Technical Papers
Feb 11, 2020

Effect of Inlet Turbulent Boundary Conditions on Scour Predictions of Coupled LES and Morphodynamics in a Field-Scale River: Bankfull Flow Conditions

Publication: Journal of Hydraulic Engineering
Volume 146, Issue 4

Abstract

This paper presents a systematic numerical investigation to study the effects of inlet turbulent boundary conditions on the coupled hydrodynamics and morphodynamics computations of a natural river, the Feather River, located in northern California. A coupled flow (Eulerian) and sediment (Eulerian) dynamics numerical framework is employed to simulate fully coupled hydro-morphodynamics of a 600-m-long reach of the river in which there are several bridge foundations. The turbulent flow of the river is modeled using large-eddy simulation (LES). The considered inlet boundary conditions consist of (1) uniform flow, (2) instantaneously varying turbulent flow generated from a precursor straight-channel flow simulation, and (3) instantaneously varying turbulent flow produced from a precursor river flow simulation in a 900-m-long reach of the river located immediately upstream of the study area. The volumetric flow rate of the river in all cases is 1,250  m3/s, which corresponds to a high flow rate that lasted for about 24 h and led to the formation of a deep scour hole around the bridge foundations. The river bathymetry before and after the high river flow conditions are obtained using a series of field measurements. The latter bathymetry is compared with the simulated bed morphologies to assess the accuracy of the simulation results, and the former is utilized to produce the computational grid system of the river. The suitability of various inlet boundary conditions for coupled flow and morphodynamics simulations is evaluated by comparing the corresponding time-averaged flow field and riverbed elevation profiles after 24 h of actual time. The numerical study revealed that, unlike the flow field, the effect of the inlet turbulent boundary conditions on the riverbed morphodynamics is negligible. In addition, a validation study is presented that attempts to compare the numerical simulation results with those of experimentally measured data for flow and scour patterns around a skewed pier.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This work was supported by NSF Grant No. EAR-1823121 and California Department of Transportation. The authors would like to acknowledge Kornel Kerenyi and Oscar Suaznabar of the United States Federal Highway Administration for providing the experimental data to validate the numerical model. The authors also thank Zexia Zhang for his assistance in extracting data points from numerical results to prepare the bed elevation profiles. Computational resources were provided by the Center for Excellence in Wireless and Information Technology (CEWIT) of the College of Engineering and Applied Sciences at the Stony Brook University.

References

Abad, J. D., B. L. Rhoads, I. Gäneralp, and M. H. García. 2008. “Flow structure at different stages in a meander-bend with bendway weirs.” J. Hydraul. Eng. 134 (8): 1052–1063. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1052).
Abderrezzak, K. E. K., A. D. Moran, P. Tassi, R. Ata, and J. M. Hervouet. 2016. “Modelling river bank erosion using a 2D depth-averaged numerical model of flow and non-cohesive, non-uniform sediment transport.” Adv. Water Resour. 93 (Jul): 75–88. https://doi.org/10.1016/j.advwatres.2015.11.004.
Anastasiou, K., and C. Chan. 1997. “Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes.” Int. J. Numer. Methods. Fluids 24 (11): 1225–1245. https://doi.org/10.1002/(SICI)1097-0363(19970615)24:11%3C1225::AID-FLD540%3E3.0.CO;2-D.
Armenio, V. 2017. “Large eddy simulation in hydraulic engineering: Examples of laboratory-scale numerical experiments.” J. Hydraul. Eng. 143 (11): 03117007. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001357.
Ashtiani, A. B., and A. A. Beheshti. 2006. “Experimental investigation of clear-water local scour at pile groups.” J. Hydraul. Eng. 132 (10): 1100–1104. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1100).
Baranya, S., N. R. B. Olsen, T. Stoesser, and T. W. Sturm. 2013. “A nested grid based computational fluid dynamics model to predict bridge pier scour.” Water Manage. 167 (5): 259–268. https://doi.org/10.1680/wama.12.00104.
Begnudelli, L., and B. F. Sanders. 2006. “Unstructured grid finite volume algorithm for shallow-water flow and transport with wetting and drying.” J. Hydraul. Eng. 132 (4): 371–384. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:4(371).
Borazjani, I., L. Ge, and F. Sotiropoulos. 2008. “Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies.” J. Comput. Phys. 227 (16): 7587–7620. https://doi.org/10.1016/j.jcp.2008.04.028.
Castroa, M. J., J. A. García-Rodrígueza, J. M. González-Vidab, and C. Parésa. 2008. “Solving shallow-water systems in 2D domains using finite volume methods and multimedia SSE instructions.” J. Comput. Appl. Math. 221 (1): 16–32. https://doi.org/10.1016/j.cam.2007.10.034.
Chen, A. S., B. Evans, S. Djordjevic, and D. A. Savic. 2012. “Multi-layered coarse grid modelling in 2D urban flood simulations.” J. Hydrol. 470 (Nov): 1–11. https://doi.org/10.1016/j.jhydrol.2012.06.022.
Chiang, P. K., P. Willems, and J. Berlamont. 2010. “A conceptual river model to support real-time flood control.” In Proc., River Flow 2010 Int. Conf. on Fluvial Hydraulics, edited by A. Dittrich, K. Koll, J. Aberle, and P. Geisenhainer, 1407–1414. Karlsruhe: Braunschweig, Bundesanstalt fur Wasserbau (BAW).
Chou, Y. J., and O. B. Fringer. 2008. “Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model.” Phys. Fluids 20 (11): 115103. https://doi.org/10.1063/1.3005863.
Choudhary, M., and T. Molls. 1995. “Depth averaged open channel flow model.” J. Hydraul. Eng. 121 (6): 453–465. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:6(453).
Dhamankar, N. S., G. A. Blaisdell, and A. S. Lyrintzisz. 2018. “An overview of turbulent inflow boundary conditions for large eddy simulations.” AIAA J. 56 (4): 1317–1334. https://doi.org/10.2514/1.J055528.
Escauriaza, C., and F. Sotiropoulos. 2011a. “Initial stages of erosion and bed-form development in turbulent flow past a bridge pier.” J. Geophys. Res. 116 (3): F03007. https://doi.org/10.1029/2010JF001749.
Escauriaza, C., and F. Sotiropoulos. 2011b. “Lagrangian dynamics of bedload transport in turbulent junction flows.” J. Fluid Mech. 666 (Jan): 36–76. https://doi.org/10.1017/S0022112010004192.
Fischer, H., E. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks. 1979. Mixing in inland and coastal waters. Cambridge, MA: Academic Press.
Flora, K. 2011. Feather River emergency scour study. Sacramento, CA: California Dept. of Transportation.
Fröhlich, J., and D. V. Terzi. 2008. “Hybrid LES/RANS methods for the simulation of turbulent flows.” Prog. Aerosp. Sci. 44 (5): 349–377. https://doi.org/10.1016/j.paerosci.2008.05.001.
Gallegos, H. A., J. E. Schubert, and B. F. Sanders. 2009. “Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California.” Adv. Water Resour. 32 (8): 1323–1335. https://doi.org/10.1016/j.advwatres.2009.05.008.
Gallouet, J. M., and N. S. Herard. 2003. “Some approximate Godunov schemes to compute shallow-water equations with topography.” Comput. Fluids 32 (4): 479–513. https://doi.org/10.1016/S0045-7930(02)00011-7.
Ge, L., and F. Sotiropoulos. 2007. “A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries.” J. Comput. Phys. 225 (2): 1782–1809. https://doi.org/10.1016/j.jcp.2007.02.017.
Gilmanov, A., and S. Acharya. 2008. “A hybrid immersed boundary and material point method for simulating 3D fluid–structure interaction problems.” Int. J. Numer. Methods Fluids 56 (12): 2151–2177. https://doi.org/10.1002/fld.1578.
Gilmanov, A., and F. Sotiropoulos. 2005. “A hybrid Cartesian/immersed boundary method for simulating flows with three-dimensional, geometrically complex, moving bodies.” J. Comput. Phys. 207 (2): 457–492. https://doi.org/10.1016/j.jcp.2005.01.020.
Guan, M., and Q. Liang. 2016. “A two-dimensional hydro-morphological model for river hydraulics and morphology with vegetation.” Environ. Modell. Software 88 (Feb): 10–21. https://doi.org/10.1016/j.envsoft.2016.11.008.
Haigermoser, C., L. Vesely, M. Novara, and M. Onorato. 2008. “A time-resolved particle image velocimetry investigation of a cavity flow with a thick incoming turbulent boundary layer.” Phys. Fluids 20 (10): 105101. https://doi.org/10.1063/1.2990043.
Horritt, M. J., and P. D. Bates. 2002. “Evaluation of 1D and 2D numerical models for predicting river flood inundation.” J. Hydrol. 268 (1–4): 87–99. https://doi.org/10.1016/S0022-1694(02)00121-X.
Iwasaki, T., Y. Shimizu, and I. Kimura. 2016. “Numerical simulation of bar and bank erosion in a vegetated floodplain: A case study in the Otofuke River.” Adv. Water Resour. 93 (Jul): 118–134. https://doi.org/10.1016/j.advwatres.2015.02.001.
Jeon, J., J. Y. Lee, and S. Kang. 2018. “Experimental investigation of three dimensional flow structure and turbulent flow mechanisms around a nonsubmerged spur dike with a low length-to-depth ratio.” Water Resour. Res. 54 (5): 3530–3556. https://doi.org/10.1029/2017WR021582.
Jia, Y., S. Scott, Y. Xu, S. Huang, and S. S. Y. Wang. 2005. “Three-dimensional numerical simulation and analysis of flows around a submerged weir in a channel bendway.” J. Hydraul. Eng. 131 (8): 682–693. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:8(682).
Jia, Y., S. Scott, Y. Xu, and S. Y. Wang. 2009. “Numerical study of flow affected by bendway weirs in Victoria Bendway, the Mississippi River.” J. Hydraul. Eng. 135 (11): 902–916. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:11(902).
Kanchi, H., K. Sengupta, and F. Mashayek. 2013. “Effect of turbulent inflow boundary condition in LES of flow over a backward-facing step using spectral element method.” Int. J. Heat Mass Transfer 62 (Jul): 782–793. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.038.
Kang, S., A. Lightbody, C. Hill, and F. Sotiropoulos. 2011. “High-resolution numerical simulation of turbulence in natural waterways.” Adv. Water Resour. 34 (1): 98–113. https://doi.org/10.1016/j.advwatres.2010.09.018.
Kang, S., and F. Sotiropoulos. 2011. “Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool-riffle sequence: Insights gained via numerical simulation.” J. Geophys. Res. 116 (3): F0301. https://doi.org/10.1029/2010JF001814.
Kang, S., and F. Sotiropoulos. 2012. “Numerical modeling of 3D turbulent free surface flow in natural waterways.” Adv. Water Resour. 40 (May): 23–36. https://doi.org/10.1016/j.advwatres.2012.01.012.
Keating, A., U. Piomelli, and E. Balaras. 2004. “A priori and a posteriori test of inflow conditions for large-eddy simulation.” Phys. Fluids 16 (12): 4696–4712. https://doi.org/10.1063/1.1811672.
Keylock, C., G. Constantinescu, and R. Hardy. 2012. “The application of computational fluid dynamics to natural river channels: Eddy resolving versus mean flow approaches.” Geomorphology 179 (Dec): 1–20. https://doi.org/10.1016/j.geomorph.2012.09.006.
Khosronejad, A., D. Angelidis, E. Bagherizadeh, K. Flora, and A. Farhadzadeh. 2019a. “A comparative study of rigid-lid and level-set methods for LES of open-channel flows: Morphodynamics.” Environ. Fluid Mech. https://doi.org/10.1007/s10652-019-09703-y.
Khosronejad, A., M. Ghazan, D. Angelidis, E. Bagherzade, K. Flora, and A. Farhadzadeh. 2019b. “Comparative hydrodynamic study of rigid lid and level set methods for LES of open-channel flow.” J. Hyraulic Eng. 145 (1): 04018077. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001546.
Khosronejad, A., A. T. Hansen, J. L. Kozarek, K. Guentzel, M. Hondzo, M. Guala, P. Wilcock, J. C. Finlay, and F. Sotiropoulos. 2016a. “Large eddy simulation of turbulence and solute transport in a forested headwater stream.” J. Geophys. Res. Earth Surf. 121 (1): 146–167. https://doi.org/10.1002/2014JF003423.
Khosronejad, A., C. Hill, S. Kang, and F. Sotiropoulos. 2013. “Computational and experimental investigation of scour past laboratory models of stream restoration rock structures.” Adv. Water Resour. 54 (Apr): 191–207. https://doi.org/10.1016/j.advwatres.2013.01.008.
Khosronejad, A., S. Kang, I. Borazjani, and F. Sotiropoulos. 2011. “Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena.” Adv. Water Resour. 34 (7): 829–843. https://doi.org/10.1016/j.advwatres.2011.02.017.
Khosronejad, A., S. Kang, and F. Sotiropoulos. 2012. “Experimental and computational investigation of local scour around bridge piers.” Adv. Water Resour. 37 (Mar): 73–85. https://doi.org/10.1016/j.advwatres.2011.09.013.
Khosronejad, A., J. L. Kozarek, P. Diplas, C. Hill, R. Jha, P. Chatanantavet, N. Heydari, and F. Sotiropoulos. 2018. “Simulation-based optimization of in-stream structures design: Rock vanes.” Environ. Fluid Mech. 18 (3): 695–738. https://doi.org/10.1007/s10652-018-9579-7.
Khosronejad, A., J. L. Kozarek, M. L. Palmsten, and F. Sotiropoulos. 2015. “Numerical simulation of large dunes in meandering streams and rivers with in-stream structure.” Adv. Water Resour. 81 (Jul): 45–61. https://doi.org/10.1016/j.advwatres.2014.09.007.
Khosronejad, A., J. L. Kozarek, and F. Sotiropoulos. 2014. “Simulation-based approach for stream restoration structure design: Model development and validation.” J. Hydraul. Eng. 140 (9): 04014042. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000904.
Khosronejad, A., T. Le, P. DeWall, N. Bartelt, S. Woldeamlak, X. Yang, and F. Sotiropoulos. 2016b. “High-fidelity numerical modeling of the Upper Mississippi River under extreme flood condition.” Adv. Water Resour. 98 (Dec): 97–113. https://doi.org/10.1016/j.advwatres.2016.10.018.
Khosronejad, A., and F. Sotiropoulos. 2014. “Numerical simulation of sand waves in a turbulent open channel flow.” J. Fluid Mech. 753 (Aug): 150–216. https://doi.org/10.1017/jfm.2014.335.
Khosronejad, A., and F. Sotiropoulos. 2017. “On the genesis and evolution of barchan dunes: Morphodynamics.” J. Fluid Mech. 815 (Mar): 117–148. https://doi.org/10.1017/jfm.2016.880.
Kim, H. S., M. Nabi, I. Kimura, and Y. Shimizu. 2014. “Numerical investigation of local scour at two adjacent cylinders.” Adv. Water Resour. 70 (Aug): 131–147. https://doi.org/10.1016/j.advwatres.2014.04.018.
Kirkil, G., S. G. Constantinescu, and R. Ettema. 2008. “Coherent structures in the flow field around a circular cylinder with scour hole.” J. Hydraul. Eng. 134 (5): 572–587. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(572).
Kirkil, G., S. G. Constantinescu, and R. Ettema. 2009. “Detached eddy simulation investigation of turbulence at a circular pier with scour hole.” J. Hydraul. Eng. 135 (11): 888–901. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000101.
Koken, M., and G. Constantinescu. 2008. “An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process.” Water Resour. Res. 44 (8): W08406. https://doi.org/10.1029/2007WR006489.
Koken, M., and G. Constantinescu. 2009. “An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction.” Phys. Fluids 21 (8): 085104. https://doi.org/10.1063/1.3207859.
Koken, M., and G. Constantinescu. 2011. “Flow and turbulence structure around a spur dike in a channel with a large scour hole.” Water Resour. Res. 47 (12): W12511. https://doi.org/10.1029/2011WR010710.
Koken, M., and G. Constantinescu. 2014. “Flow and turbulence structure around abutments with sloped sidewalls.” J. Hydraul. Eng. 140 (7): 04014031. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000876.
Langendoen, E., A. Mendoza, J. Abad, P. Tassi, D. Wang, R. Ata, K. El-kadi, and J. Hervouet. 2016. “Improved numerical modeling of morphodynamics of rivers with steep banks.” Adv. Water Resour. 93 (Jul): 4–14. https://doi.org/10.1016/j.advwatres.2015.04.002.
Le, T., A. Khosronejad, N. Bartelt, S. Woldeamlak, B. Peterson, P. DeWall, and F. Sotiropoulos. 2018. “Large-eddy simulation of the Mississippi River under base-flow condition: Hydrodynamics of a natural diffluence-confluence region.” J. Hydraul. Res. 57 (6): 836–851. https://doi.org/10.1080/00221686.2018.1534282.
Li, C., O. Suaznabar, Z. Xie, J. Shen, K. Kerenyi, and R. Kilgore. 2016. Scour for complex pier configurations. Washington, DC: Federal Highway Administration (FHWA).
Liang, Q. 2010. “Flood simulation using a well-balanced shallow flow model.” J. Hydraul. Eng. 136 (9): 669–675. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000219.
Liu, X., and M. García. 2008. “Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour.” J. Waterway, Port, Coastal, Ocean Eng. 134 (4): 203–217. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:4(203).
Lund, T., X. Wu, and K. Squires. 1998. “Generation of turbulent inflow data for spatially-developing boundary layer simulations.” J. Comput. Phys. 140 (2): 233–258. https://doi.org/10.1006/jcph.1998.5882.
Meesuk, V., Z. Vojinovic, A. E. Mynett, and A. F. Abdullah. 2015. “Urban flood modelling combining top-view LIDAR data with ground-view SFM observations.” Adv. Water Resour. 75 (Jan): 105–117. https://doi.org/10.1016/j.advwatres.2014.11.008.
Mesbah Uddin, A. K., I. Marusic, and P. K. Subbareddy. 2001. “Interpretation of space-time velocity correlations in wall turbulence.” In Proc., 14th Australasian Fluid Mechanics Conf. Adelaide, Australia: Adelaide Univ.
Mignot, E., A. Paquier, and S. Haider. 2006. “Modeling floods in a dense urban area using 2D shallow water equations.” J. Hydrol. 327 (1–2): 186–199. https://doi.org/10.1016/j.jhydrol.2005.11.026.
Minakov, A. W., D. V. Platonov, I. V. Litvinov, S. I. Shtork, and K. Hanjalic. 2017. “Vortex ropes in draft tube of a laboratory Kaplan hydroturbine at low load: An experimental and les scrutiny of rans and des computational models.” J. Hydraul. Res. 55 (5): 668–685. https://doi.org/10.1080/00221686.2017.1300192.
Minor, B., C. Rennie, and R. Townsend. 2007. “Barbs for river bend bank protection: Application of a three-dimensional numerical model.” Can. J. Civ. Eng. 34 (9): 1087–1095. https://doi.org/10.1139/l07-088.
Mukha, T., and M. Liefvendahl. 2017. “The generation of turbulent inflow boundary conditions using precursor channel flow simulations.” Comput. Fluids 156 (Oct): 21–33. https://doi.org/10.1016/j.compfluid.2017.06.020.
Nabi, M., H. J. de Vriend, E. Mosselman, J. Sloff, and Y. Shimizu. 2012. “Detailed simulation of morphodynamics: 1. Hydrodynamic model.” Water Resour. Res. 48 (12): W12523. https://doi.org/10.1029/2012WR011911.
Nagata, N., T. Hosoda, T. Nakato, and Y. Muramoto. 2005. “Three-dimensional numerical model for flow and bed deformation around river hydraulic structures.” J. Hydraul. Eng. 131 (12): 1074–1087. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1074).
Olsen, N., and H. M. Kjellesvig. 1998. “Three dimensional numerical flow modeling for estimation of maximum local scour depth.” J. Hydraul. Res. 36 (4): 579–590. https://doi.org/10.1080/00221689809498610.
Paik, J., C. Escauriaza, and F. Sotiropoulos. 2007. “On the bi-modal dynamics of the turbulent horseshoe vortex system in a wing-body junction.” Phys. Fluids 19 (4): 045107. https://doi.org/10.1063/1.2716813.
Rao, P. 2004. “A moving domain formulation for modeling two dimensional open channel transient flows.” Appl. Math. Comput. 154 (3): 769–781. https://doi.org/10.1016/S0096-3003(03)00749-5.
Rodi, W. 1997. “Comparison of LES and RANS calculations of the flow around bluff bodies.” J. Wind Eng. Ind. Aerodyn. 69–71 (Jul): 55–75. https://doi.org/10.1016/S0167-6105(97)00147-5.
Rodi, W. 2017. “Turbulence modeling and simulation in hydraulics: A historical review.” J. Hydraul. Eng. 143 (5): 03117001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001288.
Roulund, A., B. M. Sumer, J. Fredsoe, and J. Michelsen. 2005. “Numerical and experimental investigation of flow and scour around a circular pile.” J. Fluid Mech. 534 (Jul): 351–401. https://doi.org/10.1017/S0022112005004507.
Sagaut, P. 1988. Large eddy simulation for incompressible flows. Berlin: Springer.
Salaheldin, T. M., J. Imran, and M. H. Chaudhry. 2004. “Numerical modeling of three-dimensional flow field around circular piers.” J. Hydraul. Eng. 130 (2): 91–100. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:2(91).
Seyoum, S. D., Z. Vojinovic, R. K. Price, and S. Weesakul. 2012. “Coupled 1D and noninertia 2D flood inundation model for simulation of urban flooding.” J. Hydraul. Eng. 138 (1): 23–34. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000485.
Smagorinsky, J. S. 1963. “General circulation experiments with the primitive equations.” Mon. Weather Rev. 91 (3): 99–164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
Sotiropoulos, F. 2015. “Hydraulics in the era of exponentially growing computing power.” J. Hydraul. Res. 53 (5): 547–560. https://doi.org/10.1080/00221686.2015.1119210.
Sotiropoulos, F., and A. Khosronejad. 2016a. “Multi-scale sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics.” Phys. Fluids 28 (2): 021301. https://doi.org/10.1063/1.4939987.
Sotiropoulos, F., and A. Khosronejad. 2016b. Three-dimensional simulation of bridge foundation scour on Mississippi River Bridges 9321 & 27801. Minneapolis: Univ. of Minnesota.
Stoesser, T. 2014. “Large-eddy simulation in hydraulics: Quo vadis?” J. Hydraul. Res. 52 (4): 441–452. https://doi.org/10.1080/00221686.2014.944227.
Tabor, G., and M. Baba-Ahmadi. 2010. “Inlet conditions for large eddy simulation: A review.” Comput. Fluids 39 (4): 553–567. https://doi.org/10.1016/j.compfluid.2009.10.007.
Termini, D. 2015. “Fluivial eco-hydraulics and morphodynamics: New insights and remaining challenges.” Adv. Water Resour. 81 (Jul): 1–3. https://doi.org/10.1016/j.advwatres.2015.04.003.
Tseng, M. H., C. L. Yen, and C. C. S. Song. 2000. “Computation of three-dimensional flow around square and circular piers.” Int. J. Numer. Methods Fluids 34 (3): 207–227. https://doi.org/10.1002/1097-0363(20001015)34:3%3C207::AID-FLD31%3E3.0.CO;2-R.
Valiani, A., V. Caleffi, and A. Zanni. 2002. “Case study: Malpasset dam-break simulation using a two-dimensional finite volume method.” J. Hydraul. Eng. 128 (5): 460–472. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(460).
Van Rijn, L. C. 1993. Principles of sediment transport in rivers, estuaries, and coastal seas. EA Blokzijl, Netherlands: Aqua Publications.
Wu, W., W. Rodi, and T. Wenka. 2000. “3D numerical modeling of flow and sediment transport in open channels.” J. Hydraul. Eng. 126 (1): 4–15. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(4).
Yu, D., and S. N. Lane. 2006. “Urban fluvial flood modelling using a two-dimensional diffusion-wave treatment. Part 1: Mesh resolution effects.” J. Hydrol. Process 20 (7): 1541–1565. https://doi.org/10.1002/hyp.5935.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 146Issue 4April 2020

History

Received: Apr 18, 2019
Accepted: Sep 12, 2019
Published online: Feb 11, 2020
Published in print: Apr 1, 2020
Discussion open until: Jul 11, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook Univ., Stony Brook, NY 11794 (corresponding author). ORCID: https://orcid.org/0000-0002-9549-3746. Email: [email protected]
Ph.D. Student, Dept. of Civil Engineering, College of Engineering and Applied Sciences, Stony Brook Univ., Stony Brook, NY 11794. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Hanyang Univ., Seoul 04763, Republic of Korea. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share