Technical Papers
Jan 30, 2020

Multivariate Modeling of Projected Drought Frequency and Hazard over India

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydrologic Engineering
Volume 25, Issue 4

Abstract

India is one of the most drought-vulnerable countries in the world and faces at least one drought in one region or another every 3 years. To alleviate drought risk, an efficient policy framework is needed for water resources management, which in turn needs future projections of the spatiotemporal distribution of droughts. This study presents a spatiotemporal analysis of drought occurrence, frequency, and hazard. Meteorological data from a selected regional climate model for representative concentration pathways (RCP 8.5) was used to compute the Standardized Precipitation Evapotranspiration Index (SPEI) at a 12-month scale to characterize drought in different regions of India. An improved methodology was then developed to improve the current framework used for the development of severity–duration–frequency (SDF) curves. The improved methodology for developing SDF curves is copula based and uses Markov chain Monte Carlo (MCMC) simulation for parameter estimation under the Bayesian framework. Moreover, an improved fuzzy clustering-based drought hazard assessment measure, known as the Modified Drought Hazard Index (MDHI), is also presented. It was found that drought frequency is increasing with time for all the regions of India except for Region 2, i.e., Western Ghats. Further, a significant increase in potential evapotranspiration would cause a prolonged dryness in most of the regions during the twenty-first century. With the progression of time, drought severity associated with various durations is expected to significantly increase with the increase in duration for most of the regions. Drought hazard is expected to be the highest for the period 2071–2100 as compared to two other analyzed periods.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The following data, models, or code used during the study were provided by a third party:
Multivariate Copula Analysis Toolbox (MvCAT) for for analysing and determining the parameters of the copula. This toolbox can be found at http://amir.eng.uci.edu/MvCAT.php.
Gridded precipitation and temperature data were obtained from IMD and can be directly purchased from the same.
RCM data for precipitation and temperature were obtained from the Coordinated Regional Climate Downscaling Experiment (CORDEX) from the Earth System Grid Federation (ESGF) data repository at http://www.cordex.org/data-access/esgf.

Acknowledgments

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. However, the authors are very grateful to the Indian Institute of Technology Roorkee, India, for providing the necessary resources to conduct this research and the Ministry of Human Resources, India, for supporting the first author through a senior research fellowship.

References

Adarsh, S., S. Karthik, M. Shyma, G. Das Prem, A. T. Shirin Parveen, and N. Sruthi. 2018. “Developing short term drought severity-duration-frequency curves for Kerala meteorological subdivision, India using bivariate copulas.” KSCE J. Civ. Eng. 22 (3): 962–973. https://doi.org/10.1007/s12205-018-1404-9.
Adnan, S., K. Ullah, S. Gao, A. H. Khosa, and Z. Wang. 2017. “Shifting of agro-climatic zones, their drought vulnerability, and precipitation and temperature trends in Pakistan.” Supplement, Int. J. Climatol. 37 (S1): 529–543. https://doi.org/10.1002/joc.5019.
AghaKouchak, A. 2015. “A multivariate approach for persistence-based drought prediction: Application to the 2010–2011 East Africa drought.” J. Hydrol. 526 (Jul): 127–135. https://doi.org/10.1016/j.jhydrol.2014.09.063.
Alapaty, K., S. Raman, and D. S. Niyogi. 1997. “Uncertainty in the specification of surface characteristics: A study of prediction errors in the boundary layer.” Boundary Layer Meteorol. 82 (3): 475–502. https://doi.org/10.1023/A:1017166907476.
Amirataee, B., M. Montaseri, and H. Rezaie. 2018. “Regional analysis and derivation of copula-based drought severity-area-frequency curve in Lake Urmia basin, Iran.” J. Environ. Manage. 206 (Jan): 134–144. https://doi.org/10.1016/j.jenvman.2017.10.027.
Angelidis, P., F. Maris, N. Kotsovinos, and V. Hrissanthou. 2012. “Computation of drought index SPI with alternative distribution functions.” Water Resour. Manage. 26 (9): 2453–2473. https://doi.org/10.1007/s11269-012-0026-0.
Beguería, S., S. M. Vicente-Serrano, F. Reig, and B. Latorre. 2014. “Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring.” Int. J. Climatol. 34 (10): 3001–3023. https://doi.org/10.1002/joc.3887.
Bhalme, H. N., D. A. Mooley, and S. K. Jadhav. 1983. “Fluctuations in the drought/flood area over India and relationships with the Southern Oscillation.” Mon. Weather Rev. 111 (1): 86–94. https://doi.org/10.1175/1520-0493(1983)111%3C0086:FITDAO%3E2.0.CO;2.
Bhat, G. S. 2006. “The Indian drought of 2002: A sub-seasonal phenomenon?” Q. J. R. Meteorolog. Soc. 132 (621): 2583–2602. https://doi.org/10.1256/qj.05.13.
Bisht, D. S., V. Sridhar, A. Mishra, C. Chatterjee, and N. S. Raghuwanshi. 2019. “Drought characterization over India under projected climate scenario.” Int. J. Climatol. 39 (4): 1889–1911. https://doi.org/10.1002/joc.5922.
Blain, G. C. 2012. “Revisiting the probabilistic definition of drought: Strengths, limitations and an agrometeorological adaptation.” Bragantia 71 (1): 132–141. https://doi.org/10.1590/S0006-87052012000100019.
Bonaccorso, B., I. Bordi, A. Cancelliere, G. Rossi, and A. Sutera. 2003. “Spatial variability of drought: An analysis of the SPI in Sicily.” Water Resour. Manage. 17 (4): 273–296. https://doi.org/10.1023/A:1024716530289.
Bonaccorso, B., D. J. Peres, A. Castano, and A. Cancelliere. 2015. “SPI-based probabilistic analysis of drought areal extent in Sicily.” Water Resour. Manage. 29 (2): 459–470. https://doi.org/10.1007/s11269-014-0673-4.
Brahimi, B., F. Chebana, and A. Necir. 2015. “Copula representation of bivariate L-moments: A new estimation method for multiparameter two-dimensional copula models.” Statistics 49 (3): 497–521. https://doi.org/10.1080/02331888.2014.932792.
Burke, E. J., and S. J. Brown. 2010. “Regional drought over the UK and changes in the future.” J. Hydrol. 394 (3–4): 471–485. https://doi.org/10.1016/j.jhydrol.2010.10.003.
Byun, H.-R., and D. A. Wilhite. 1999. “Objective quantification of drought severity and duration.” J. Clim. 12 (9): 2747–2756. https://doi.org/10.1175/1520-0442(1999)012%3C2747:OQODSA%3E2.0.CO;2.
Cancelliere, A., and J. D. Salas. 2004. “Drought length properties for periodic-stochastic hydrologic data.” Water Resour. Res. 40 (2): 1–13. https://doi.org/10.1029/2002WR001750.
Chaturvedi, R. K., J. Joshi, M. Jayaraman, G. Bala, and N. H. Ravindranath. 2012. “Multi-model climate change projections for India under representative concentration pathways.” Curr. Sci. 103 (7): 791–802.
Chen, H., J. Sun, H. Chen, and J. Sun. 2015. “Changes in drought characteristics over China using the standardized precipitation evapotranspiration index.” J. Clim. 28 (13): 5430–5447. https://doi.org/10.1175/JCLI-D-14-00707.1.
Chen, X., F. Li, Y. Wang, P. Feng, and R. Yang. 2019. “Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River basin, China.” Hydrol. Res. 50 (4): 1096–1119. https://doi.org/10.2166/nh.2019.141.
Chung, C.-H., and J. D. Salas. 2000. “Drought occurrence probabilities and risks of dependent hydrologic processes.” J. Hydrol. Eng. 5 (3): 259–268. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(259).
CORDEX. 2018. Coordinated regional climate downscaling experiment open source data repository. Geneva: World Meteorological Organization, World Climate Research Program.
Dai, A. 2011. “Characteristics and trends in various forms of the palmer drought severity index during 1900–2008.” J. Geophys. Res. 116 (D12): D12115. https://doi.org/10.1029/2010JD015541.
Dalezios, N. R., A. Loukas, L. Vasiliades, and E. Liakopoulos. 2000. “Severity-duration-frequency analysis of droughts and wet periods in Greece.” Hydrol. Sci. J. 45 (5): 751–769. https://doi.org/10.1080/02626660009492375.
Daneshvar, M. R. M., A, Bagherzadeh, and M. Khosravi. 2013. “Assessment of drought hazard impact on wheat cultivation using standardized precipitation index in Iran.” Arabian J. Geosci. 6 (11): 4463–4473.
Dhorde, A. G., and N. R. Patel. 2016. “Spatio-temporal variation in terminal drought over western India using dryness index derived from long-term MODIS data.” Ecol. Inf. 32 (Mar): 28–38. https://doi.org/10.1016/j.ecoinf.2015.12.007.
Dibike, Y., T. Prowse, B. Bonsal, and H. O’Neil. 2017. “Implications of future climate on water availability in the western Canadian river basins.” Int. J. Climatol. 37 (7): 3247–3263. https://doi.org/10.1002/joc.4912.
Dodangeh, E., K. Shahedi, J.-T. Shiau, and M. MirAkbari. 2017. “Spatial hydrological drought characteristics in Karkheh River basin, southwest Iran using copulas.” J. Earth Syst. Sci. 126 (6): 80. https://doi.org/10.1007/s12040-017-0863-6.
Dracup, J. A., K. S. Lee, and E. G. Paulson. 1980. “On the statistical characteristics of drought events.” Water Resour. Res. 16 (2): 289–296. https://doi.org/10.1029/WR016i002p00289.
Dunn, J. C. 1973. “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.” J. Cybern. 3 (3): 32–57. https://doi.org/10.1080/01969727308546046.
Durdu, Ö. F. 2010. “Application of linear stochastic models for drought forecasting in the Büyük Menderes river basin, western Turkey.” Stochastic Environ. Res. Risk Assess. 24 (8): 1145–1162. https://doi.org/10.1007/s00477-010-0366-3.
Fernández, C., J. A. Vega, T. Fonturbel, and E. Jiménez. 2009. “Streamflow drought time series forecasting: A case study in a small watershed in North West Spain.” Stochastic Environ. Res. Risk Assess. 23 (8): 1063. https://doi.org/10.1007/s00477-008-0277-8.
Freychet, N., H.-H. Hsu, C. Chou, and C.-H. Wu. 2015. “Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics.” J. Clim. 28 (4): 1477–1493. https://doi.org/10.1175/JCLI-D-14-00449.1.
Gabriel, K. R., and J. Neumann. 1962. “A Markov chain model for daily rainfall occurrence at Tel Aviv.” Q. J. R. Meteorolog. Soc. 88 (375): 90–95. https://doi.org/10.1002/qj.49708837511.
Ganapuram, S., R. Nagarajan, G. C. Sehkar, and V. Balaji. 2015. “Spatio-temporal analysis of droughts in the semi-arid Pedda Vagu and Ookacheti Vagu watersheds, Mahabubnagar District, India.” Arabian J. Geosci. 8 (9): 6911–6929. https://doi.org/10.1007/s12517-014-1696-0.
Gao, X., Q. Zhao, X. Zhao, P. Wu, W. Pan, X. Gao, and M. Sun. 2017. “Temporal and spatial evolution of the standardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050.” Sci. Total Environ. 595 (Oct): 191–200. https://doi.org/10.1016/j.scitotenv.2017.03.226.
Ge, Y., X. Cai, T. Zhu, and C. Ringler. 2016. “Drought frequency change: An assessment in northern India plains.” Agric. Water Manage. 176 (Oct): 111–121. https://doi.org/10.1016/j.agwat.2016.05.015.
Ghosh, S., and K. Srinivasan. 2016. “Analysis of spatio-temporal characteristics and regional frequency of droughts in the southern peninsula of India.” Water Resour. Manage. 30 (11): 3879–3898. https://doi.org/10.1007/s11269-016-1396-5.
Gibbs, W. J., and J. V. Maher. 1967. Rainfall deciles as drought indicators. Melbourne, Australia: Bureau of Meteorology.
González, J., and J. B. Valdes. 2004. “The mean frequency of recurrence of in-time-multidimensional events for drought analyses.” Nat. Hazards Earth Syst. Sci. 4 (1): 17–28. https://doi.org/10.5194/nhess-4-17-2004.
Gupta, A. K., P. Tyagi, and V. K. Sehgal. 2011. “Drought disaster challenges and mitigation in India: Strategic appraisal.” Curr. Sci. 100 (12): 1795–1806.
Gupta, V., and M. K. Goyal. 2015. “Impact of climate change on regionalization using fuzzy clustering.” In Proc., 4th Int. Conf. on Soft Computing for Problem Solving, 451–458. New Delhi, India: Springer.
Gupta, V., and M. K. Jain. 2018. “Investigation of multi-model spatiotemporal mesoscale drought projections over India under climate change scenario.” J. Hydrol. 567 (Dec): 489–509. https://doi.org/10.1016/j.jhydrol.2018.10.012.
Gupta, V., and M. K. Jain. 2019. “Impact of ENSO, global warming, and land surface elevation on extreme precipitation in India.” J. Hydrol. Eng. 25 (1): 05019032. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001872.
Gupta, V., M. K. Jain, P. K. Singh, and V. Singh. 2019. “An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India.” Int. J. Climatol. https://doi.org/10.1002/joc.6419.
Halwatura, D., A. M. Lechner, and S. Arnold. 2015. “Drought severity-duration-frequency curves: A foundation for risk assessment and planning tool for ecosystem establishment in post-mining landscapes.” Hydrol. Earth Syst. Sci. 19 (2): 1069–1091. https://doi.org/10.5194/hess-19-1069-2015.
Hargreaves, G. H., and Z. A. Samani. 1985. “Reference crop evapotranspiration from temperature.” Appl. Eng. Agric. 1 (2): 96–99. https://doi.org/10.13031/2013.26773.
He, B., A. Lü, J. Wu, L. Zhao, and M. Liu. 2011. “Drought hazard assessment and spatial characteristics analysis in China.” J. Geog. Sci. 21 (2): 235–249. https://doi.org/10.1007/s11442-011-0841-x.
Huang, J., J. Zhai, T. Jiang, Y. Wang, X. Li, R. Wang, M. Xiong, B. Su, and T. Fischer. 2018. “Analysis of future drought characteristics in China using the regional climate model CCLM.” Clim. Dyn. 50 (1–2): 507–525. https://doi.org/10.1007/s00382-017-3623-z.
Jain, V. K., R. P. Pandey, and M. K. Jain. 2015a. “Spatio-temporal assessment of vulnerability to drought.” Nat. Hazard. 76 (1): 443–469. https://doi.org/10.1007/s11069-014-1502-z.
Jain, V. K., R. P. Pandey, M. K. Jain, and H. R. Byun. 2015b. “Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin.” Weather Clim. Extremes 8 (Jun): 1–11. https://doi.org/10.1016/j.wace.2015.05.002.
Julich, S. 2011. “Drought triggered temporary migration in an East Indian village.” Supplement, Int. Migration 49 (S1): e189–e199. https://doi.org/10.1111/j.1468-2435.2010.00655.x.
Kiem, A. S., and S. W. Franks. 2004. “Multi-decadal variability of drought risk, eastern Australia.” Hydrol. Processes 18 (11): 2039–2050. https://doi.org/10.1002/hyp.1460.
Kim, H., J. Park, J. Yoo, and T.-W. Kim. 2015. “Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea.” J. Hydro-environ. Res. 9 (1): 28–35. https://doi.org/10.1016/j.jher.2013.07.003.
Kim, T.-W., and J. B. Valdés. 2003. “Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks.” J. Hydrol. Eng. 8 (6): 319–328. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).
Knutti, R., and J. Sedláček. 2013. “Robustness and uncertainties in the new CMIP5 climate model projections.” Nat. Clim. Change 3 (4): 369–373. https://doi.org/10.1038/nclimate1716.
Kossida, M., and M. Mimikou. 2013. “An indicators’ based approach to drought and water scarcity risk mapping in Pinios River Basin, Greece.” In Vol. 15 of Proc., EGU General Assembly Conf. Abstracts. Vienna, Austria: EGU General Assembly.
Kumar, V., and U. Panu. 1997. “Predictive assessment of severity of agricultural droughts based on agro-climatic factors.” J. Am. Water Resour. Assoc. 33 (6): 1255–1264. https://doi.org/10.1111/j.1752-1688.1997.tb03550.x.
Kundu, A., S. Dwivedi, and V. Chandra. 2014. “Precipitation trend analysis over eastern region of India using CMIP5 based climatic models.” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XL-8 (8): 1437–1442. https://doi.org/10.5194/isprsarchives-XL-8-1437-2014.
Lee, J. H., and C. J. Kim. 2013. “A multimodel assessment of the climate change effect on the drought severity–duration–frequency relationship.” Hydrol. Processes 27 (19): 2800–2813. https://doi.org/10.1002/hyp.9390.
Lee, M. H., E. S. Im, and D. H. Bae. 2019. “A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices.” Clim. Dyn. 53 (1–2): 389–404. https://doi.org/10.1007/s00382-018-4588-2.
Leilah, A. A., and S. A. Al-Khateeb. 2005. “Statistical analysis of wheat yield under drought conditions.” J. Arid. Environ. 61 (3): 483–496. https://doi.org/10.1016/j.jaridenv.2004.10.011.
Lenderink, G., A. Buishand, and W. Van Deursen. 2007. “Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach.” Hydrol. Earth Syst. Sci. 11 (3): 1145–1159. https://doi.org/10.5194/hess-11-1145-2007.
Li, Y., Z. Xie, Y. Qin, H. Xia, Z. Zheng, L. Zhang, Z. Pan, and Z. Liu. 2019. “Drought under global warming and climate change: An empirical study of the Loess Plateau.” Sustainability 11 (5): 1–15. https://doi.org/10.3390/su11051281.
Lin, Q., Z. Wu, V. P. Singh, S. H. R. Sadeghi, H. He, and G. Lu. 2017. “Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China.” J. Hydrol. 549 (Apr): 512–524. https://doi.org/10.1016/j.jhydrol.2017.04.020.
Liu, W. T., and R. I. N. Juárez. 2001. “ENSO drought onset prediction in northeast Brazil using NDVI.” Int. J. Remote Sens. 22 (17): 3483–3501. https://doi.org/10.1080/01431160010006430.
Livada, I., and V. D. Assimakopoulos. 2007. “Spatial and temporal analysis of drought in Greece using the standardized precipitation index (SPI).” Theor. Appl. Climatol. 89 (3): 143–153. https://doi.org/10.1007/s00704-005-0227-z.
Loukas, A., and L. Vasiliades. 2004. “Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece.” Nat. Hazards Earth Syst. Sci. 4 (5/6): 719–731. https://doi.org/10.5194/nhess-4-719-2004.
Maccioni, P., M. Kossida, L. Brocca, and T. Moramarco. 2014. “Assessment of the drought hazard in the Tiber River basin in central Italy and a comparison of new and commonly used meteorological indicators.” J. Hydrol. Eng. 20 (8): 05014029. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001094.
Mahajan, D. R., and B. M. Dodamani. 2016. “Spatial and temporal drought analysis in the Krishna river basin of Maharashtra, India.” Cogent Eng. 3 (1): 1185926. https://doi.org/10.1080/23311916.2016.1185926.
Malik, N., B. Bookhagen, and P. J. Mucha. 2016. “Spatiotemporal patterns and trends of Indian monsoonal rainfall extremes.” Geophys. Res. Lett. 43 (4): 1710–1717. https://doi.org/10.1002/2016GL067841.
Mallya, G., V. Mishra, D. Niyogi, S. Tripathi, and R. S. Govindaraju. 2016. “Trends and variability of droughts over the Indian monsoon region.” Weather Clim. Extremes 12 (Jun): 43–68. https://doi.org/10.1016/j.wace.2016.01.002.
Mavromatis, T. 2007. “Drought index evaluation for assessing future wheat production in Greece.” Int. J. Climatol. 27 (7): 911–924. https://doi.org/10.1002/joc.1444.
May, W. 2002. “Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment.” Geophys. Res. Lett. 29 (7): 1118–1121. https://doi.org/10.1029/2001GL013808.
McKee, T. B., N. J. Doesken, and J. Kleist. 1993. “The relationship of drought frequency and duration to time scales.” In Vol. 17 of Proc., 8th Conf. on Applied Climatology, 179–183. Boston: American Meteorological Society.
Menon, A., A. Levermann, J. Schewe, J. Lehmann, and K. Frieler. 2013. “Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models.” Earth Syst. Dyn. 4 (2): 287–300. https://doi.org/10.5194/esd-4-287-2013.
Meshram, S. G., R. Gautam, and E. Kahya. 2018. “Drought analysis in the Tons River Basin, India during 1969-2008.” Theor. Appl. Climatol. 132 (3–4): 939–951. https://doi.org/10.1007/s00704-017-2129-2.
Ministry of Agriculture and Farmers’ Welfare. 2009. Manual for drought management. New Delhi, India: Dept. of Agriculture and Cooperation, Ministry of Agriculture and Farmers’ Welfare.
Ministry of Agriculture and Farmers’ Welfare. 2016. State of Indian agriculture 2015–16. New Delhi, India: Ministry of Agriculture and Farmers’ Welfare.
Mishra, A. K., and V. R. Desai. 2006. “Drought forecasting using feed-forward recursive neural network.” Ecol. Modell. 198 (1): 127–138. https://doi.org/10.1016/j.ecolmodel.2006.04.017.
Mishra, A. K., and V. P. Singh. 2009. “Analysis of drought severity-area-frequency curves using a general circulation model and scenario uncertainty.” J. Geophys. Res. Atmos. 114 (D6): 1–18. https://doi.org/10.1029/2008JD010986.
Mishra, A. K., and V. P. Singh. 2010. “A review of drought concepts.” J. Hydrol. 391 (1): 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012.
Mishra, A. K., and V. P. Singh. 2011. “Drought modeling: A review.” J. Hydrol. 403 (1–2): 157–175. https://doi.org/10.1016/j.jhydrol.2011.03.049.
Mohan, S., and P. K. Sahoo. 2008. “Stochastic simulation of droughts. 2: Regional droughts.” Hydrol. Processes 22 (6): 863–872. https://doi.org/10.1002/hyp.6653.
Morid, S., V. Smakhtin, and K. Bagherzadeh. 2007. “Drought forecasting using artificial neural networks and time series of drought indices.” Int. J. Climatol. 27 (15): 2103–2111. https://doi.org/10.1002/joc.1498.
Mühlbauer, S., A. C. Costa, and M. Caetano. 2016. “A spatiotemporal analysis of droughts and the influence of North Atlantic Oscillation in the Iberian Peninsula based on MODIS imagery.” Theor. Appl. Climatol. 124 (3–4): 703–721. https://doi.org/10.1007/s00704-015-1451-9.
Mundetia, N., and D. Sharma. 2015. “Analysis of rainfall and drought in Rajasthan State, India.” Global Nest J. 17 (1): 12–21.
Muthumanickam, D., P. Kannan, R. Kumaraperumal, S. Natarajan, R. Sivasamy, and C. Poongodi. 2011. “Drought assessment and monitoring through remote sensing and GIS in western tracts of Tamil Nadu, India.” Int. J. Remote Sens. 32 (18): 5157–5176. https://doi.org/10.1080/01431161.2010.494642.
Naresh Kumar, M., C. S. Murthy, M. V. R. Sesha Sai, and P. S. Roy. 2012. “Spatiotemporal analysis of meteorological drought variability in the Indian region using standardized precipitation index.” Meteorol. Appl. 19 (2): 256–264. https://doi.org/10.1002/met.277.
Nath, R., D. Nath, Q. Li, W. Chen, and X. Cui. 2017. “Impact of drought on agriculture in the Indo-Gangetic Plain, India.” Adv. Atmos. Sci. 34 (3): 335–346. https://doi.org/10.1007/s00376-016-6102-2.
Oguntunde, P. G., B. J. Abiodun, and G. Lischeid. 2017. “Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa.” Global Planet. Change 155 (Aug): 121–132. https://doi.org/10.1016/j.gloplacha.2017.07.003.
Ojha, R., D. Nagesh Kumar, A. Sharma, and R. Mehrotra. 2013. “Assessing severe drought and wet events over India in a future climate using a nested bias-correction approach.” J. Hydrol. Eng. 18 (7): 760–772. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000585.
Padhee, S. K., B. R. Nikam, S. Dutta, and S. P. Aggarwal. 2017. “Using satellite-based soil moisture to detect and monitor spatiotemporal traces of agricultural drought over Bundelkhand region of India.” GIScience Remote Sens. 54 (2): 144–166. https://doi.org/10.1080/15481603.2017.1286725.
Palmer, W. C. 1965. “Moisture variability and drought severity.” In Proc., 13th Annual Meeting, Agriculture Research Institute, 145–157. Washington, DC: National Academy of Sciences.
Patel, N. R., and K. Yadav. 2015. “Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India.” Nat. Hazard. 77 (2): 663–677. https://doi.org/10.1007/s11069-015-1614-0.
Praveen, D., A. Ramachandran, R. Jaganathan, E. Krishnaveni, and K. Palanivelu. 2016. “Projecting droughts in the purview of climate change under RCP 4.5 for the coastal districts of South India.” Indian J. Sci. Technol. 9 (6): 1–6. https://doi.org/10.17485/ijst/2016/v9i6/87677.
Rad, A. M., B. Ghahraman, D. Khalili, Z. Ghahremani, S. A. Ardakani, and D. Khalili. 2017. “Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions.” Adv. Water Resour. 107 (Sep): 336–353. https://doi.org/10.1016/j.advwatres.2017.07.007.
Rajeevan, M., J. Bhate, J. D. Kale, and B. Lal. 2006. “High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells.” Curr. Sci. 91 (3): 296–306.
Rajsekhar, D., V. P. Singh, and A. K. Mishra. 2015. “Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective.” J. Geophys. Res. 120 (13): 6346–6378. https://doi.org/10.1002/2014JD022670.
Ramkar, P., and S. M. Yadav. 2018. “Spatiotemporal drought assessment of a semi-arid part of middle Tapi River Basin, India.” Int. J. Disaster Risk Reduct. 28 (Jun): 414–426. https://doi.org/10.1016/j.ijdrr.2018.03.025.
Rao, A. R., and G. Padmanabhan. 1984. “Analysis and modeling of Palmer’s drought index series.” J. Hydrol. 68 (1–4): 211–229. https://doi.org/10.1016/0022-1694(84)90212-9.
Reddy, M. J., and P. Ganguli. 2012. “Application of copulas for derivation of drought severity–duration–frequency curves.” Hydrol. Processes 26 (11): 1672–1685. https://doi.org/10.1002/hyp.8287.
Rhee, J., and J. Cho. 2016. “Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections.” J. Hydrometeorol. 17 (1): 437–451. https://doi.org/10.1175/JHM-D-15-0027.1.
Rose, J. P., and B. D. Todd. 2017. “Demographic effects of prolonged drought on a nascent introduction of a semi-aquatic snake.” Biol. Invasions 19 (10): 2885–2898. https://doi.org/10.1007/s10530-017-1491-4.
Saaty, T. L. 1977. “A scaling method for priorities in hierarchical structures.” J. Math. Psychol. 15 (3): 234–281.
Sadegh, M., E. Ragno, and A. AghaKouchak. 2017. “Multivariate copula analysis toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework.” Water Resour. Res. 53 (6): 5166–5183. https://doi.org/10.1002/2016WR020242.
Saghafian, B., A. Shokoohi, and T. Raziei. 2003. “Drought spatial analysis and development of severity-duration-frequency curves for an arid region.” In Proc., Int. Conf. on Hydrology of the Mediterranean and Semiarid Regions, 305–311. Wallingford, UK: IAHS Press.
Salvi, K., S. Kannan, and S. Ghosh. 2013. “High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment.” J. Geophys. Res. 118 (9): 3557–3578. https://doi.org/10.1002/jgrd.50280.
Samantaray, A. K., G. Singh, M. Ramadas, and R. K. Panda. 2019. “Drought hotspot analysis and risk assessment using probabilistic drought monitoring and severity–duration–frequency analysis.” Hydrol. Processes 33 (3): 432–449. https://doi.org/10.1002/hyp.13337.
Samra, J. S. 2004. Vol. 84 of Review and analysis of drought monitoring, declaration and management in India. Colombo, Sri Lanka: International Water Management Institute.
Santos, M. A. 1983. “Regional droughts: A stochastic characterization.” J. Hydrol. 66 (1–4): 183–211. https://doi.org/10.1016/0022-1694(83)90185-3.
Sehgal, V., V. Sridhar, and A. Tyagi. 2017. “Stratified drought analysis using a stochastic ensemble of simulated and in-situ soil moisture observations.” J. Hydrol. 545 (Feb): 226–250. https://doi.org/10.1016/j.jhydrol.2016.12.033.
Seong, C., V. Sridhar, and M. M. Billah. 2018. “Implications of potential evapotranspiration methods for streamflow estimations under changing climatic conditions.” Int. J. Climatol. 38 (2): 896–914. https://doi.org/10.1002/joc.5218.
Shah, R. D., and V. Mishra. 2015. “Development of an experimental near-real-time drought monitor for India.” J. Hydrometeorol. 16 (1): 327–345. https://doi.org/10.1175/JHM-D-14-0041.1.
Shahid, S., and H. Behrawan. 2008. “Drought risk assessment in the western part of Bangladesh.” Nat. Hazard. 46 (3): 391–413. https://doi.org/10.1007/s11069-007-9191-5.
Shiau, J. T. 2006. “Fitting drought duration and severity with two-dimensional copulas.” Water Resour. Manage. 20 (5): 795–815. https://doi.org/10.1007/s11269-005-9008-9.
Shiau, J.-T., S. Feng, and S. Nadarajah. 2007. “Assessment of hydrological droughts for the Yellow River, China, using copulas.” Hydrol. Processes 21 (16): 2157–2163. https://doi.org/10.1002/hyp.6400.
Shiau, J.-T., and R. Modarres. 2009. “Copula-based drought severity-duration-frequency analysis in Iran.” Meteorol. Appl. 16 (4): 481–489. https://doi.org/10.1002/met.145.
Shiau, J.-T., and H. W. Shen. 2001. “Recurrence analysis of hydrologic droughts of differing severity.” J. Water Resour. Plann. Manage. 127 (1): 30–40. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30).
Shivam, G., M. K. Goyal, and A. K. Sarma. 2019. “Index-based study of future precipitation changes over subansiri river catchment under changing climate.” J. Environ. Inf. 34 (1): 1–14. https://doi.org/10.3808/jei.201700376.
Singh, G. R., M. K. Jain, and V. Gupta. 2019. “Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India.” Nat. Hazard. 99 (2): 611–635. https://doi.org/10.1007/s11069-019-03762-6.
Spinoni, J., J. V. Vogt, G. Naumann, P. Barbosa, and A. Dosio. 2018. “Will drought events become more frequent and severe in Europe?” Int. J. Climatol. 38 (4): 1718–1736. https://doi.org/10.1002/joc.5291.
Tadesse, T., D. A. Wilhite, S. K. Harms, M. J. Hayes, and S. Goddard. 2004. “Drought monitoring using data mining techniques: A case study for Nebraska, USA.” Nat. Hazard. 33 (1): 137–159. https://doi.org/10.1023/B:NHAZ.0000035020.76733.0b.
Tam, B. Y., K. Szeto, B. Bonsal, G. Flato, A. J. Cannon, and R. Rong. 2019. “CMIP5 drought projections in Canada based on the standardized precipitation evapotranspiration index.” Can. Water Resour. J. 44 (1): 90–107. https://doi.org/10.1080/07011784.2018.1537812.
Tase, N. 1976. Area-deficit-intensity characteristics of droughts. Fort Collins, CO: Colorado State Univ.
TERI (The Energy and Resources Institute) 2018. Economics of desertification, land degradation and drought in India.” In Vol. 1 of Macroeconomic assessment of the costs of land degradation in India. New Delhi, India: TERI.
Testa, G., F. Gresta, and S. L. Cosentino. 2011. “Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content.” Eur. J. Agron. 34 (3): 144–152. https://doi.org/10.1016/j.eja.2010.12.001.
Thilakarathne, M., and V. Sridhar. 2017. “Characterization of future drought conditions in the Lower Mekong River Basin.” Weather Clim. Extremes 17 (Sep): 47–58. https://doi.org/10.1016/j.wace.2017.07.004.
Thomas, J., and V. Prasannakumar. 2016. “Temporal analysis of rainfall (1871–2012) and drought characteristics over a tropical monsoon-dominated State (Kerala) of India.” J. Hydrol. 534 (Mar): 266–280. https://doi.org/10.1016/j.jhydrol.2016.01.013.
Thomas, T., P. C. Nayak, and N. C. Ghosh. 2015. “Spatiotemporal analysis of drought characteristics in the Bundelkhand region of central India using the standardized precipitation index.” J. Hydrol. Eng. 20 (11): 05015004. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001189.
Thornthwaite, C. W. 1948. “An approach toward a rational classification of climate.” Geog. Rev. 38 (1): 55–94. https://doi.org/10.2307/210739.
United Nations. 2019. World population prospects 2019. Volume I: Comprehensive tables. New York: United Nations.
van der Schrier, G., P. D. Jones, and K. R. Briffa. 2011. “The sensitivity of the PDSI to the Thornthwaite and Penman-Monteith parameterizations for potential evapotranspiration.” J. Geophys. Res. Atmos. 116 (D3): 1–16. https://doi.org/10.1029/2010JD015001.
Venkateswarlu, B., B. Raju, K. Rao, and C. Rama Rao. 2014. “Revisiting drought-prone districts in India.” Econ. Political Weekly 49 (25): 71–75.
Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno. 2010. “A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index.” J. Clim. 23 (7): 1696–1718. https://doi.org/10.1175/2009JCLI2909.1.
Wilby, R. L., S. Noone, C. Murphy, T. K. R. Matthews, S. Harrigan, and C. Broderick. 2016. “An evaluation of persistent meteorological drought using a homogeneous Island of Ireland precipitation network.” Int. J. Climatol. 36 (8): 2854–2865. https://doi.org/10.1002/joc.4523.
Yevjevich, V. 1967. Objective approach to definitions and investigations of continental hydrologic droughts. Rangely, CO: Colorado State Univ.
Yoo, C., D. Kim, T.-W. W. Kim, and K.-N. N. Hwang. 2008. “Quantification of drought using a rectangular pulses Poisson process model.” J. Hydrol. 355 (1): 34–48. https://doi.org/10.1016/j.jhydrol.2008.02.025.
Zhang, Y., Z. Yu, and H. Niu. 2018. “Standardized precipitation evapotranspiration index is highly correlated with total water storage over China under future climate scenarios.” Atmos. Environ. 194 (Dec): 123–133. https://doi.org/10.1016/j.atmosenv.2018.09.028.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 4April 2020

History

Received: Mar 6, 2019
Accepted: Oct 4, 2019
Published online: Jan 30, 2020
Published in print: Apr 1, 2020
Discussion open until: Jun 30, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India (corresponding author). ORCID: https://orcid.org/0000-0002-0672-6000. Email: [email protected]
Manoj Kumar Jain [email protected]
Professor, Dept. of Hydrology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India. Email: [email protected]
Vijay P. Singh, F.ASCE [email protected]
Distinguished Professor, Regents Professor and Caroline and William N. Lehrer Distinguished Chair in Water Engineering, Dept. of Biological and Agricultural Engineering and Zachry Dept. of Civil Engineering, Texas A&M Univ., College Station, TX 77843; Distinguished Scholar, National Water Center, United Arab Emirates Univ., Al Ain, United Arab Emirates. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share