State-of-the-Art Reviews
Dec 7, 2019

Overview of Large-Scale Smoothed Particle Hydrodynamics Modeling of Dam Hydraulics

Publication: Journal of Hydraulic Engineering
Volume 146, Issue 2

Abstract

The design of appurtenant structures for dams, such as spillways, is a complex task because of the turbulent high-velocity aerated nature of the flowing water. In previous years, physical models would have been the only practical tool available to gain insight into the three-dimensional and time-dependent nature of spillway flows. Now, hydropower dam designers have multiple engineering tools to assess the hydraulic behavior in spillway structures. The high complexity level of these flows challenges the capabilities of computational fluid dynamics methods. Within this scope, the smoothed particle hydrodynamics method appears as a quite appropriate solution to solve flows dealing with large deformations, complex geometries, and movable boundaries. It has been used in a wide range of applications, including dam spillways. This paper provides an overview of how this method has been applied to investigate flow features in real spillways within the past decade. Its current state of knowledge with relevance to dam engineering practice is addressed and current limitations are highlighted in sight of future research could resolve them.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some models or code generated or used during the study are available in a repository or online in accordance with funder data retention policies (www.gpusph.org; www.dual.sphysics.org).
Some or all data, models, or code used during the study are proprietary or confidential in nature and may only be provided with restrictions (e.g., anonymized data). Requests to access these data should be made to the authors of the corresponding research studies (listed in the “References” section), including the present corresponding author.

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) through the Ph.D. grant [SFRH/BD/102192/2014] received by the first author.

References

Albano, R., A. Amicarelli, D. Mirauda, G. Agate, A. Sole, and A. C. Taramasso. 2014. “Experimental validation of a 3-D SPH model for the simulation of a dam-break event involving multiple fixed and mobile bodies.” In Proc., 7th WSEAS Int. Conf. on Engineering Mechanics, Structures, Engineering Geology, Special Session: Analysis and Modelling of Fast-Moving Flow-Like Phenomena, edited by G. Viccione and C. Guarnaccia. Fisciano, Italy: Univ. of Salerno.
Antuono, M., A. Colagrossi, and S. Marrone. 2012. “Numerical diffusive terms in weakly-compressible SPH schemes.” Comput. Phys. Commun. 183 (12): 2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006.
Antuono, M., A. Colagrossi, S. Marrone, and D. Molteni. 2010. “Free-surface flows solved by means of SPH schemes with diffusive terms.” Comput. Phys. Commun. 181 (3): 532–549. https://doi.org/10.1016/j.cpc.2009.11.002.
Barcarolo, D., D. Touzé, G. Oger, and F. Vuyst. 2014. “Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method.” J. Comp. Phys. 273: 640–657.
Bilotta, G., A. Vorobyev, A. Mayrhoferm, A. Hérault, and D. Violeau. 2014. “Modelling real-life flows in hydraulic waterworks with GPUSPH.” In Proc., 9th SPHERIC Int. Workshop, edited by D. Violeau, A. Hérault, and A. Joly. Paris: Conservatoire National des Arts et Métiers.
Børve, S. 2011. “Generalized ghost particle method for handling reflective boundaries.” In Proc., 6th SPHERIC Int. Workshop, edited by T. Rung and C. Ulrich. Bonn, Germany: Deutsche Forschungsgemeinschaft.
Brandão, L. 2015. “Modelação numérica 3D de escoamentos em descarregadores de cheia. Aplicação ao descarregador de cheias complementar do aproveitamento hidroelétrico da Caniçada.” Ph.D. thesis, Faculty of Engineering, Univ. of Porto.
Brandão, L., A. Muralha, L. Couto, and R. Maia. 2016. “Modelação física e numérica do escoamento no descarregador complementar da barragem da Caniçada.” In 13° Congresso da Água. Lisboa, Portugal: Laboratório Nacional de Engenharia Civil.
Brezzi, F., and J. Pitkäranta. 1984. Vol. 10 of Efficient solutions of elliptic systems: Notes on numerical fluid mechanics. Wiesbaden: Vieweg+Teubner Verlag.
Canelas, R., R. Ferreira, J. Domínguez, and A. Crespo. 2014. “Modelling of wave impacts on harbour structures and objects with SPH and DEM.” In Proc., 9th SPHERIC Int. Workshop, edited by D. Violeau, A. Hérault, and A. Joly. Paris: Conservatoire National des Arts et Métiers.
Cha, S.-H., and A. P. Whitworth. 2003. “Implementations and tests of Godunov-particle hydrodynamics.” MNRAS 340: 73–90. https://doi.org/10.1046/j.1365-8711.2003.06266.x.
Chern, M. J., and S. Syamsuri. 2013. “Effect of corrugated bed on hydraulic jump characteristic using SPH method.” J. Hydraul. Eng. 139 (2): 221–232. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000618.
Cleary, P., M. Prakash, J. Ha, N. Stokes, and C. Scott. 2007. “Smooth particle hydrodynamics: Status and future potential.” Prog. Comput. Fluid Dyn., Int. J. 7 (2–4): 70–90. https://doi.org/10.1504/PCFD.2007.013000.
Colagrossi, A., and M. Landrini. 2003. “Numerical simulation of interfacial flows by smoothed particle hydrodynamics.” J. Comput. Phys. 191 (2): 448–475. https://doi.org/10.1016/S0021-9991(03)00324-3.
Crespo, A., J. Domínguez, B. Rogers, M. Gómez-Gesteira, S. Longshaw, R. Canelas, R. Vacondio, A. Barreiro, and O. García-Feal. 2015. “DualSPHysics: Open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH).” Comput. Phys. Commun. 187 (Feb): 204–216. https://doi.org/10.1016/j.cpc.2014.10.004.
Crespo, A., M. Gómez-Gesteira, and R. Dalrymple. 2007. “Boundary conditions generated by dynamic particles in SPH methods.” Comput. Mater. Continua 5 (3): 173–184.
Crespo, A., M. Gómez-Gesteira, and R. Dalrymple. 2008. “Modelling dam break behavior over a wet bed by a SPH technique.” J. Waterway, Port, Coastal, Ocean Eng. 134 (6): 313–320. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:6(313).
Cummins, S. J., and M. Rudman. 1999. “An SPH projection method.” J. Comput. Phys. 152 (2): 584–607. https://doi.org/10.1006/jcph.1999.6246.
Dalrymple, R. A., and O. Knio. 2001. “SPH modelling of water waves.” In Proc., 4th Conf. on Coastal Dynamics, edited by H. Hanson and M. Larson. Reston, VA: ASCE.
Domínguez, J. 2014. “DualSPHysics: Towards high performance computing using SPH technique.” Ph.D. thesis, Departamento de Física Aplicada, Universidad de Vigo.
Federico, I., S. Marrone, A. Colagrossi, F. Aristodemo, and M. Antuono. 2012. “Simulating 2D open-channel flows through an SPH model.” Eur. J. Mech. B. Fluids 34 (Jul–Aug): 35–46. https://doi.org/10.1016/j.euromechflu.2012.02.002.
Ferrand, M., A. Joly, C. Kassiotis, D. Violeau, A. Leroy, F. X. Morel, and B. D. Rogers. 2017. “Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D.” Comput. Phys. Commun. 210 (Jan): 29–44. https://doi.org/10.1016/j.cpc.2016.09.009.
Ferrand, M., D. Laurence, B. Rogers, D. Violeau, and C. Kassiotis. 2013. “Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method.” Int. J. Numer. Methods Fluids 71 (4): 446–472. https://doi.org/10.1002/fld.3666.
Ferrari, A. 2010. “SPH simulation of free surface flow over a sharp-crested weir.” Adv. Water Resour. 33 (3): 270–276. https://doi.org/10.1016/j.advwatres.2009.12.005.
Ferrari, A., M. Dumbser, E. Toro, and A. Armanini. 2009. “A new 3D parallel SPH scheme for free surface flows.” Comput. Fluids 38 (6): 1203–1217. https://doi.org/10.1016/j.compfluid.2008.11.012.
Fonty, T., A. Leroy, A. Joly, D. Violeau, and M. Ferrand. 2018. “An upwind scheme for conservative, realizable two-phase mixture SPH model with high density ratios.” In Proc., 13th SPHERIC Int. Workshop. Galway, Ireland: National Univ. of Ireland.
Fonty, T., J. Milla Lopez Asiain, A. Leroy, G. Guyot, D. Violeau, and A. Joly. 2017. “Numerical Modelling of the Undersluices of the Rance Tidal Power Station with SPH.” In Proc., 12th SPHERIC Int. Workshop. Vigo, Spain: Facultade de Ciencias, Universidade de Vigo.
Fourtakas, G., and B. Rogers. 2016. “Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using smoothed particle hydrodynamics (SPH) accelerated with a graphics processing unit (GPU).” Adv. Water Resour. 92 (Jun): 186–199. https://doi.org/10.1016/j.advwatres.2016.04.009.
Ghaïtanellis, A., D. Violeau, M. Ferrand, K. Abderrezzak, A. Leroy, and A. Joly. 2018. “A SPH elastic-viscoplastic model for granular flows and bed-load transport.” Adv. Water Resour. 111 (Jan): 156–173.
Ghaïtanellis, A., D. Violeau, M. Ferrand, A. Leroy, and A. Joly. 2015. “Application of the unified semi-analytical wall boundary conditions to multi-phase SPH.” In Proc., 10th SPHERIC Int. Workshop, edited by R. Vacondio. Parma, Italy: Università di Parma.
Gómez, D. L., R. M. Colmenarejo, M. Moncalvillo, and J. Cillán. 2012. “SPH methods applied to hydraulic structures. Friction boundary condition.” In Proc., 4th IAHR Int. Symp. on Hydraulic Structures. Lisbon, Portugal: Energias de Portugal.
Grassa, J. M. 2004. “El método SPH. Aplicaciones en ingeniería marítima.” Rev Ingeniería Civil 133: 37–56.
Grassa, J. M. 2007. “Wave forces on a wavemaker. SPH simulation and comparison with analytic results.” In Proc., 32nd Congress of IAHR, the International Association of Hydraulic Engineering & Research. Venice, Italy: CORILA.
Grenier, N., M. Antuono, A. Colagrossi, D. Le Touzé, and B. Alessandrini. 2009. “An Hamiltonian interface SPH formulation for multi-fluid and free surface flows.” J. Comput. Phys. 228 (22): 8380–8393. https://doi.org/10.1016/j.jcp.2009.08.009.
Gu, S., L. Ren, X. Wang, H. Xie, Y. Huang, J. Wei, and S. Shao. 2017. “SPHysics simulation of experimental spillway hydraulics.” Water 9 (12): 973. https://doi.org/10.3390/w9120973.
Hérault, A., G. Bilotta, and R. A. Dalrymple. 2010. “SPH on GPU with CUDA.” J. Hydraul. Res. 48: 74–79. https://doi.org/10.1080/00221686.2010.9641247.
Ho, D., and K. Riddette. 2010. “Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia.” Aust. J. Civ. Eng. 6 (1): 81–104. https://doi.org/10.1080/14488353.2010.11463946.
Hussain, S. 2016. “Open boundary condition for a numerical SPH method to characterize the flow in open channels.” ZANCO J. Pure Appl. Sci. 28 (2): 207–216.
Issa, R., D. Violeau, E.-S. Lee, and H. Flament. 2010. “Modelling nonlinear water waves with RANS and LES SPH models.” In Advances in numerical simulation of nonlinear water waves, 497–537. Singapore: World Scientific Publishing.
Jian, W., D. Liang, and S. Shao. 2015. “SPH study of the evolution of water-water interfaces in dam break flows.” Nat. Hazard. 78 (1): 531–553. https://doi.org/10.1007/s11069-015-1726-6.
Kassiotis, C., M. Ferrand, and D. Violeau. 2013. “Semi-analytical conditions for open boundaries in SPH.” In Proc., 8th SPHERIC Int. Workshop, 28–35. Trondheim, Norway: SINTEF.
Lastiwka, M., M. Basa, and N. Quinlan. 2009. “Permeable and non-reflecting boundary conditions in SPH.” Int. J. Numer. Meth. Fluids 61 (7): 709–724. https://doi.org/10.1002/fld.1971.
Lee, E.-S., C. Moulinec, R. Xu, D. Violeau, D. Laurence, and P. Stansby. 2008. “Comparisons of weakly compressible and truly incompressible SPH algorithms for 2D flows.” J. Comput. Phys. 227 (18): 8417–8436. https://doi.org/10.1016/j.jcp.2008.06.005.
Lee, E.-S., D. Violeau, R. Issa, and S. Ploix. 2010. “Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks.” J Hydraul. Res. 48: 50–60. https://doi.org/10.1080/00221686.2010.9641245.
Lee E.-S., D. Violeau, R. Issa, S. Ploix, and R. Marc. 2009. “Simulating a real dam spillway flow with 3-D SPH.” In Proc., 4th Int. SPHERIC Workshop, edited by D. Le Touzé. Nantes, France: École Centrale De Nantes.
Leonardi, M., and T. Rung. 2013. “SPH modelling of bed erosion for water/soil-interaction.” In Proc., 8th Int. SPHERIC Workshop. Trondheim, Norway: SINTEF.
Leroy, A. 2014. “A new incompressible SPH model: Towards industrial applications.” Ph.D. dissertation, Laboratoire d’Hydraulique Saint-Venant, Université Paris-Est.
Leroy, A., D. Violeau, M. Ferrand, and C. Kassiotis. 2014. “Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH.” J. Comput. Phys. 261 (Mar): 106–129. https://doi.org/10.1016/j.jcp.2013.12.035.
Lind, S. J., P. K. Stansby, and B. Rogers. 2016. “Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH).” J. Comput. Phys. 309 (Mar): 129–147. https://doi.org/10.1016/j.jcp.2015.12.005.
Lind, S. J., P. K. Stansby, B. Rogers, and P. M. Lloyd. 2015. “Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics.” Appl. Ocean Res. 49 (Jan): 57–71. https://doi.org/10.1016/j.apor.2014.11.001.
Liu, G. R. 2002. Mesh free methods: Moving beyond the finite element method. Boca Raton, FL: CRC Press.
Liu, G. R., and Y. T. Gu. 2000. “Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches.” Comput. Mech. 26 (6): 536–546. https://doi.org/10.1007/s004660000203.
Lopes, A., M. Proença, and R. Maia. 2006. “Energy dissipation downstream of dams established in alluvial beds.” In Proc., Int. Conf. on Fluvial Hydraulics River Flow. Boca Raton, FL: CRC Press.
López, D. 2013. “Aplicación del método numérico SPH 3D en el diseño de aliviaderos de presas.” [In Spanish.] Jornada Técnica Avances en investigación aplicada en seguridad hidráulica de presas. Madrid, Spain: Universidad Politecnica Madrid.
López, D., M. Bias, and J. Rebollo. 2012. “Simulación híbrida del desague de fondo de la presa de Mularroya.” In Actividad experimental de I+D+i de ingeniería hidráulica en España, Red de laboratórios de hidráulica en España, Seminario 2012. [In Spanish.] València, Spain: Universitat Politècnica de València.
López, D., R. Diaz, J. J. Rebollo, and V. Cuellar. 2015. “SPH application in the design of hydraulic structures.” Hidrolink 3: 76–77.
López, D., R. Diaz, J. J. Rebollo, T. T. Ramos, F. R. Andrés, and M. I. Berga. 2016. “Aplicación del método SPH al estudio hidráulico de estruturas. Análisis hidrodinámico del aliviadero en pozo de la presa de Nagore (Navarra).” [In Spanish.] Ribagua–Revista Iberoamericana del Agua 3: 1–7.
López, D., R. Marivela, and F. Aranda. 2010b. “Análisis hidrodinámico de estructuras hidráulicas con modelos SPH. Estudio del cuenco de amortiguamiento de la presa de Villar del Rey.” [In Spanish.] In Comunicaciones de las IX Jornadas Españolas de Presas. Madrid, Spain: Comité Nacional Español de Grandes Presas (SPANCOLD).
López, D., R. Marivela, and L. Garrote. 2010a. “Smoothed particle hydrodynamics model applied to hydraulic structures: A hydraulic jump test case.” Supplement, J. Hydraul. Res. 48 (S1): 142–158. https://doi.org/10.1080/00221686.2010.9641255.
Manenti, S., S. Sibilla, M. Gallati, G. Agate, and R. Guandalini. 2012. “SPH simulation of sediment flushing induced by a rapid water flow.” J. Hydraul. Eng. 138 (3): 272–284. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000516.
Marongiu, J. C., F. Leboeuf, J. Caro, and E. Parkinson. 2010. “Free surface flow simulations in Pelton turbines using an hybrid SPH-ALE method.” Supplement, J. Hydraul. Res. 48 (S1): 40–49. https://doi.org/10.1080/00221686.2010.9641244.
Marrone, S., M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touzé, and G. Graziani. 2011. “δ-SPH model for simulating violent impact flows.” Comput. Methods Appl. Mech. Eng. 200 (13–16): 1526–1542. https://doi.org/10.1016/j.cma.2010.12.016.
Marrone, S., B. Bouscasse, A. Colagrossi, and M. Antuono. 2012. “Study of ship wave breaking patterns using 3D parallel SPH simulations.” Comput. Fluids 69 (Oct): 54–66. https://doi.org/10.1016/j.compfluid.2012.08.008.
Molteni, D., and A. Colagrossi. 2009. “A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH.” Comput. Phys. Commun. 180 (6): 861–872. https://doi.org/10.1016/j.cpc.2008.12.004.
Monaghan, J. 1992. “Smoothed particle hydrodynamics.” Ann. Rev. Astrophysics 30: 429–453.
Monaghan, J. 1994. “Simulating free surface flows with SPH.” J. Comput. Phys. 110 (2): 399–406. https://doi.org/10.1006/jcph.1994.1034.
Moreira, A., A. Leroy, D. Violeau, and F. Taveira-Pinto. 2018. “Simulating spillway flows with the SPH method.” In Proc., 13rd Int. SPHERIC Workshop. Galway, Ireland: National Univ. of Ireland.
Moreira, A., A. Leroy, D. Violeau, and F. Taveira-Pinto. 2019. “Dam spillways and the SPH method: Two case studies in Portugal.” J. Appl. Water Eng. Res. 7 (3): 228–245. https://doi.org/10.1080/23249676.2019.1611496.
Moreira, A., and F. Taveira-Pinto. 2017. “Numerical modelling of hydraulic jumps. The Crestuma dam study case.” In Proc., 2nd Doctoral Congress in Engineering. Porto, Portugal: Faculdade de Engenharia, Universidade do Porto.
Morris, J., P. Fox, and Y. Zhu. 1997. “Modelling low Reynolds number incompressible flows using SPH.” J. Comput. Physics. 136 (1): 214–226. https://doi.org/10.1006/jcph.1997.5776.
Plesinski, K., F. Pachla, A. Radecki-Pawlik, T. Tatara, and B. Radecki-Pawlik. 2018. “Numerical 2D simulation of morphological phenomena of block ramp in Poniczanka stream: Polish Carpathian.” In Proc., 7th Int. Symp. on Hydraulic Structures. Aachen, Germany: Aachen Univ.
Pope, S. B. 2000. Turbulent flows. Cambridge, UK: Cambridge University Press.
Randles, P. W., and L. D. Libersky. 1996. “Smoothed particle hydrodynamics: Some recent improvements and applications.” Comput. Methods Appl. Mech. Eng. 139 (1–4): 375–408. https://doi.org/10.1016/S0045-7825(96)01090-0.
Rebollo, J. J., M. de Blas, R. Diaz, and R. Marivela. 2010. “Hydrodynamic verification with SPH of under gate flow in the Alarcon spillway (Spain).” In Proc., 1st European IAHR Congress. Edinburgh, UK: School of the Built Environment, Heriot-Watt Univ.
Reyes, Y., D. Roose, and C. Recarey. 2013. “Dynamic particle refinement in SPH: Application to free surface flow and non-cohesive soil simulations.” Comput. Mech. 51: 731–741. https://doi.org/10.1007/s00466-012-0748-0.
Saunders, K., M. Prakash, P. W. Cleary, and M. Cordell. 2014. “Application of smoothed particle hydrodynamics for modelling gated spillway flows.” Appl. Math. Modell. 38 (17–18): 4308–4322. https://doi.org/10.1016/j.apm.2014.05.008.
Scimeni, E. 1930. “Sulla forma delle vene tracimanti (The form of flow over weir).” [In Italian.] L’energia Elettrica: Milano 7 (4): 293–305.
Sun, P., A. Colagrossi, S. Marrone, M. Antuono, and A. Zhang. 2017. “Multi-resolution Delta-plus-SPH with tensile instability control: Towards high Reynolds number flows.” Comput. Phys. Commun. 224: 63–80.
Swegle, J. W., D. L. Hicks, and S. W. Attaway. 1995. “Smoothed particle hydrodynamics stability analysis.” J. Comput. Phys. 116: 123–134. https://doi.org/10.1006/jcph.1995.1010.
Tafuni, A., J. Dominguez, R. Vacondio, I. Sahin, and A. Crespo. 2016. “Open boundary conditions for large-scale SPH simulations.” In Proc., 11th Int. SPHERIC Workshop. München, Germany: Technische Universität München.
Tait, P. G. 1888. Report on some of the physical properties of fresh water and sea water. New York: Johnson Reprint Corporation.
Tanchev, L. 2005. Dam and appurtenant hydraulic structures. Leiden, Netherlands: A.A. Balkema.
Vacondio, R., B. D. Rogers, P. K. Stansby, and P. Mignosa. 2012. “SPH modelling of shallow flow with open boundaries for practical flood simulation.” J. Hydraul. Eng. 138 (6): 530–541. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000543.
Vacondio, R., B. D. Rogers, P. K. Stansby, and P. Mignosa. 2016. “Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity.” Comput. Methods Appl. Mech. Eng. 300 (Mar): 442–460. https://doi.org/10.1016/j.cma.2015.11.021.
Vahedifard, F., A. AghaKouchak, E. Ragno, S. Shahrokhabadi, and I. Mallakpour. 2017. “Lessons from the Oroville Dam.” Science 355 (6330): 1139–1140.
Violeau D. 2012. Fluid mechanics and the SPH method: Theory and applications. Oxford: Oxford University Press.
Violeau, D., and R. Issa. 2006. “Numerical modelling of complex turbulent free-surface flows with the SPH method: An overview.” Int. J. Numer. Methods Fluids 53 (2): 277–304. https://doi.org/10.1002/fld.1292.
Violeau, D., and A. Leroy. 2014. “On the maximum time step in weakly compressible SPH.” J. Comput. Physics. 256 (Jan): 388–415. https://doi.org/10.1016/j.jcp.2013.09.001.
Violeau, D., and B. Rogers. 2016. “Smoothed particle hydrodynamics (SPH) for free-surface flows: Past, present and future.” J. Hydraul. Res. 54 (1): 1–26. https://doi.org/10.1080/00221686.2015.1119209.
Visher, D. L., and W. Hager. 1998. Dam hydraulics. Chichester, UK: Wiley.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 146Issue 2February 2020

History

Published online: Dec 7, 2019
Published in print: Feb 1, 2020
Discussion open until: May 7, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Andreia Borges Moreira [email protected]
Ph.D. Student, Dept. of Civil Engineering, Univ. of Porto, Porto 4200-465, Portugal (corresponding author). Email: [email protected]
Agnès Leroy, Ph.D. [email protected]
Senior Researcher, Saint-Venant Hydraulics Laboratory (École Nationale des Ponts et Chaussées, Electricité de France Reseach & Development, Centre D’etudes Et D’expertise Sur Les Risques L’environnement La Mobilite Et L’amenagement), Electricité de France Reseach & Development/Laboratoire d’Hydraulique Saint-Venant and Université Paris-Est, Chatou 78400, France. Email: [email protected]
Damien Violeau, Ph.D. [email protected]
Research Engineer, Saint-Venant Hydraulics Laboratory (ENPC, EDF R&D, CEREMA), EDF R&D/LNHE and Université Paris-Est, Chatou 78400, France. Email: [email protected]
Francisco de Almeida Taveira-Pinto, Ph.D. https://orcid.org/0000-0003-4337-8428 [email protected]
Professor, Dept. of Civil Engineering, Univ. of Porto, Porto 4200-465, Portugal. ORCID: https://orcid.org/0000-0003-4337-8428. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share