Case Studies
Dec 28, 2020

Application of PSO Method for Archimedean Copula Parameter Estimation in Flood (Rain) and Tide Joint Distribution Analysis

Publication: Journal of Hydrologic Engineering
Volume 26, Issue 3

Abstract

Archimedean copulas are the most popular class of copulas used in hydrological statistical models. Parameter estimation of copulas is an open and complex task. A faster and computationally easier estimation procedure is needed. In this study, a particle swarm optimization (PSO) method is proposed to obtain the parameters of copulas and their corresponding marginal distributions. The proposed PSO method is illustrated on hydrological variables (i.e., flood discharge, rainfall, tide level) of four gauging sites located in Jiangsu province and Shenzhen city, China. Five commonly used marginal distributions (including Pearson Type III, lognormal, gamma, Weibull, and generalized extreme value), three symmetric Archimedean copulas (including Clayton copula, Gumbel–Hougaard copula, Frank copula), and six asymmetric Archimedean copulas are used to construct the joint distributions of selected hydrological variables. The best parameters of copulas and marginal distributions are estimated based on PSO, and the most appropriate copulas and marginal distributions are selected based on the goodness of fit between empirical and theoretical distributions. The results show that the proposed PSO-based parameter estimation method is effective in this case study.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Science and Technology Project of Jiangsu Province (Grant No. BM2018028).

References

Abbasbandy, S. 2003. “Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method.” Appl. Math. Comput. 145 (2): 887–893. https://doi.org/10.1016/S0096-3003(03)00282-0.
Abdi, A., Y. Hassanzadeh, S. Talatahari, A. Fakheri-Fard, and R. Mirabbasi. 2016. “Parameter estimation of copula functions using an optimization-based method.” Theor. Appl. Climatol. 129 (1–2): 21–32. https://doi.org/10.1007/s00704-016-1757-2.
Allahverdi, A., and F. S. Al-Anzi. 2006. “A PSO and a Tabu search heuristics for the assembly scheduling problem of the two-stage distributed database application.” Comput. Oper. Res. 33 (4): 1056–1080. https://doi.org/10.1016/j.cor.2004.09.002.
Azad, H., and M. Hatam. 2016. “Maximum likelihood independent component analysis using GA and PSO.” In Proc., 2016 24th Iranian Conf., on Electrical Engineering, 776–781. New York: IEEE. https://doi.org/10.1109/IranianCEE.2016.7585625.
Bastola, S., C. Murphy, and J. C. Sweeney. 2011. “The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments.” Adv. Water Resour. 34 (5): 562–576. https://doi.org/10.1016/j.advwatres.2011.01.008.
Berghaus, B., and A. Bücher. 2017. “Goodness-of-fit tests for multivariate copula-based time series models.” Econom. Theory 33 (2): 292–330. https://doi.org/10.1017/S0266466615000419.
Bezak, N., M. Šraj, and M. Mikoš. 2016. “Copula-based IDF curves and empirical rainfall thresholds for flash floods and rainfall-induced landslides.” J. Hydrol. 541 (Oct): 272–284. https://doi.org/10.1016/j.jhydrol.2016.02.058.
Bogdanowicz, E., K. Kochanek, and W. G. Strupczewski. 2018. “The weighted function method: A handy tool for flood frequency analysis or just a curiosity.” J. Hydrol. 559 (Apr): 209–221. https://doi.org/10.1016/j.jhydrol.2018.02.020.
Brunetti, G., J. J. Simunek, and P. Piro. 2016. “A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement.” J. Hydrol. 540 (Sep): 1146–1161. https://doi.org/10.1016/j.jhydrol.2016.07.030.
Candela, A., G. Brigandì, and G. T. Aronica. 2014. “Estimation of synthetic flood design hydrographs using a distributed rainfall–runoff model coupled with a copula-based single storm rainfall generator.” Nat. Hazards Earth Syst. Sci. 14 (7): 1819–1833. https://doi.org/10.5194/nhess-14-1819-2014.
Chau, K. W. 2007. “A split-step particle swarm optimization algorithm in river stage forecasting.” J. Hydrol. 346 (3–4): 131–135. https://doi.org/10.1016/j.jhydrol.2007.09.004.
Chen, G., Q. Chen, and W. Guo. 2007. “A PSO-based approach to rule learning in network intrusion detection.” In Vol. 40 of Proc., Fuzzy Information and Engineering: 666–673. Berlin: Springer. https://doi.org/10.1007/978-3-540-71441-5_72.
Chen, L., V. P. Singh, S. Guo, Z. Hao, and T. Li. 2012. “Flood coincidence risk analysis using multivariate copula functions.” J. Hydrol. Eng. 17 (6): 742–755. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000504.
Chen, Y., J. Li, and H. Xu. 2016. “Improving flood forecasting capability of physically based distributed, hydrological models by parameter optimization.” Hydrol. Earth Syst. Sci. 12 (10): 10603–10649. https://doi.org/10.5194/hessd-12-10603-2015.
Clerc, M., and J. Kennedy. 2002. “The particle swarm - Explosion, stability, and convergence in a multidimensional complex space.” IEEE Trans. Evol. Comput. 6 (1): 58–73. https://doi.org/10.1109/4235.985692.
Escalantesandoval, C. A., and J. A. Raynalvillasenor. 1994. “A trivariate extreme value distribution applied to flood frequency analysis.” J. Res. Nat. Inst. Stand. Technol. 99 (4): 369–375. https://doi.org/10.6028/jres.099.035.
Fontanazza, C. M., G. Freni, G. L. Loggia, and V. Notaro. 2011. “Uncertainty evaluation of design rainfall for urban flood risk analysis.” Water Sci. Technol. 63 (11): 2641–2650. https://doi.org/10.2166/wst.2011.169.
Fouque, J. P., and X. Zhou. 2006. “Perturbed Gaussian copula.” Adv. Econom. 22 (8): 103–121. https://doi.org/10.1016/S0731-9053(08)22005-0.
Genest, C., I. Kojadinovic, J. Nešlehová, and J. Yan. 2011. “A goodness-of-fit test for bivariate extreme-value copulas.” Bernoulli 17 (1): 253–275. https://doi.org/10.3150/10-BEJ279.
Grimaldi, S., and F. Serinaldi. 2006. “Design hyetograph analysis with 3-copula function.” Hydrol. Sci. J. 51 (2): 223–238. https://doi.org/10.1623/hysj.51.2.223.
Gringorten, I. I. 1963. “A plotting rule for extreme probability paper.” J. Geophys. Res. 68 (3): 813–814. https://doi.org/10.1029/JZ068i003p00813.
Haff, I. H. 2013. “Parameter estimation for pair-copula constructions.” Bernoulli 19 (2): 462–491. https://doi.org/10.3150/12-BEJ413.
Jiang, B., N. Wang, and X. Li. 2013. “Particle swarm optimizer with aging operator for multimodal function optimization.” Int. J. Comput. Intell. Syst. 6 (5): 862–880. https://doi.org/10.1080/18756891.2013.807108.
Jiang, Y., C. Liu, C. Huang, and X. Wu. 2010. “Improved particle swarm algorithm for hydrological parameter optimization.” Appl. Math. Comput. 217 (7): 3207–3215. https://doi.org/10.1016/j.amc.2010.08.053.
Johnson, R., D. V. Kliche, and P. L. Smith. 2014. “Maximum likelihood estimation of gamma parameters for coarsely binned and truncated raindrop size data.” Q. J. R. Meteorol. Soc. 140 (681): 1245–1256. https://doi.org/10.1002/qj.2209.
Joo, K., J. Y. Shin, and J. H. Heo. 2020. “Modified maximum pseudo likelihood method of copula parameter estimation for skewed hydrometeorological data.” Water 12 (4): 1182. https://doi.org/10.3390/w12041182.
Kamali, B., J. Mousavi, and K. C. Abbaspour. 2013. “Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms.” Hydrol. Process. 27 (26): 4028–4042. https://doi.org/10.1002/hyp.9510.
Kao, S. C., and R. S. Govindaraju. 2010. “A copula-based joint deficit index for droughts.” J. Hydrol. 380 (1): 121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029.
Kojadinovic, I., and J. Yan. 2011. “A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems.” Stat. Comput. 21 (1): 17–30. https://doi.org/10.1007/s11222-009-9142-y.
Li, T., S. Guo, L. Chen, and J. Guo. 2013. “Bivariate flood frequency analysis with historical information based on copula.” J. Hydrol. Eng. 18 (8): 1018–1030. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000684.
Li, Y., Y. Wei, and Y. Chu. 2015. “Research on solving systems of nonlinear equations based on improved PSO.” Math. Probl. Eng. 2015 (14): 1–13. https://doi.org/10.1155/2015/727218.
Liebscher, E. 2008. “Construction of asymmetric multivariate copulas.” J. Multivariate Anal. 99 (10): 2234–2250. https://doi.org/10.1016/j.jmva.2008.02.025.
Ma, M., S. Song, L. Ren, S. Jiang, and J. Song. 2013. “Multivariate drought characteristics using trivariate Gaussian and Student t copulas.” Hydrol. Process. 27 (8): 1175–1190. https://doi.org/10.1002/hyp.8432.
Mahdi, S., and F. Ashkar. 2004. “Exploring generalized probability weighted moments, generalized moments and maximum likelihood estimating methods in two-parameter Weibull model.” J. Hydrol. 285 (1–4): 62–75. https://doi.org/10.1016/j.jhydrol.2003.08.012.
Örkcü, H. H., V. S. Özsoy, E. Aksoy, and M. I. Dogan. 2015. “Estimating the parameters of 3-p Weibull distribution using particle swarm optimization: A comprehensive experimental comparison.” Appl. Math. Comput. 268 (Oct): 201–226. https://doi.org/10.1016/j.amc.2015.06.043.
Remillard, B. N., C. Genest, and D. Beaudoin. 2009. “Goodness-of-fit tests for copulas: A review and a power study.” Insur. Math. Econ. 44 (2): 199–213. https://doi.org/10.1016/j.insmatheco.2007.10.005.
Requena, A. I., L. Mediero, and L. Garrote. 2013. “A bivariate return period based on copulas for hydrologic dam design: Accounting for reservoir routing in risk estimation.” Hydrol. Earth Syst. Sci. 17 (8): 3023–3038. https://doi.org/10.5194/hess-17-3023-2013.
Sklar, A. 1959. Vol. 8 of Fonctions de Répartition à n Dimensions et Leurs Marges, 229–231. Paris: Publications de l’Institut de statistique de l’Université de Paris.
Song, H. J., F. Liu, H. H. Chen, and H. Zhang. 2017. “A stochastic maximum likelihood algorithm based on improved PSO.” Acta Electron. Sin. 45 (8): 1989–1994. https://doi.org/10.3969/j.issn.0372-2112.2017.08.026.
Sraj, M., N. Bezak, and M. Brilly. 2015. “Bivariate flood frequency analysis using the copula function: A case study of the Litija station on the Sava River.” Hydrol. Process. 29 (2): 225–238. https://doi.org/10.1002/hyp.10145.
Strupczewski, W. G., V. P. Singh, and W. Feluch. 2001. “Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation.” J. Hydrol. 248 (1): 123–142. https://doi.org/10.1016/S0022-1694(01)00397-3.
Sun, J., and X. Liu. 2013. “A novel APSO-aided maximum likelihood identification method for Hammerstein systems.” Nonlinear Dyn. 73 (1–2): 449–462. https://doi.org/10.1007/s11071-013-0800-4.
Tapoglou, E., I. Trichakis, Z. Dokou, I. K. Nikolos, and G. P. Karatzas. 2014. “Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization.” Hydrol. Sci. J. 59 (6): 1225–1239. https://doi.org/10.1080/02626667.2013.838005.
Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian. 2001. “Bayesian recursive parameter estimation for hydrologic models.” Water Resour. Res. 37 (10): 2521–2535. https://doi.org/10.1029/2000WR900405.
Vani, L. R., and V. S. Vaidyanathan. 2016. “Three-parameter gamma distribution: Estimation using likelihood, spacings and least squares approach.” J. Stat. Manage. Syst. 19 (1): 37–53. https://doi.org/10.1080/09720510.2014.986927.
Weiß, G. 2011. “Copula parameter estimation by maximum-likelihood and minimum-distance estimators: A simulation study.” Comput. Stat. 26 (1): 31–54. https://doi.org/10.1007/s00180-010-0203-7.
Xu, K., D. Yang, X. Xu, and H. Lei. 2015. “Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China.” J. Hydrol. 527 (Aug): 630–640. https://doi.org/10.1016/j.jhydrol.2015.05.030.
Yang, X., and W. Wang. 2017. “Design tide hydrograph with a given risk threshold by a Copula-based multivariate method.” China Ocean Eng. 31 (4): 504–509. https://doi.org/10.1007/s13344-017-0057-7.
Zhang, H., J. L. Xu, and X. Cheng. 2016. “Interactive educational software for teaching water distribution networks design.” Comput. Appl. Eng. Educ. 24 (4): 615–628. https://doi.org/10.1002/cae.21736.
Zhang, Q., M. Xiao, V. P. Singh, and X. Chen. 2013. “Copula-based risk evaluation of droughts across the Pearl River basin, China.” Theor. Appl. Climatol. 111 (1–2): 119–131. https://doi.org/10.1007/s00704-012-0656-4.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 3March 2021

History

Received: Apr 1, 2020
Accepted: Oct 26, 2020
Published online: Dec 28, 2020
Published in print: Mar 1, 2021
Discussion open until: May 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Rural Water Conservancy and Soil and Water Conservation Research Institute, Jiangsu Hydraulic Research Institute, 97# Nanhu Rd., Nanjing 210017, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share