Technical Papers
May 26, 2022

Group Performance of Energy Piles under Cyclic and Variable Thermal Loading

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 8

Abstract

Energy piles, a new type of heat exchanger that serves dual purposes, have gained increasing attention due to the growing energy demand and corresponding carbon emissions. Depending on intended operational requirements or by accident, energy pile groups may be subjected to cyclic and variable thermal loadings. This study presents the results from a series of full-scale field tests of a 2×2 energy pile foundation. The energy pile group was operated partially or fully during the tests to investigate the potential effects of cyclic nonuniform thermal loadings. The results indicated that the cyclic thermal loadings could induce an increase in compressive stress of piles at the end of the experiments. Further comparative analysis showed that the residual compressive stress was attributed mainly to the drag-down effects of the surrounding soil. The compressive stress induced by drag-down effects will overlap with the thermally induced stress, and thus lead to a more significant effect on the energy piles. If the drag-down effects are presented, the stress change may exceed the theoretical upper bound of thermal stress and may be underestimated. In addition, cyclic nonsymmetrical thermal loadings could induce accumulation of differential settlement and group tilt in the energy pile group. It was shown that the group tilt caused by cyclic and variable thermal loadings can be acceptable for general engineering structures. The group tilt will not accumulate further when subjected to symmetrical thermal loadings. A reasonable arrangement of operational piles still can be used to avoid unwanted group tilt generation.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The work presented in this paper was supported by the National Natural Science Foundation of China (Grant Nos. 51922037 and 51778212).

References

Amatya, B. L., K. Soga, P. J. Bourne-Webb, T. Amis, and L. Laloui. 2012. “Thermo-mechanical behaviour of energy piles.” Géotechnique 62 (6): 503–519. https://doi.org/10.1680/geot.10.P.116.
Bourne-Webb, P. J., B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. 2009. “Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles.” Géotechnique 59 (3): 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Bourne-Webb, P. J., T. M. Bodas Freitas, and R. M. Freitas Assunção. 2019. “A review of pile-soil interactions in isolated, thermally-activated piles.” Comput. Geotech. 108 (Apr): 61–74. https://doi.org/10.1016/j.compgeo.2018.12.008.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56 (2): 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
BSI (British Standards Institution). 2004. Geotechnical design Part 1: General rules, Annex H. BS EN 1997-1. London: BSI.
China Ministry of Housing and Urban-Rural Development. 2008. Technical code for building pile foundations, section 5.5. JGJ 94-2008. Beijing, China: China Architecture and Building Press.
China Ministry of Housing and Urban-Rural Development. 2011. Code for design of concrete structures, section 4.1. GB 50010-2010. Beijing, China: China Architecture and Building Press.
Di Donna, A., and L. Laloui. 2015a. “Numerical analysis of the geotechnical behaviour of energy piles.” Int. J. Numer. Anal. Methods 39 (8): 861–888. https://doi.org/10.1002/nag.2341.
Di Donna, A., and L. Laloui. 2015b. “Response of soil subjected to thermal cyclic loading: Experimental and constitutive study.” Eng. Geol. 190 (May): 65–76. https://doi.org/10.1016/j.enggeo.2015.03.003.
Di Donna, A., A. F. Rotta Loria, and L. Laloui. 2016. “Numerical study of the response of a group of energy piles under different combinations of thermo-mechanical loads.” Comput. Geotech. 72 (Feb): 126–142. https://doi.org/10.1016/j.compgeo.2015.11.010.
Dupray, F., L. Laloui, and A. Kazangba. 2014. “Numerical analysis of seasonal heat storage in an energy pile foundation.” Comput. Geotech. 55 (Jan): 67–77. https://doi.org/10.1016/j.compgeo.2013.08.004.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Faizal, M., A. Bouazza, C. Haberfield, J. S. McCartney, and C. Haberfield. 2019. “Effects of cyclic temperature variations on thermal response of an energy pile under a residential building.” J. Geotech. Geoenviron. Eng. 145 (10): 04019066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002147.
Fang, J. C., G. Q. Kong, Y. D. Meng, L. H. Wang, and Q. Yang. 2020. “Thermomechanical behavior of energy piles and interactions within energy pile–raft foundations.” J. Geotech. Geoenviron. Eng. 146 (9): 04020079. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002333.
Gao, J., X. Zhang, J. Liu, K. Li, and J. Yang. 2008. “Numerical and experimental assessment of thermal performance of vertical energy piles: An application.” Appl. Energy 85 (10): 901–910. https://doi.org/10.1016/j.apenergy.2008.02.010.
Jeong, S., H. Lim, J. K. Lee, and J. Kim. 2014. “Thermally induced mechanical response of energy piles in axially loaded pile groups.” Appl. Therm. Eng. 71 (1): 608–615. https://doi.org/10.1016/j.applthermaleng.2014.07.007.
Kong, G., J. Fang, X. Huang, H. Liu, and H. Abuel-Naga. 2021. “Thermal induced horizontal earth pressure changes of pipe energy piles under multiple heating cycles.” Geomech. Energy Environ. 26 (Jun): 100228. https://doi.org/10.1016/j.gete.2020.100228.
Laloui, L., M. Nuth, and L. Vulliet. 2006. “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Anal. Methods 30 (8): 763–781. https://doi.org/10.1002/nag.499.
Maiorano, R. M. S., G. Marone, G. Russo, and L. Di Girolamo. 2019. “Experimental behavior and numerical analysis of energy piles.” In Proc., 17 ECSMGE-2019 Geotechnical Engineering Foundation of the Future, Reykjavík September 2019. Reykjavík, Iceland: The Icelandic Geotechnical Society. https://doi.org/10.32075/17ECSMGE-2019-0819.
McCartney, J. S., and K. D. Murphy. 2017. “Investigation of potential dragdown/uplift effects on energy piles.” Geomech. Energy Environ. 10 (Jun): 21–28. https://doi.org/10.1016/j.gete.2017.03.001.
McCartney, J. S., M. Sanchez, and I. Tomac. 2016. “Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management.” Comput. Geotech. 75 (May): 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002.
Mimouni, T., and L. Laloui. 2014. “Towards a secure basis for the design of geothermal piles.” Acta Geotech. 9 (3): 355–366. https://doi.org/10.1007/s11440-013-0245-4.
Mimouni, T., and L. Laloui. 2015. “Behaviour of a group of energy piles.” Can. Geotech. J. 52 (12): 1913–1929. https://doi.org/10.1139/cgj-2014-0403.
Murphy, K. D., and J. S. McCartney. 2014. “Seasonal response of energy foundations during building operation.” Geotech. Geol. Eng. 33 (2): 1–14. https://doi.org/10.1007/s10706-014-9802-3.
Murphy, K. D., J. S. McCartney, and K. S. Henry. 2015. “Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations.” Acta Geotech. 10 (2): 179–195. https://doi.org/10.1007/s11440-013-0298-4.
Ng, C. W. W., A. Farivar, S. M. M. H. Gomaa, and F. Jafarzadeh. 2021a. “Centrifuge modeling of cyclic nonsymmetrical thermally loaded energy pile groups in clay.” J. Geotech. Geoenviron. Eng. 147 (12): 04021146. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002689.
Ng, C. W. W., A. Farivar, S. M. M. H. Gomaa, M. Shakeel, and F. Jafarzadeh. 2021b. “Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading.” Renewable Energy 172 (Jul): 998–1012. https://doi.org/10.1016/j.renene.2021.03.108.
Ng, C. W. W., and Q. J. Ma. 2019. “Energy pile group subjected to non-symmetrical cyclic thermal loading in centrifuge.” Geotech. Lett. 9 (3): 173–177. https://doi.org/10.1680/jgele.18.00161.
Ng, C. W. W., Q. Y. Mu, and C. Zhou. 2017. “Effects of boundary conditions on cyclic thermal strains of clay and sand.” Geotech. Lett. 7 (1): 73–78. https://doi.org/10.1680/jgele.16.00155.
Ng, C. W. W., Q. Y. Mu, and C. Zhou. 2019. “Effects of specimen preparation method on the volume change of clay under cyclic thermal loads.” Géotechnique 69 (2): 146–150. https://doi.org/10.1680/jgeot.16.P.293.
Ng, C. W. W., C. Shi, A. Gunawan, and L. Laloui. 2014. “Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay.” Geotech. Lett. 4 (4): 310–316. https://doi.org/10.1680/geolett.14.00063.
Ng, C. W. W., S. H. Wang, and C. Zhou. 2016. “Volume change behaviour of saturated sand under thermal cycles.” Geotech. Lett. 6 (2): 124–131. https://doi.org/10.1680/jgele.15.00148.
Nguyen, V. T., A. M. Tang, and J.-M. Pereira. 2017. “Long-term thermo-mechanical behavior of energy pile in dry sand.” Acta Geotech. 12 (4): 729–737. https://doi.org/10.1007/s11440-017-0539-z.
Olgun, C. G., S. L. Abdelaziz, and J. R. Martin. 2012. “Long-term performance and sustainable operation of energy piles.” In Proc., ICSDEC 2012, 534–542. Reston, VA: ASCE.
Olgun, C. G., T. Y. Ozudogru, S. L. Abdelaziz, and A. Senol. 2014. “Long-term performance of heat exchanger piles.” Acta Geotech. 10 (5): 553–569. https://doi.org/10.1007/s11440-014-0334-z.
Pan, Y., J. B. Coulibaly, and A. F. Rotta Loria. 2020. “Thermally induced deformation of coarse-grained soils under nearly zero vertical stress.” Geotech. Lett. 10 (4): 486–491. https://doi.org/10.1680/jgele.20.00013.
Pasten, C., and J. C. Santamarina. 2014. “Thermally induced long-term displacement of thermoactive piles.” J. Geotech. Geoenviron. Eng. 140 (5): 06014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001092.
Peng, H., G. Kong, H. Liu, H. Abuel-Naga, and Y. Hao. 2018. “Thermo-mechanical behaviour of floating energy pile groups in sand.” J. Zhejiang Univ.-Sci. A 19 (8): 638–649. https://doi.org/10.1631/jzus.A1700460.
Ravera, E., M. Sutman, and L. Laloui. 2020. “Load transfer method for energy piles in a group with pile–soil–slab–pile interaction.” J. Geotech. Geoenviron. Eng. 146 (6): 04020042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002258.
Rotta Loria, A. F., and L. Laloui. 2016. “The interaction factor method for energy pile groups.” Comput. Geotech. 80 (Dec): 121–137. https://doi.org/10.1016/j.compgeo.2016.07.002.
Rotta Loria, A. F., and L. Laloui. 2017a. “Displacement interaction among energy piles bearing on stiff soil strata.” Comput. Geotech. 90 (Oct): 144–154. https://doi.org/10.1016/j.compgeo.2017.06.008.
Rotta Loria, A. F., and L. Laloui. 2017b. “The equivalent pier method for energy pile groups.” Géotechnique 67 (8): 691–702. https://doi.org/10.1680/jgeot.16.P.139.
Rotta Loria, A. F., and L. Laloui. 2017c. “Thermally induced group effects among energy piles.” Géotechnique 67 (5): 374–393. https://doi.org/10.1680/jgeot.16.P.039.
Rotta Loria, A. F., and L. Laloui. 2018. “Group action effects caused by various operating energy piles.” Géotechnique 68 (9): 834–841. https://doi.org/10.1680/jgeot.17.P.213.
Russo, G., G. Marone, L. Di Girolamo, and M. Pirone. 2020. “Numerical prediction of thermo-mechanical behavior of energy pile in pyroclastic soil.” In Proc., GeoMEast Conf., 89–107. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-34193-0_7.
Saggu, R. 2022. “Cyclic pile-soil interaction effects on load-displacement behavior of thermal pile groups in sand.” Geotech. Geol. Eng. 40 (2): 647–661. https://doi.org/10.1007/s10706-021-01912-x.
Saggu, R., and T. Chakraborty. 2016. “Thermomechanical response of geothermal energy pile groups in sand.” Int. J. Geomech. 16 (4): 04015100. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000567.
Salciarini, D., F. Ronchi, E. Cattoni, and C. Tamagnini. 2015. “Thermomechanical effects induced by energy piles operation in a small piled raft.” Int. J. Geomech. 15 (2): 04014042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000375.
Salciarini, D., F. Ronchi, and C. Tamagnini. 2017. “Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: A parametric study.” Acta Geotech. 12 (4): 703–728. https://doi.org/10.1007/s11440-017-0551-3.
Sarma, K., and R. Saggu. 2020. “Implications of thermal cyclic loading on pile group behavior.” J. Geotech. Geoenviron. Eng. 146 (11): 04020114. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002363.
Stewart, M. A., and J. S. McCartney. 2014. “Centrifuge modeling of soil-structure interaction in energy foundations.” J. Geotech. Geoenviron. Eng. 140 (4): 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
Suryatriyastuti, M. E., S. Burlon, and H. Mroueh. 2016. “On the understanding of cyclic interaction mechanisms in an energy pile group.” Int. J. Numer. Anal. Methods 40 (1): 3–24. https://doi.org/10.1002/nag.2382.
Sutman, M., G. Speranza, A. Ferrari, P. Larrey-Lassalle, and L. Laloui. 2020. “Long-term performance and life cycle assessment of energy piles in three different climatic conditions.” Renewable Energy 146 (Jul): 1177–1191. https://doi.org/10.1016/j.renene.2019.07.035.
Wang, C. L., H. L. Liu, G. Q. Kong, and C. W. W. Ng. 2017. “Different types of energy piles with heating–cooling cycles.” Proc. Inst. Civ. Eng. Geotech. Eng. 170 (3): 220–231. https://doi.org/10.1680/jgeen.16.00061.
Wood, C. J., H. Liu, and S. B. Riffat. 2009. “Use of energy piles in a residential building, and effects on ground temperature and heat pump efficiency.” Géotechnique 59 (3): 287–290. https://doi.org/10.1680/geot.2009.59.3.287.
Wood, C. J., H. Liu, and S. B. Riffat. 2010. “An investigation of the heat pump performance and ground temperature of a piled foundation heat exchanger system for a residential building.” Energy 35 (12): 4932–4940. https://doi.org/10.1016/j.energy.2010.08.032.
Wu, D., H. Liu, G. Kong, and C. Li. 2019. “Thermo-mechanical behavior of energy pile under different climatic conditions.” Acta Geotech. 14 (5): 1495–1508. https://doi.org/10.1007/s11440-018-0731-9.
Wu, D., H. Liu, G. Kong, and C. W. W. Ng. 2020. “Interactions of an energy pile with several traditional piles in a row.” J. Geotech. Geoenviron. Eng. 146 (4): 06020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002224.
Wu, D., H. Liu, G. Kong, C. W. W. Ng, and X. Cheng. 2018. “Displacement response of an energy pile in saturated clay.” Proc. Inst. Civ. Geotech. Eng. 171 (4): 285–294. https://doi.org/10.1680/jgeen.17.00152.
Wu, D., H. Liu, G. Kong, and A. F. Rotta Loria. 2021. “Thermo-mechanical behavior of a full-scale energy pile equipped with a spiral pipe configuration.” Can. Geotech. J. 13 (Jan): 1–12. https://doi.org/10.1139/cgj-2020-0162.
Yavari, N., A. M. Tang, J.-M. Pereira, and G. Hassen. 2014a. “Experimental study on the mechanical behaviour of a heat exchanger pile using physical modeling.” Acta Geotech. 9 (3): 385–398. https://doi.org/10.1007/s11440-014-0310-7.
Yavari, N., A. M. Tang, J.-M. Pereira, and G. Hassen. 2014b. “A simple method for numerical modelling of mechanical behaviour of an energy pile.” Geotech. Lett. 4 (2): 119–124. https://doi.org/10.1680/geolett.13.00053.
Yavari, N., A. M. Tang, J.-M. Pereira, and G. Hassen. 2016. “Mechanical behaviour of a small-scale energy pile in saturated clay.” Géotechnique 66 (11): 878–887. https://doi.org/10.1680/jgeot.15.T.026.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 8August 2022

History

Received: Jul 23, 2021
Accepted: Apr 4, 2022
Published online: May 26, 2022
Published in print: Aug 1, 2022
Discussion open until: Oct 26, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Jincheng Fang [email protected]
Research Assistant, Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges Univ., Yichang 443002, China; Research Assistant, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai Univ., Nanjing 210024, China. Email: [email protected]
Gangqiang Kong [email protected]
Professor, Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges Univ., Yichang 443002, China; Professor, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai Univ., Nanjing 210024, China (corresponding author). Email: [email protected]
Professor, State Key Laboratory of Coastal and Offshore Engineering, Dalian Univ. of Technology, Dalian 116024, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Thermomechanical Response of Field-Scale Energy Wall under Different Heating Operations, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12066, 150, 3, (2024).
  • Performance of a Belled Pile Influenced by Pile Head Freedom Response to a Cooling–Heating Cycle, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-10407, 149, 2, (2023).
  • Probabilistic method for the size design of energy piles considering the uncertainty in soil parameters, Underground Space, 10.1016/j.undsp.2022.08.004, 10, (37-54), (2023).
  • Analysis of energy pile groups subjected to non-uniform thermal loadings, Underground Space, 10.1016/j.undsp.2022.05.003, 9, (91-104), (2023).
  • Numerical analyses of coupled thermo-mechanical behaviors of cement sheath in geothermal wells, Underground Space, 10.1016/j.undsp.2022.04.006, 8, (80-93), (2023).
  • Second law evaluation and environmental analysis of biomass-fired power plant hybridized with geothermal energy, Sustainable Energy Technologies and Assessments, 10.1016/j.seta.2022.102988, 56, (102988), (2023).
  • Optimization and sustainability analysis of a hybrid diesel-solar-battery energy storage structure for zero energy buildings at various reliability conditions, Sustainable Energy Technologies and Assessments, 10.1016/j.seta.2022.102913, 55, (102913), (2023).
  • Energy pile-based ground source heat pump system with seasonal solar energy storage, Renewable Energy, 10.1016/j.renene.2023.02.116, 206, (1132-1146), (2023).
  • Thermal mechanical behavior of energy piles with cap under embedded depth, Geomechanics for Energy and the Environment, 10.1016/j.gete.2022.100425, 33, (100425), (2023).
  • Laboratory investigations on the thermo-mechanical behaviour of an energy pile group operated in heat release mode, Geothermics, 10.1016/j.geothermics.2022.102645, 109, (102645), (2023).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share