Technical Papers
Dec 13, 2022

Performance of a Belled Pile Influenced by Pile Head Freedom Response to a Cooling–Heating Cycle

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 2

Abstract

This paper demonstrates the influence of pile head freedom on the thermomechanical performance of a belled pile. Field tests on the belled pile response to a cooling–heating cycle and incremental structural construction are carried out. The temperature changes, axial strain profiles, and pressures at the pile toe are recorded through the buried instruments. The variation in the degrees of freedom, tensile forces, and inferred pile head settlements along the pile depth for different test procedures are analyzed using the measured data. The degree of freedom close to the pile head calculated from strain rates decreases with the structure mass with a gradient of 2.8×105/kN. The reducing effect of the incremental superstructure on pile freedom decreases along with the orientation of the pile depth. Compared with the inferred thermal displacement of the pile without an applied structural load, the values decrease by about 10% when the pile was subjected to incremental floors, and an elastic recoverable characteristic response to cooling–heating-recovery phases is observed. Compared with the equal-diameter pile, the belled pile showed a significant constraint close to the toe. Mechanical loads can decrease the cracking risk because of a possible tensile force under cooling conditions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51922037, 52108313) and China Postdoctoral Science Foundation (No. 2021M690884).

References

Amatya, B. L., K. Soga, P. J. Bourne-Webb, T. Amis, and L. Laloui. 2012. “Thermo-mechanical behaviour of energy piles.” Géotechnique 62 (6): 503–519. https://doi.org/10.1680/geot.10.P.116.
Bourne-Webb, P. J., B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne. 2009. “Energy pile test at Lambeth College, London: Geotechnical and thermodynamic aspects of pile response to heat cycles.” Géotechnique 59 (3): 237–248. https://doi.org/10.1680/geot.2009.59.3.237.
Bourne-Webb, P. J., B. L. Amatya, and T. Soga. 2013. “A framework for understanding energy pile behavior.” Proc. Inst. Civ. Eng. Geotech. Eng. 166 (2): 170–177. https://doi.org/10.1680/geng.10.00098.
Bourne-Webb, P. J., T. M. Bodas Freitas, and R. M. Freitas Assunção. 2019. “A review of pile-soil interactions in isolated, thermally-activated piles.” Comput. Geotech. 108 (Apr): 61–74. https://doi.org/10.1016/j.compgeo.2018.12.008.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56 (2): 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Fang, J. C., G. Q. Kong, Y. D. Meng, L. Wang, and Q. Yang. 2020. “Thermomechanical behavior of energy piles and interactions within energy pile–raft foundations.” J. Geotech. Geoenviron. Eng. 146 (9): 04020079. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002333.
Fang, J. C., G. Q. Kong, and Q. Yang. 2022. “Group performance of energy piles under cyclic and variable thermal loading.” J. Geotech. Geoenviron. Eng. 148 (8): 04022060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002840.
Gao, J., X. Zhang, J. Liu, K. S. Li, and J. Yang. 2008. “Thermal performance and ground temperature of vertical pile-foundation heat exchangers: A case study.” Appl. Therm. Eng. 28 (Jun): 2295–2304. https://doi.org/10.1016/j.applthermaleng.2008.01.013.
Gao, Q., M. Li, M. Yu, J. D. Spitler, and Y. Y. Yan. 2009. “Review of development from GSHP to UTES in China and other countries.” Renewable Sustainable Energy Rev. 13 (6–7): 1383–1394. https://doi.org/10.1016/j.rser.2008.09.012.
Guo, Y., G. Zhang, and S. Liu. 2018. “Investigation on the thermal response of full-scale PHC energy pile and ground temperature in multi-layer strata.” Appl. Therm. Eng. 143 (Feb): 836–848. https://doi.org/10.1016/j.applthermaleng.2018.08.005.
Honda, T., Y. Hirai, and E. Sato. 2011. “Uplift capacity of belled and multi-belled piles in dense sand.” Soils Found. 51 (3): 483–496. https://doi.org/10.3208/sandf.51.483.
Kalantidou, A., A. M. Tang, J. M. Pereira, and G. Hassen. 2012. “Preliminary study on the mechanical behaviour of heat exchanger pile in physical model.” Géotechnique. 62 (11): 1047–1051. https://doi.org/10.1680/geot.11.T.013.
Knellwolf, C., H. Peron, and L. Laloui. 2011. “Geotechnical analysis of heat exchanger piles.” J. Geotech. Geoenviron. Eng. 137 (10): 890–902. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000513.
Kong, G. Q., D. Wu, H. L. Liu, L. Laloui, X. H. Cheng, and X. Zhu. 2019. “Performance of a geothermal energy deicing system for bridge deck using a pile heat exchanger.” Int. J. Energy Res. 43 (1): 596–603. https://doi.org/10.1002/er.4266.
Kumar, A., V. N. Khatri, and S. K. Gupta. 2022. “Numerical and analytical study on uplift capacity of under-reamed piles in sand.” Mar. Georesour. Geotechnol. 40 (1): 104–124. https://doi.org/10.1080/1064119X.2021.1871689.
Laloui, L., M. Matteo, and L. Vulliet. 2003. “Comportement d’un pieu bifonction, fondation et échangeur de chaleur.” Can. Geotech. J. 40 (2): 388–402. https://doi.org/10.1139/t02-117.
Laloui, L., M. Nuth, and L. Vulliet. 2006. “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Anal. Methods Geomech. 30 (8): 763–781. https://doi.org/10.1002/nag.499.
Luo, J., Q. Zhang, H. Zhao, S. Gui, W. Xiang, J. Rohn, and K. Soga. 2019. “Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers.” J. Geotech. Geoenviron. Eng. 145 (12): 04019109. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002175.
Lv, Z., G. Q. Kong, H. L. Liu, and C. W. Ng. 2020. “Effects of soil type on axial and radial thermal responses of field-scale energy piles.” J. Geotech. Geoenviron. Eng. 146 (10): 06020018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002367.
McCartney, J. S., and K. D. Murphy. 2017. “Investigation of potential dragdown/uplift effects on energy piles.” Geomech. Energy Environ. 10 (Jun): 21–28. https://doi.org/10.1016/j.gete.2017.03.001.
Mehrizi, A. A., S. Porkhial, B. Bezyan, and H. Lotfizadeh. 2016. “Energy pile foundation simulation for different configurations of ground source heat exchanger.” Int. Commun. Heat Mass Transfer 70 (Jan): 105–114. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.001.
Mimouni, T., and L. Laloui. 2015. “Behaviour of a group of energy piles.” Can. Geotech. J. 52 (12): 1913–1929. https://doi.org/10.1139/cgj-2014-0403.
Miyara, A., K. Tsubaki, S. Inoue, and K. Yoshida. 2011. “Experimental study of several types of ground heat exchanger using a steel pile foundation.” Renewable Energy 36 (2): 764–771. https://doi.org/10.1016/j.renene.2010.08.011.
Moghaddas Tafreshi, S. N., S. Javadi, and A. R. Dawson. 2014. “Influence of geocell reinforcement on uplift response of belled piles.” Acta Geotech. 9 (3): 513–528. https://doi.org/10.1007/s11440-013-0300-1.
Moradshahi, A., M. Faizal, A. Bouazza, and J. S. Mccartney. 2021. “Effect of nearby piles and soil properties on thermal behaviour of a field-scale energy pile.” Can. Geotech. J. 58 (Apr): 1351–1364. https://doi.org/10.1139/cgj-2020-0353.
Murphy, K. D., and J. S. McCartney. 2014. “Seasonal response of energy foundations during building operation.” Geotech. Geol. Eng. 33 (2): 343–356. https://doi.org/10.1007/s10706-014-9802-3.
Murphy, K. D., J. S. McCartney, and K. S. Henry. 2015. “Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations.” Acta Geotech. 10 (2): 179–195. https://doi.org/10.1007/s11440-013-0298-4.
Ng, C. W. W., C. Shi, A. Gunawan, L. Laloui, and H. L. Liu. 2015. “Centrifuge modelling of heating effects on energy pile performance in saturated sand.” Can. Geotech. J. 52 (8): 1045–1057. https://doi.org/10.1139/cgj-2014-0301.
Olgun, C. G., T. Y. Ozudogru, and C. F. Arson. 2014. “Thermo-mechanical radial expansion of heat exchanger piles and possible effects on contact pressures at pile-soil interface.” Geotech. Lett. 4 (3): 170–178. https://doi.org/10.1680/geolett.14.00018.
Park, S., D. Lee, H. Choi, K. Jung, and H. Choi. 2014. “Relative constructability and thermal performance of cast-in-place concrete energy pile: Coil-type GHEX (ground heat exchanger).” Energy 81 (Aug): 56–66. https://doi.org/10.1016/j.energy.2014.08.012.
Perić, D., A. E. Cossel, and S. A. Sarna. 2020. “Analytical solutions for thermomechanical soil structure interaction in end-bearing energy piles.” J. Geotech. Geoenviron. Eng. 146 (7): 04020047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002269.
Randolph, M. F., and C. P. Wroth. 1978. “Analysis of deformation of vertically loaded piles.” J. Geotech. Eng. Div. 104 (12): 1465–1488. https://doi.org/10.1061/AJGEB6.0000729.
Ravera, E., M. Sutman, and L. Laloui. 2020. “Load transfer method for energy piles in a group with pile–soil–slab–pile interaction.” J. Geotech. Geoenviron. Eng. 146 (6): 04020042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002258.
Ren, L. W., J. Xu, G. Q. Kong, and H. L. Liu. 2020. “Field tests on thermal response characteristics of micro-steel-pipe pile under multiple temperature cycles.” Renewable Energy 147 (Sep): 1098–1106. https://doi.org/10.1016/j.renene.2019.09.084.
Rotta Loria, A. F., and L. Laloui. 2016. “Thermally induced group effects among energy piles.” Géotechnique 67 (5): 374–393. https://doi.org/10.1680/jgeot.16.P.039.
Sutman, M., T. Brettmann, and C. G. Olgun. 2019. “Full-scale in-situ tests on energy piles: Head and base-restraining effects on the structural behaviour of three energy piles.” Geomech. Energy Environ. 18 (4): 56–68. https://doi.org/10.1016/j.gete.2018.08.002.
Sutman, M., G. Speranza, A. Ferrari, P. Larrey-Lassalle, and L. Laloui. 2020. “Long-term performance and life cycle assessment of energy piles in three different climatic conditions.” Renewable Energy 146 (5): 1177–1191. https://doi.org/10.1016/j.renene.2019.07.035.
Wu, D., H. Liu, G. Kong, and C. W. W. Ng. 2020. “Interactions of an energy pile with several traditional piles in a row.” J. Geotech. Geoenviron. Eng. 146 (4): 06020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002224.
You, S., X. Cheng, H. Guo, and Z. Q. Yao. 2016. “Experimental study on structural response of CFG energy piles.” Appl. Therm. Eng. 96 (Mar): 640–651. https://doi.org/10.1016/j.applthermaleng.2015.11.127.
You, S., X. H. Cheng, H. Guo, and Z. Q. Yao. 2014. “In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers.” Energy Build. 79 (Jul): 23–31. https://doi.org/10.1016/j.enbuild.2014.04.021.
Zhao, R., A. K. Leung, D. Vitali, J. A. Knappett, and Z. Zhou. 2020. “Small-scale modeling of thermomechanical behavior of reinforced concrete energy piles in soil.” J. Geotech. Geoenviron. Eng. 146 (4): 04020011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002225.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 2February 2023

History

Received: Sep 12, 2021
Accepted: Oct 17, 2022
Published online: Dec 13, 2022
Published in print: Feb 1, 2023
Discussion open until: May 13, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Zhou, Ph.D.
Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai Univ., Nanjing, Jiangsu, China; College of Water Conservancy and Hydropower Engineering, Hohai Univ., Nanjing, Jiangsu, China.
Gangqiang Kong [email protected]
Professor, Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai Univ., Nanjing, Jiangsu, China (corresponding author). Email: [email protected]
Junjie Li
Professor, College of Water Conservancy and Hydropower Engineering, Hohai Univ., Nanjing, Jiangsu, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Thermomechanical Response of Field-Scale Energy Wall under Different Heating Operations, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12066, 150, 3, (2024).
  • Thermomechanical Behavior of Energy Piles with Different Roughness Values in Unsaturated Soil, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11735, 150, 5, (2024).
  • Uncertainty method and sensitivity analysis for assessment of energy consumption of underground metro station, Sustainable Cities and Society, 10.1016/j.scs.2023.104504, 92, (104504), (2023).
  • Group performance of multiple series-connected energy piles under thermal loading, Case Studies in Thermal Engineering, 10.1016/j.csite.2023.102823, 43, (102823), (2023).
  • 3D elastodynamic solutions to layered transversely isotropic soils considering the groundwater level, Computers and Geotechnics, 10.1016/j.compgeo.2023.105354, 158, (105354), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share