Taylor & Francis.
Zhang, Y. J., M. Zhang, X. Yao, and Y. F. Li. 2011b. “A new technology of microbial fuel cell for treating both sewage and wastewater of heavy metal.” Adv. Mater. Res. 156–157: 500–504. https://doi.org/10.4028/www.scientific.net/AMR.156-157.500.
Zhao, L., F. Kong, X. Wang, Q. Wen, Q. Sun, and Y. Wu. 2009. “Cr (VI)-containing wastewater treatment coupled with electricity generation using microbial fuel cell.” Mod. Chem. Ind. 29 (11): 37–39.
Zhu, J., T. Zhang, N. Zhu, C. Feng, S. Zhou, and R. A. Dahlgren. 2019. “Bioelectricity generation by wetland plant-sediment microbial fuel cells (P-SMFC) and effects on the transformation and mobility of arsenic and heavy metals in sediment.” Environ. Geochem. Health 41 (5): 2157–2168. https://doi.org/10.1007/s10653-019-00266-x.
Zhu, M.-X., L. Lee, H.-H. Wang, and Z. Wang. 2007. “Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud.” J. Hazard. Mater. 149 (3): 735–741. https://doi.org/10.1016/j.jhazmat.2007.04.037.
Ziessel, R., G. Ulrich, A. Haefele, and A. Harriman. 2013. “An artificial light-harvesting array constructed from multiple Bodipy dyes.” J. Am. Chem. Soc. 135 (30): 11330–11344. https://doi.org/10.1021/ja4049306.
Zollinger, H. 1987. Color chemistry. Synthesis, properties and applications of organic dyes and pigments. 2nd ed. Hoboken, NJ: John Wiley & Sons.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Jun 22, 2020
Accepted: Oct 19, 2020
Published online: Dec 17, 2020
Published in print: Apr 1, 2021
Discussion open until: May 17, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Bikash Kumar [email protected]
Ph.D. Candidate, Bioprocess and Bioenergy Laboratory, Dept. of Microbiology, Central Univ. of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817 Rajasthan, India. Email: [email protected]; [email protected]
Komal Agrawal [email protected]
Ph.D. Candidate, Bioprocess and Bioenergy Laboratory, Dept. of Microbiology, Central Univ. of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817 Rajasthan, India. Email: [email protected]
Team Leader, Bioprocess and Bioenergy Laboratory, Professor, Dept. of Microbiology, Central Univ. of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817 Rajasthan, India (corresponding author). ORCID: https://orcid.org/0000-0003-2266-9437. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share