Technical Papers
Sep 29, 2021

Material Point Method for Cone Penetration in Clays

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 12

Abstract

This study presents a coupled material point method (MPM) formulation for the analysis of cone penetration in clays. The formulation is based on the generalized interpolation material point method (GIMP) variant of MPM. A single material point is used to represent both the soil matrix and water. The governing equations are solved using an explicit scheme with the velocity of the soil matrix and the velocity of water as the primary variables. Incompressibility constraints in the soil matrix are resolved using the nonlinear B-bar method, and pore pressures are computed at element centers. The formulation is validated through problems for which analytical or numerical solutions are available. Cone penetration resistances measured at a Boston Blue Clay (BBC) test site are then computed using the coupled MPM formulation with the constitutive response of BBC captured using an advanced bounding surface model based on critical state soil mechanics. Based on the cone penetration simulation, the penetration resistances under undrained, partially drained, and drained conditions are computed by varying the hydraulic conductivity of the clay. The cone factor for undrained penetration is also calculated. Verification and validation exercises demonstrate the efficacy and robustness of the adopted formulation in the realistic simulation of cone penetration in clay.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

References

Abe, K., K. Soga, and S. Bandara. 2014. “Material point method for coupled hydromechanical problems.” J. Geotech. Geoenviron. Eng. 140 (3): 04013033. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001011.
Anandarajah, A., and Y. F. Dafalias. 1986. “Bounding surface plasticity. III: Application to anisotropic cohesive soils.” J. Eng. Mech. 112 (12): 1292–1318. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1292).
Bandara, S., and K. Soga. 2015. “Coupling of soil deformation and pore fluid flow using material point method.” Comput. Geotech. 63 (Jan): 199–214. https://doi.org/10.1016/j.compgeo.2014.09.009.
Bardenhagen, S. G. 2002. “Energy conservation error in the material point method for solid mechanics.” J. Comput. Phys. 180 (1): 383–403. https://doi.org/10.1006/jcph.2002.7103.
Bardenhagen, S. G., J. U. Brackbill, and D. Sulsky. 2000. “The material-point method for granular materials.” Comput. Methods Appl. Mech. Eng. 187 (3–4): 529–541. https://doi.org/10.1016/S0045-7825(99)00338-2.
Bardenhagen, S. G., J. E. Guilkey, K. M. Roessig, J. U. Brackbill, W. M. Witzel, and J. C. Foster. 2001. “An improved contact algorithm for the material point method and application to stress propagation in granular material.” Comput. Model. Eng. Sci. 2 (4): 509–522. https://doi.org/10.3970/cmes.2001.002.509.
Bardenhagen, S. G., and E. M. Kober. 2004. “The generalized interpolation material point method.” Comput. Model. Eng. Sci. 5 (6): 477–495. https://doi.org/10.3970/cmes.2004.005.477.
Basu, P., M. Prezzi, R. Salgado, and T. Chakraborty. 2014. “Shaft Resistance and setup factors for piles jacked in clay.” J. Geotech. Geoenviron. Eng. 140 (3): 04013026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001018.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bisht, V., and R. Salgado. 2018. “Local transmitting boundaries for the generalized interpolation material point method.” Int. J. Numer. Methods Eng. 114 (11): 1228–1244. https://doi.org/10.1002/nme.5780.
Bisht, V., R. Salgado, and M. Prezzi. 2021. “Simulating penetration problems in incompressible materials using the material point method.” Comput. Geotech. 133 (Feb): 103593. https://doi.org/10.1016/j.compgeo.2020.103593.
Bruhns, O. T., H. Xiao, and A. Meyers. 1999. “Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate.” Int. J. Plast. 15 (5): 479–520. https://doi.org/10.1016/S0749-6419(99)00003-0.
Ceccato, F., L. Beuth, and P. Simonini. 2016a. “Analysis of Piezocone penetration under different drainage conditions with the two-phase material point method.” J. Geotech. Geoenviron. Eng. 142 (12): 04016066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001550.
Ceccato, F., L. Beuth, P. A. Vermeer, and P. Simonini. 2016b. “Two-phase material point method applied to the study of cone penetration.” Comput. Geotech. 80 (Dec): 440–452. https://doi.org/10.1016/j.compgeo.2016.03.003.
Ceccato, F., and P. Simonini. 2017. “Numerical study of partially drained penetration and pore pressure dissipation in piezocone test.” Acta Geotech. 12 (1): 195–209. https://doi.org/10.1007/s11440-016-0448-6.
Ceccato, F., and A. Yerro, and M. Martinelli. 2018. “Modelling soil-water interaction with the material point method. Evaluation of single-point and double-point formulations.” In Vol. 1 of Proc., Numerical Methods in Geotechnical Engineering IX, 351–357. Colchester, UK: Informa UK.
Chakraborty, T., R. Salgado, and D. Loukidis. 2013. “A two-surface plasticity model for clay.” Comput. Geotech. 49 (Apr): 170–190. https://doi.org/10.1016/j.compgeo.2012.10.011.
Coombs, W. M., T. J. Charlton, M. Cortis, and C. E. Augarde. 2018. “Overcoming volumetric locking in material point methods.” Comput. Methods Appl. Mech. Eng. 333 (Jan): 1–21. https://doi.org/10.1016/j.cma.2018.01.010.
Courant, R., K. Friedrichs, and H. Lewy. 1967. “On the partial difference equations of mathematical physics.” IBM J. Res. Dev. 11 (2): 215–234. https://doi.org/10.1147/rd.112.0215.
de Boer, R. 2012. Theory of porous media: Highlights in historical development and current state. Berlin: Springer.
De Borst, R., L. J. Sluys, H.-B. Muhlhaus, and J. Pamin. 1993. “Fundamental issue in finite element analyses of localization of deformation.” Eng. Comput. 10 (2): 99–121. https://doi.org/10.1108/eb023897.
de Vaucorbeil, A., V. P. Nguyen, S. Sinaie, and J. Y. Wu. 2020. “Material point method after 25 years: Theory, implementation, applications.” Adv. Appl. Mech. 53: 185–398. https://doi.org/10.1016/bs.aams.2019.11.001.
Dienes, J. K. 1979. “On the analysis of rotation and stress rate in deforming bodies.” Acta Mech. 32 (4): 217–232. https://doi.org/10.1007/BF01379008.
Elguedj, T., Y. Bazilevs, V. M. Calo, and T. J. R. Hughes. 2008. “B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements.” Comput. Methods Appl. Mech. Eng. 197 (33–40): 2732–2762. https://doi.org/10.1016/j.cma.2008.01.012.
Fern, J., A. Rohe, K. Soga, and E. Alonso. 2019. The material point method for geotechnical engineering: A practical guide. Boca Raton, FL: CRC Press.
Ganju, E., M. Prezzi, and R. Salgado. 2017. “Algorithm for generation of stratigraphic profiles using cone penetration test data.” Comput. Geotech. 90 (Oct): 73–84. https://doi.org/10.1016/j.compgeo.2017.04.010.
Han, F., V. Bisht, M. Prezzi, and R. Salgado. 2019. “Validation of pile design methods for closed-ended driven pipe piles.” In Proc., Geo-Congress 2019, 98–110. Reston, VA: ASCE.
Han, F., J. Lim, R. Salgado, M. Prezzi, and M. Zaheer. 2015. Load and resistance factor design of bridge foundations accounting for pile group–soil Interaction. West Lafayette, IN: Joint Transportation Research Program.
Han, F., M. Prezzi, R. Salgado, and M. Zaheer. 2017a. “Axial resistance of closed-ended steel-pipe piles driven in multilayered soil.” J. Geotech. Geoenviron. Eng. 143 (3): 04016102. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001589.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2017b. “Shaft and base resistance of non-displacement piles in sand.” Comput. Geotech. 83 (Mar): 184–197. https://doi.org/10.1016/j.compgeo.2016.11.006.
Higo, Y., D. Nishimura, and F. Oka. 2014. “Dynamic analysis of unsaturated embankment considering the seepage flow by a GIMP-FDM coupled method.” In Computer methods and recent advances in geomechanics, 1761–1766. Boca Raton, FL: CRC Press.
Higo, Y., F. Oka, S. Kimoto, Y. Morinaka, Y. Goto, and Z. Chen. 2010. “A coupled MPM-FDM analysis method for multi-phase elasto-plastic soils.” Soils Found. 50 (4): 515–532. https://doi.org/10.3208/sandf.50.515.
Hu, Y., and M. F. Randolph. 1998. “A practical numerical approach for large deformation problems in soil.” Int. J. Numer. Anal. Methods Geomech. 22 (5): 327–350. https://doi.org/10.1002/(SICI)1096-9853(199805)22:5%3C327::AID-NAG920%3E3.0.CO;2-X.
Hughes, T. J. R. 1980. “Generalization of selective integration procedures to anisotropic and nonlinear media.” Int. J. Numer. Methods Eng. 15 (9): 1413–1418. https://doi.org/10.1002/nme.1620150914.
Iaconeta, I., A. Larese, R. Rossi, and E. Oñate. 2019. “A stabilized mixed implicit Material Point Method for non-linear incompressible solid mechanics.” Comput. Mech. 63 (6): 1243–1260. https://doi.org/10.1007/s00466-018-1647-9.
Itasca. 2016. FLAC–Fast Lagrangian analysis of continua, version 8.0. Minneapolis: Itasca Consulting Group.
Jardine, R., F. Chow, R. Overy, and J. Standing. 2005. ICP design methods for driven piles in sand and clays. London: Thomas Telford.
Jassim, I., D. Stolle, and P. Vermeer. 2013. “Two-phase dynamic analysis by material point method.” Int. J. Numer. Anal. Methods Geomech. 37 (15): 2502–2522. https://doi.org/10.1002/nag.2146.
Jiao, Y., and J. Fish. 2017. “Is an additive decomposition of a rate of deformation and objective stress rates passé?” Comput. Methods Appl. Mech. Eng. 327 (Aug): 196–225. https://doi.org/10.1016/j.cma.2017.07.021.
Jiao, Y., and J. Fish. 2018. “On the equivalence between the multiplicative hyper-elasto-plasticity and the additive hypo-elasto-plasticity based on the modified kinetic logarithmic stress rate.” Comput. Methods Appl. Mech. Eng. 340 (Jun): 824–863. https://doi.org/10.1016/j.cma.2018.06.017.
Kafaji, I. K. 2013. Formulation of a dynamic material point method (MPM) for geomechanical problems. Stuttgart, Germany: Institut für Geotechnik der Universität Stuttgart.
Kaliakin, V. N., and Y. F. Dafalias. 1990. “Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils.” Soils Found. 30 (3): 11–24. https://doi.org/10.3208/sandf1972.30.3_11.
Kardani, M., M. Nazem, J. P. Carter, and A. J. Abbo. 2015. “Efficiency of high-order elements in large-deformation problems of geomechanics.” Int. J. Geomech. 15 (6): 04014101. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000457.
Kularathna, S., and K. Soga. 2017a. “Comparison of two projection methods for modeling incompressible flows in MPM.” J. Hydrodyn. 29 (3): 405–412. https://doi.org/10.1016/S1001-6058(16)60750-3.
Kularathna, S., and K. Soga. 2017b. “Implicit formulation of material point method for analysis of incompressible materials.” Comput. Methods Appl. Mech. Eng. 313 (Jan): 673–686. https://doi.org/10.1016/j.cma.2016.10.013.
Ladd, C., and J. Varallyay. 1965. The influence of the stress system on the behavior of saturated clays during undrained shear.. Cambridge, MA: Dept. of Civil Engineering, Massachusetts Institute of Technology.
Landon, M. M. 2007. “Development of a non-destructive sample quality assessment method for soft clays.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Massachusetts Amherst.
Lee, J., and R. Salgado. 2005. “Estimation of bearing capacity of circular footings on sands based on cone penetration test.” J. Geotech. Geoenviron. Eng. 131 (4): 442–452. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(442).
Lehane, B. M., J. A. Schneider, and X. Xu. 2005. “The UWA-05 method for prediction of axial capacity of driven piles in sand.” In Frontiers in offshore geotechnics: ISFOG (2005), 683–689. London: Taylor & Francis.
Lei, X., S. He, and L. Wu. 2020. “Stabilized generalized interpolation material point method for coupled hydro-mechanical problems.” In Computational particle mechanics. Berlin: Springer.
Lemiale, V., J. Nairn, and A. Hurmane. 2010. “Material point method simulation of equal channel angular pressing involving large plastic strain and contact through sharp corners.” Comput. Model. Eng. Sci. 70 (1): 41–66. https://doi.org/10.3970/cmes.2010.070.041.
Lin, H., and D. Penumadu. 2006. “Strain localization in combined axial-torsional testing on kaolin clay.” J. Eng. Mech. 132 (5): 555–564. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:5(555).
Lubliner, J. 2008. Plasticity theory. Mineola, NY: Dover Publications.
Mast, C. M., P. Mackenzie-Helnwein, P. Arduino, G. R. Miller, and W. Shin. 2012. “Mitigating kinematic locking in the material point method.” J. Comput. Phys. 231 (16): 5351–5373. https://doi.org/10.1016/j.jcp.2012.04.032.
Mieremet, M. M. J., D. F. Stolle, F. Ceccato, and C. Vuik. 2016. “Numerical stability for modelling of dynamic two-phase interaction.” Int. J. Numer. Anal. Methods Geomech. 40 (9): 1284–1294. https://doi.org/10.1002/nag.2483.
Moore, I. D., and R. K. Rowe. 1988. “Numerical models for evaluating progressive failure in earth structures—A review.” Comput. Geotech. 6 (3): 217–239. https://doi.org/10.1016/0266-352X(88)90047-X.
Moug, D. M., R. W. Boulanger, J. T. DeJong, and R. A. Jaeger. 2019. “Axisymmetric simulations of cone penetration in saturated clay.” J. Geotech. Geoenviron. Eng. 145 (4): 04019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002024.
Nairn, J. A. 2013. “Modeling imperfect interfaces in the material point method using multimaterial methods.” Comput. Model. Eng. Sci. 92 (3): 271–299. https://doi.org/10.32604/cmes.2013.092.271.
Nairn, J. A., and J. E. Guilkey. 2015. “Axisymmetric form of the generalized interpolation material point method.” Int. J. Numer. Methods Eng. 101 (2): 127–147. https://doi.org/10.1002/nme.4792.
Nazem, M., J. P. Carter, and D. W. Airey. 2009a. “Arbitrary Lagrangian–Eulerian method for dynamic analysis of geotechnical problems.” Comput. Geotech. 36 (4): 549–557. https://doi.org/10.1016/j.compgeo.2008.11.001.
Nazem, M., J. P. Carter, D. Sheng, and S. W. Sloan. 2009b. “Alternative stress-integration schemes for large-deformation problems of solid mechanics.” Finite Elem. Anal. Des. 45 (12): 934–943. https://doi.org/10.1016/j.finel.2009.09.006.
Nazem, M., D. Sheng, and J. P. Carter. 2006. “Stress integration and mesh refinement for large deformation in geomechanics.” Int. J. Numer. Methods Eng. 65 (7): 1002–1027. https://doi.org/10.1002/nme.1470.
Nazem, M., D. Sheng, J. P. Carter, and S. W. Sloan. 2008. “Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems.” Int. J. Numer. Anal. Methods Geomech. 32 (9): 1023–1050. https://doi.org/10.1002/nag.657.
Prager, W. 1961. “An elementary discussion of definitions of stress rate.” Q. Appl. Math. 18 (4): 403–407. https://doi.org/10.1090/qam/116567.
Rice, J. R. 1976. “The localization of plastic deformation.” In Proc., 14th Int. Congress on Theoretical and Applied Mechanics, 207–220. Amsterdam, Netherlands: North-Holland Publishing.
Robertson, P. K. 1990. “Soil classification using the cone penetration test.” Can. Geotech. J. 27 (1): 151–158. https://doi.org/10.1139/t90-014.
Robertson, P. K. 2016. “Cone penetration test (CPT)-based soil behaviour type (SBT) classification system—An update.” Can. Geotech. J. 53 (12): 1910–1927. https://doi.org/10.1139/cgj-2016-0044.
Sabetamal, H., M. Nazem, S. W. Sloan, and J. P. Carter. 2016. “Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method.” Int. J. Numer. Anal. Methods Geomech. 40 (1): 25–61. https://doi.org/10.1002/nag.2386.
Sadeghirad, A., R. M. Brannon, and J. Burghardt. 2011. “A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations.” Int. J. Numer. Methods Eng. 86 (12): 1435–1456. https://doi.org/10.1002/nme.3110.
Sadeghirad, A., R. M. Brannon, and J. E. Guilkey. 2013. “Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces.” Int. J. Numer. Methods Eng. 95 (11): 928–952. https://doi.org/10.1002/nme.4526.
Salgado, R. 2008. The engineering of foundations. New York: McGraw-Hill.
Salgado, R., F. Han, and M. Prezzi. 2017. “Axial resistance of non-displacement piles and pile groups in sand.” Riv. Ital. Geotech. 51 (4): 35–46. https://doi.org/10.19199/2017.4.0557-1405.35.
Salgado, R., and M. Prezzi. 2007. “Computation of cavity expansion pressure and penetration resistance in sands.” Int. J. Geomech. 7 (4): 251–265. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(251).
Salgado, R., S. I. Woo, and D. Kim. 2011. Development of load and resistance factor design for ultimate and serviceability limit states of transportation structure foundations. West Lafayette, IN: Indiana Department of Transportation and Purdue Univ.
Seidalinov, G., and M. Taiebat. 2014. “Bounding surface SANICLAY plasticity model for cyclic clay behavior.” Int. J. Numer. Anal. Methods Geomech. 38 (7): 702–724. https://doi.org/10.1002/nag.2229.
Simo, J. C., R. L. Taylor, and K. S. Pister. 1985. “Variational and projection methods for the volume constraint in finite deformation elasto-plasticity.” Comput. Methods Appl. Mech. Eng. 51 (1–3): 177–208. https://doi.org/10.1016/0045-7825(85)90033-7.
Sloan, S. W. 1987. “Substepping schemes for the numerical integration of elastoplastic stress-strain relations.” Int. J. Numer. Methods Eng. 24 (5): 893–911. https://doi.org/10.1002/nme.1620240505.
Sloan, S. W., A. J. Abbo, and D. Sheng. 2001. “Refined explicit integration of elastoplastic models with automatic error control.” Eng. Comput. 18 (1/2): 121–194. https://doi.org/10.1108/02644400110365842.
Sulsky, D., Z. Chen, and H. L. Schreyer. 1994. “A particle method for history-dependent materials.” Comput. Methods Appl. Mech. Eng. 118 (1–2): 179–196. https://doi.org/10.1016/0045-7825(94)90112-0.
Terzaghi, K. 1943. Theoretical soil mechanics. New York: Wiley.
Tumay, M. T. 1985. Field calibration of electric cone penetrometers in soft soil. Baton Rouge, LA: Louisiana State Univ.
Vardoulakis, I. 2002. “Dynamic thermo-poro-mechanical analysis of catastrophic landslides.” Géotechnique 52 (3): 157–171. https://doi.org/10.1680/geot.2002.52.3.157.
Woo, S. I., and R. Salgado. 2015. “Bounding surface modeling of sand with consideration of fabric and its evolution during monotonic shearing.” Int. J. Solids Struct. 63 (Jun): 277–288. https://doi.org/10.1016/j.ijsolstr.2015.03.005.
Woo, S. I., and R. Salgado. 2018. “Simulation of penetration of a foundation element in Tresca soil using the generalized interpolation material point method (GIMP).” Comput. Geotech. 94 (Feb): 106–117. https://doi.org/10.1016/j.compgeo.2017.08.007.
Zabala, F., and E. E. Alonso. 2011. “Progressive failure of Aznalcóllar dam using the material point method.” Géotechnique 61 (9): 795–808. https://doi.org/10.1680/geot.9.P.134.
Zbib, H. M., and E. C. Aifantis. 1988. “On the concept of relative and plastic spins and its implications to large deformation theories. Part I: Hypoelasticity and vertex-type plasticity.” Acta Mech. 75 (1–4): 15–33. https://doi.org/10.1007/BF01174625.
Zhao, Y., and J. Choo. 2020. “Stabilized material point methods for coupled large deformation and fluid flow in porous materials.” Comput. Methods Appl. Mech. Eng. 362 (Apr): 112742. https://doi.org/10.1016/j.cma.2019.112742.
Zienkiewicz, O. C., and T. Shiomi. 1984. “Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution.” Int. J. Numer. Anal. Methods Geomech. 8 (1): 71–96. https://doi.org/10.1002/nag.1610080106.
Zienkiewicz, O. C., and R. L. Taylor. 2000. The finite element method; volume 1: The basis. Woburn, MA: Butterworth-Heinemann.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 12December 2021

History

Received: Dec 20, 2020
Accepted: Jul 28, 2021
Published online: Sep 29, 2021
Published in print: Dec 1, 2021
Discussion open until: Feb 28, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907-1284 (corresponding author). ORCID: https://orcid.org/0000-0001-5636-2279. Email: [email protected]
Rodrigo Salgado, F.ASCE [email protected]
Charles Pankow Professor in Civil Engineering, School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907-1284. Email: [email protected]
Monica Prezzi, A.M.ASCE [email protected]
Professor of Civil Engineering, School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907-1284. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Validating the Use of Material Point Method and SANISAND Model for Relating the State Parameter with Cone Tip Resistance, Geo-Congress 2024, 10.1061/9780784485347.018, (172-180), (2024).
  • Effect of Relative Density and Particle Morphology on the Bearing Capacity and Collapse Mechanism of Strip Footings in Sand, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11324, 149, 8, (2023).
  • Numerical Modeling of Pumping-Induced Earth Fissures Using Coupled Quasi-Static Material Point Method, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11167, 149, 9, (2023).
  • Simulation of compound anchor intrusion in dry sand by a hybrid FEM+SPH method, Computers and Geotechnics, 10.1016/j.compgeo.2022.105137, 154, (105137), (2023).
  • Advances in the solution of geotechnical boundary-value problems, Computers and Geotechnics, 10.1016/j.compgeo.2021.104183, 138, (104183), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share