Technical Papers
May 17, 2023

Effect of Relative Density and Particle Morphology on the Bearing Capacity and Collapse Mechanism of Strip Footings in Sand

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 149, Issue 8

Abstract

This paper presents the results of a series of load tests performed on a half-strip model footing (width B=50  mm) placed on the surface of samples prepared with one of two uniform silica sands [Ohio Gold Frac (OGF) sand and Ottawa 20–30 (OTC) sand] with different relative densities. The sand samples were air-pluviated inside a half-cylindrical calibration chamber equipped with imaging capabilities. Sequential, high-resolution images taken during the model footing load tests were analyzed using the digital image correlation (DIC) technique to obtain the displacement and strain fields in the sand domain. The effect of sand relative density on the footing load–settlement curves and bearing capacity factor Nγ was investigated for both OGF and OTC sands. The results obtained from the model footing load tests show that, for a given relative density, the bearing capacity of the footing and the value of Nγ decrease with increasing roundness of the sand particles; the effect of particle roundness on the value of Nγ is more pronounced for dense sand than for loose sand. Different points on the footing load–settlement curve were identified to investigate the development of the collapse mechanism of the model footing. Plots of the maximum shear strain contours were shown to adequately capture shear localization in the sand domain during model footing loading. The thickness of the shear band was found to be on the order of 10D50 and 7D50 for the model footing tested on dense OGF and OTC sand samples, respectively.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The first author is grateful for the financial support received from the Higher Education Commission (HEC) of Pakistan. The authors are thankful to Juan Esteban Jiménez Piraján from the National University of Colombia for his assistance with the model footing tests.

References

Aiban, S. A., and D. Znidarcic. 1995. “Centrifugal modeling of bearing capacity of shallow foundations on sands.” J. Geotech. Eng. 121 (10): 704–712. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:10(704).
Al Heib, M., F. Emeriault, and H. L. Nghiem. 2020. “On the use of 1g physical models for ground movements and soil-structure interaction problems.” J. Rock Mech. Geotech. Eng. 12 (1): 197–211. https://doi.org/10.1016/j.jrmge.2019.07.006.
Alshibli, K. A., S. N. Batiste, and S. Sture. 2003. “Strain localization in sand: Plane strain versus triaxial compression.” J. Geotech. Geoenviron. Eng. 129 (6): 483–494. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(483).
Alshibli, K. A., and M. B. Cil. 2017. “Influence of particle morphology on the friction and dilatancy of sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841.
Alshibli, K. A., M. F. Jarrar, A. M. Druckrey, and R. I. Al-Raoush. 2017. “Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand.” J. Geotech. Geoenviron. Eng. 143 (2): 04016097. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001601.
Alshibli, K. A., and S. Sture. 1999. “Sand shear band thickness measurements by digital imaging techniques.” J. Comput. Civ. Eng. 13 (2): 103–109. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(103).
Altaee, A., and B. H. Fellenius. 1994. “Physical modeling in sand.” Can. Geotech. J. 31 (3): 420–431. https://doi.org/10.1139/t94-049.
Altuhafi, F., C. O’Sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Arshad, M. I. 2014. “Experimental study of the displacements caused by cone penetration in sand.” Ph.D. thesis, Lyles School of Civil Engineering, Purdue Univ.
Arshad, M. I., F. S. Tehrani, M. Prezzi, and R. Salgado. 2014. “Experimental study of cone penetration in silica sand using digital image correlation.” Géotechnique 64 (7): 551–569. https://doi.org/10.1680/geot.13.P.179.
Bisht, V., R. Salgado, and M. Prezzi. 2021. “Material point method for cone penetration in clays.” J. Geotech. Geoenviron. Eng. 147 (12): 04021158. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002687.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Brandon, T. L., and G. W. Clough. 1991. “Methods of sample fabrication in the Virginia Tech calibration chamber.” In Proc., 1st Int. Symp. on Calibration Chamber Testing (ISOCCT1), edited by A. B. Huang, 119–133. Potsdam, NY: Elsevier.
Cabalar, A. F., K. Dulundu, and K. Tuncay. 2013. “Strength of various sands in triaxial and cyclic direct shear tests.” Eng. Geol. 156 (Apr): 92–102. https://doi.org/10.1016/j.enggeo.2013.01.011.
Calle, M. G. A. 2016. “Laboratory characterization of Ohio Gold Frac sand.” M.S. thesis, Lyles School of Civil Engineering, Purdue Univ.
Carraro, J. A. H., and M. Prezzi. 2008. “A new slurry-based method of preparation of specimens of sand containing fines.” Geotech. Test. J. 31 (1): 1–11. https://doi.org/10.1520/GTJ100207.
Cerato, A. B., and A. J. Lutenegger. 2006. “Bearing capacity of square and circular footings on a finite layer of granular soil underlain by a rigid base.” J. Geotech. Geoenviron. Eng. 132 (11): 1496–1501. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1496).
Chakraborty, T., and R. Salgado. 2010. “Dilatancy and shear strength of sand at low confining pressures.” J. Geotech. Geoenviron. Eng. 136 (3): 527–532. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000237.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Correlated Solutions. 2009. VIC-2D reference manual. Columbia, SC: Correlated Solutions.
Cresswell, A., M. E. Barton, and R. Brown. 1999. “Determining the maximum density of sands by pluviation.” Geotech. Test. J. 22 (4): 324–328. https://doi.org/10.1520/GTJ11245J.
Desrues, J., and E. Andò. 2015. “Strain localisation in granular media.” C.R. Phys. 16 (1): 26–36. https://doi.org/10.1016/j.crhy.2015.01.001.
Desrues, J., E. Andò, F. A. Mevoli Ando, L. Debove, and G. Viggiani. 2018. “How does strain localise in standard triaxial tests on sand: Revisiting the mechanism 20 years on.” Mech. Res. Commun. 92: 142–146. https://doi.org/10.1016/j.mechrescom.2018.08.007.
Evans, T. M. 2005. “Microscale physical and numerical investigations of shear banding in granular soils.” Ph.D. thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology.
Fellenius, B. H., and A. Altaee. 1994. “Stress and settlement of footings in sand.” In Vol. 2 of Proc., Conf. on Vertical and Horizontal Deformations for Foundations and Embankments, GSP 40, 1760–1773. Reston, VA: ASCE.
Finno, R. J., W. W. Harris, M. A. Mooney, and G. Viggiani. 1997. “Shear bands in plane strain compression of loose sand.” Géotechnique 47 (1): 149–165. https://doi.org/10.1680/geot.1997.47.1.149.
Galvis-Castro, A. C., R. D. Tovar-Valencia, R. Salgado, and M. Prezzi. 2019a. “Compressive and tensile shaft resistance of nondisplacement piles in sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002071.
Galvis-Castro, A. C., R. D. Tovar-Valencia, R. Salgado, and M. Prezzi. 2019b. “Effect of loading direction on the shaft resistance of jacked piles in dense sand.” Géotechnique 69 (1): 16–28. https://doi.org/10.1680/jgeot.17.P.046.
Ganju, E., A. C. Galvis-Castro, F. Janabi, M. Prezzi, and R. Salgado. 2021a. “Displacements, strains, and shear bands in deep and shallow penetration processes.” J. Geotech. Geoenviron. Eng. 147 (11): 04021135. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002631.
Ganju, E., F. Han, A. Castro, M. Prezzi, and R. Salgado. 2020. “Experimental study of crushing in cone penetration test in silica sand.” In Geo-Congress 2020: Modeling, Geomaterials, and Site Characterization, 132–141. Reston, VA: ASCE.
Ganju, E., M. Kilic, M. Prezzi, R. Salgado, N. Parab, and W. Chen. 2021b. “Effect of particle characteristics on the evolution of particle size, particle morphology, and fabric of sands loaded under uniaxial compression.” Acta Geotech. 16 (11): 3489–3516. https://doi.org/10.1007/s11440-021-01309-3.
Ghalehjough, B. K., S. Akbulut, and S. Çelik. 2018. “Effect of particle roundness and morphology on the shear failure mechanism of granular soil under strip footing.” Acta Geotech. Slov. 15 (1): 43–53. https://doi.org/10.18690/actageotechslov.15.1.43-53.2018.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2017. “Shaft and base resistance of non-displacement piles in sand.” Comput. Geotech. 83 (Mar): 184–197. https://doi.org/10.1016/j.compgeo.2016.11.006.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2019. “Axial resistance of nondisplacement pile groups in sand.” J. Geotech. Geoenviron. Eng. 145 (7): 04019027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002050.
Hansen, J. B. 1970. A revised and extended formula for bearing capacity. Copenhagen, Denmark: Danish Geotechnical Institute.
Harris, W. W., G. Viggiani, M. A. Mooney, and R. J. Finno. 1995. “Use of stereophotogrammetry to analyze the development of shear bands in sand.” Geotech. Test. J. 18 (4): 405–420. https://doi.org/10.1520/GTJ11016J.
Holtz, W. G., and H. J. Gibbs. 1956. “Triaxial shear tests on pervious gravelly soils.” J. Soil Mech. Found. Div. 82 (1): 1–22. https://doi.org/10.1061/JSFEAQ.0000004.
Janabi, F. H., V. A. Sakleshpur, M. Prezzi, and R. Salgado. 2022. “Strain influence diagrams for settlement estimation of square footings on layered sand.” J. Geotech. Geoenviron. Eng. 148 (5): 04022025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002770.
Kimura, T., O. Kusakabe, and K. Saitoh. 1985. “Geotechnical model tests of bearing capacity problems in a centrifuge.” Géotechnique 35 (1): 33–45. https://doi.org/10.1680/geot.1985.35.1.33.
Lade, P. V., and Q. Wang. 2001. “Analysis of shear banding in true triaxial tests on sand.” J. Eng. Mech. 127 (8): 762–768. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(762).
Lau, C. K. 1988. “Scale effects in tests on footings.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Cambridge.
Lee, J., J. Eun, M. Prezzi, and R. Salgado. 2008. “Strain influence diagrams for settlement estimation of both isolated and multiple footings in sand.” J. Geotech. Geoenviron. Eng. 134 (4): 417–427. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(417).
Lee, J., M. Prezzi, and R. Salgado. 2011. “Experimental investigation of the combined load response of model piles driven in sand.” Geotech. Test. J. 34 (6): 653–667. https://doi.org/10.1520/GTJ103269.
Lee, J., and R. Salgado. 2002. “Estimation of footing settlement in sand.” Int. J. Geomech. 2 (1): 1–28. https://doi.org/10.1061/(ASCE)1532-3641(2002)2:1(1).
Liu, J., and M. Iskander. 2004. “Adaptive cross correlation for imaging displacements in soils.” J. Comput. Civ. Eng. 18 (1): 46–57. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(46).
Loukidis, D., and R. Salgado. 2008. “Analysis of the shaft resistance of non-displacement piles in sand.” Géotechnique 58 (4): 283–296. https://doi.org/10.1680/geot.2008.58.4.283.
Loukidis, D., and R. Salgado. 2009. “Bearing capacity of strip and circular footings in sand using finite elements.” Comput. Geotech. 36 (5): 871–879. https://doi.org/10.1016/j.compgeo.2009.01.012.
Loukidis, D., and R. Salgado. 2011. “Effect of relative density and stress level on the bearing capacity of footings on sand.” Géotechnique 61 (2): 107–119. https://doi.org/10.1680/geot.8.P.150.3771.
Lyamin, A. V., R. Salgado, S. W. Sloan, and M. Prezzi. 2007. “Two- and three-dimensional bearing capacity of footings in sand.” Géotechnique 57 (8): 647–662. https://doi.org/10.1680/geot.2007.57.8.647.
Meyerhof, G. G. 1951. “The ultimate bearing capacity of foundations.” Géotechnique 2 (4): 301–332. https://doi.org/10.1680/geot.1951.2.4.301.
Meyerhof, G. G. 1953. “The bearing capacity of foundations under eccentric and inclined loads.” In Proc., 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, 440–445. Zurich, Switzerland: Organizing Committee.
Meyerhof, G. G. G. 1963. “Some recent research on the bearing capacity of foundations.” Can. Geotech. J. 1 (1): 16–26. https://doi.org/10.1139/t63-003.
Muhlhaus, H. B., and I. Vardoulakis. 1987. “The thickness of shear bands in granular materials.” Géotechnique 37 (3): 271–283. https://doi.org/10.1680/geot.1987.37.3.271.
Nakata, Y., M. Hyodo, Q. Hui, R. Orence, and N. Kikkawa. 2009. “Shear band development in sandy soil beneath strip footing using PIV.” In Proc., AIP Powders and Grains 2009: 6th Int. Conf. on Micromechanics of Granular Media, edited by M. Nakagawa and S. Luding, 157–160. College Park, MD: American Institute of Physics.
Oda, M., and H. Kazama. 1998. “Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils.” Géotechnique 48 (4): 465–481. https://doi.org/10.1680/geot.1998.48.4.465.
Pan, B., Z. Lu, and H. Xie. 2010. “Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation.” Opt. Lasers Eng. 48 (4): 469–477. https://doi.org/10.1016/j.optlaseng.2009.08.010.
Prandtl, L. 1920. “Über die härte plastischer körper.” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 74–85.
Presti Lo, D. C. F., S. Pedroni, and V. Crippa. 1992. “Maximum dry density of cohesionless soils by pluviation and by ASTM D 4253-83: A comparative study.” Geotech. Test. J. 15 (2): 180–189. https://doi.org/10.1520/GTJ10239J.
Rechenmacher, A. L. 2006. “Grain-scale processes governing shear band initiation and evolution in sands.” J. Mech. Phys. Solids 54 (1): 22–45. https://doi.org/10.1016/j.jmps.2005.08.009.
Rechenmacher, A. L., S. Abedi, O. Chupin, and A. D. Orlando. 2011. “Characterization of mesoscale instabilities in localized granular shear using digital image correlation.” Acta Geotech. 6 (4): 205–217. https://doi.org/10.1007/s11440-011-0147-2.
Reissner, H. 1924. “Zum erddruckproblem.” In Proc., 1st Int. Congress of Applied Mechanics, edited by C. B. Biezeno and J. M. Burgers, 295–311. Delft, Netherlands: J. Waltman.
Roscoe, K. 1970. “The influence of strains in soil mechanics.” Géotechnique 20 (2): 129–170. https://doi.org/10.1680/geot.1970.20.2.129.
Rousé, P. C., R. J. Fannin, and D. A. Shuttle. 2008. “Influence of roundness on the void ratio and strength of uniform sand.” Géotechnique 58 (3): 227–231. https://doi.org/10.1680/geot.2008.58.3.227.
Saada, A. S., L. Liang, J. L. Figueroa, and C. T. Cope. 1999. “Bifurcation and shear band propagation in sands.” Géotechnique 49 (3): 367–385. https://doi.org/10.1680/geot.1999.49.3.367.
Sakleshpur, V. A., M. Prezzi, R. Salgado, and M. Zaheer. 2021a. CPT-based geotechnical design manual, volume 2: CPT-based design of foundations (methods). West Lafayette, IN: Purdue Univ.
Sakleshpur, V. A., M. Prezzi, R. Salgado, and M. Zaheer. 2021b. CPT-based geotechnical design manual, volume 3: CPT-based design of foundations (example problems). West Lafayette, IN: Purdue Univ.
Salgado, R. 2020. “Forks in the road: Rethinking modeling decisions that defined the teaching and practice of geotechnical engineering.” In Proc., Int. Conf. on Geotechnical Engineering Education 2020 (GEE2020), edited by Calvello Pantazidou and Pinho Lopes, 1–17. London: International Society for Soil Mechanics and Geotechnical Engineering.
Salgado, R. 2022. The engineering of foundations, slopes, and retaining structures. 2nd ed. Boca Raton, FL: CRC Press.
Salgado, R., and V. Bisht. 2021. “Advances in the solution of geotechnical boundary-value problems.” Comput. Geotech. 138 (Oct): 104183. https://doi.org/10.1016/j.compgeo.2021.104183.
Scarpelli, G., and D. M. Wood. 1982. “Experimental observations of shear band patterns in direct shear tests.” In Proc., IUTAM Conf. on Deformation and Failure of Granular Material, edited by P. A. Vermeer and H. J. Luge, 473–484. Rotterdam, Netherlands: A. A. Balkema.
Schmertmann, J. H. 1970. “Static cone to compute static settlement over sand.” J. Soil Mech. Found. Div. 96 (3): 1011–1043. https://doi.org/10.1061/JSFEAQ.0001418.
Schmertmann, J. H., J. P. Hartman, and P. R. Brown. 1978. “Improved strain influence factor diagrams.” J. Geotech. Eng. Div. 104 (8): 1131–1135. https://doi.org/10.1061/AJGEB6.0000683.
Shin, H., and J. C. Santamarina. 2013. “Role of particle angularity on the mechanical behavior of granular mixtures.” J. Geotech. Geoenviron. Eng. 139 (2): 353–355. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000768.
Sutton, M. A., J.-J. Orteu, and H. W. Schreier. 2009. Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. 1st ed. New York: Springer.
Take, W. A. 2015. “Thirty-sixth canadian geotechnical colloquium: Advances in visualization of geotechnical processes through digital image correlation.” Can. Geotech. J. 52 (9): 1199–1220. https://doi.org/10.1139/cgj-2014-0080.
Tatsuoka, F., M. Okahara, T. Tanaka, K. Tani, T. Morimoto, and M. S. A. Siddiquee. 1991. “Progressive failure and particle size effect in bearing capacity of footing on sand.” In Proc., Geotechnical Engineering Congress, 788–802. Reston, VA: ASCE.
Tehrani, F. S., M. I. Arshad, M. Prezzi, and R. Salgado. 2018. “Physical modeling of cone penetration in layered sand.” J. Geotech. Geoenviron. Eng. 144 (1): 04017101. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001809.
Tehrani, F. S., F. Han, R. Salgado, and M. Prezzi. 2017. “Laboratory study of the effect of pile surface roughness on the response of soil and non-displacement piles.” In Proc., Geotechincal Frontiers, edited by Thomas L. Brandon and Richard J. Valentine, 256–264. Reston, VA: ASCE.
Tehrani, F. S., F. Han, R. Salgado, M. Prezzi, R. D. Tovar, and A. G. Castro. 2016. “Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand.” Géotechnique 66 (5): 386–400. https://doi.org/10.1680/jgeot.15.P.007.
Teng, Y., S. Gourvenec, and S. Stanier. 2017. “Analysis of failure mechanisms in silica and carbonate sands beneath a strip foundation under vertical loading.” In Proc., 36th Int. Conf. on Ocean, Offshore and Arctic Engineering (OMAE2017). New York: ASME.
Teng, Y., S. A. Stanier, and S. M. Gourvenec. 2020. “Mechanisms beneath rectangular shallow foundations on sands: Vertical loading.” Géotechnique 70 (12): 1083–1093. https://doi.org/10.1680/jgeot.18.P.058.
Terzaghi, K. 1943. Theoretical soil mechanics. New York: Wiley.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2018a. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2021. “Effect of base geometry on the resistance of model piles in sand.” J. Geotech. Geoenviron. Eng. 147 (3): 04020180. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002472.
Tovar-Valencia, R. D., A. C. Galvis-Castro, M. Prezzi, and R. Salgado. 2018b. “Short-term setup of jacked piles in a calibration chamber.” J. Geotech. Geoenviron. Eng. 144 (12): 04018092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001984.
Toyosawa, Y., K. Itoh, N. Kikkawa, J. J. Yang, and F. Liu. 2013. “Influence of model footing diameter and embedded depth on particle size effect in centrifugal bearing capacity tests.” Soil Found. 53 (2): 349–356. https://doi.org/10.1016/j.sandf.2012.11.027.
Ullah, S. N., Y. Hu, S. Stanier, and D. White. 2017. “Lateral boundary effects in centrifuge foundation tests.” Int. J. Phys. Modell. Geotech. 17 (3): 144–160. https://doi.org/10.1680/jphmg.15.00034.
Valore, C., M. Ziccarelli, and S. R. Muscolino. 2017. “The bearing capacity of footings on sand with a weak layer.” Geotech. Res. 4 (1): 12–29. https://doi.org/10.1680/jgere.16.00020.
Vesic, A. S. 1973. “Analysis of ultimate loads of shallow foundations.” J. Soil Mech. Found. Div. 99 (1): 45–73. https://doi.org/10.1061/JSFEAQ.0001846.
Wadell, H. 1932. “Volume, shape, and roundness of rock particles.” J. Geol. 40 (5): 443–451. https://doi.org/10.1086/623964.
Wadell, H. 1933. “Sphericity and roundness of rock particles.” J. Geol. 41 (3): 310–331. https://doi.org/10.1086/624040.
White, D. J., and M. D. Bolton. 2004. “Displacement and strain paths during plane-strain model pile installation in sand.” Géotechnique 54 (6): 375–397. https://doi.org/10.1680/geot.2004.54.6.375.
Williams, K. D. 2016. “Particle scale dynamics of coarse granular material.” M.S. thesis, Dept. of Geological Engineering, Univ. of Wisconsin-Madison.
Woo, S. I., and R. Salgado. 2018. “Simulation of penetration of a foundation element in Tresca soil using the generalized interpolation material point method (GIMP).” Comput. Geotech. 94 (Feb): 106–117. https://doi.org/10.1016/j.compgeo.2017.08.007.
Yoshida, T. 1994. “Strain localization and shear banding during failure of sands.” Ph.D. thesis, Dept. of Civil Engineering, Univ. of Tokyo.
Zheng, J., and R. D. Hryciw. 2015. “Traditional soil particle sphericity, roundness and surface roughness by computational geometry.” Géotechnique 65 (6): 494–506. https://doi.org/10.1680/geot.14.P.192.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 149Issue 8August 2023

History

Received: Sep 9, 2022
Accepted: Mar 13, 2023
Published online: May 17, 2023
Published in print: Aug 1, 2023
Discussion open until: Oct 17, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907 (corresponding author). ORCID: https://orcid.org/0000-0001-7463-9120. Email: [email protected]
Ph.D. Candidate, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. ORCID: https://orcid.org/0000-0003-1335-2921. Email: [email protected]
Monica Prezzi, M.ASCE [email protected]
Professor of Civil Engineering, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]
Rodrigo Salgado, F.ASCE [email protected]
Charles Pankow Professor in Civil Engineering, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Footing Geometry and Embedment on the Bearing Capacity and Collapse Mechanism of Shallow Foundations in Sand, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11802, 150, 6, (2024).
  • Load Response and Soil Displacement Field for a Vertically Loaded Strip Footing on Sand Underlain by a Stiff Base, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11378, 149, 11, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share