Abstract

An accurate estimation of the jacking forces likely to be experienced during microtunnelling is a key design concern for the structural capacity of pipe segments, the location of intermediate jacking stations, and the efficacy of the pipe-jacking project itself. This paper presents a Bayesian updating approach for the prediction of jacking forces during microtunnelling. The proposed framework was applied to two pipe-jacking case histories completed in the United Kingdom: a 275-m drive in silt and silty sand, and a 1,237-m drive in mudstone. To benchmark the Bayesian predictions, a classical optimization technique, namely genetic algorithms, is also considered. The results show that predictions of pipe-jacking forces using the prior best estimate of model input parameters provided a significant overprediction of the monitored jacking forces for both drives. This highlights the difficulty of capturing the complex geotechnical conditions during tunnelling within prescriptive design approaches and the importance of robust back-analysis techniques. Bayesian updating was shown to be a very effective option, in which significant improvements in the mean predictions and associated variance of the total jacking force are obtained as more data are acquired from the drive.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the Royal Academy of Engineering under the Research Fellowship Scheme and the Engineering and Physical Sciences Research Council (Grant No. EP/T006900/1).

References

ASCE. 2001. Standard practice for direct design of precast concrete pipe for jacking in trenchless construction. Reston, VA: ASCE.
ASTM. 2009. Standard guide for use of maxi-horizontal directional drilling for placement of polyethylene pipe or conduit under obstacles including river crossings. ASTM F1962. West Conshohocken, PA: ASTM.
Atalah, A. L., D. Bennett, and T. Iseley. 1994. “Estimating the required jacking force.” In Proc., Annual Conf. of the North American Society of Trenchless Technology. Bowling Green, OH: ScholarWorks@BGSU.
Auld, F. A. 1982. “Determination of pipe jacking loads.” In Proc., Pipe Jacking Association. London: Pipe Jacking Association.
Bai, X.-D., W.-D. Cheng, B. B. Sheil, G. Li. 2021. “Pipejacking clogging detection in soft alluvial deposits using machine learning algorithms.” Tunnelling Underground Space Technol. 113: 103908. https://doi.org/10.1016/j.tust.2021.103908.
Barla, M., and M. Camusso. 2013. “A method to design microtunnelling installations in randomly cemented Torino alluvial soil.” Tunnelling Underground Space Technol. 33 (Jan): 73–81. https://doi.org/10.1016/j.tust.2012.09.002.
Betancourt, M. 2017. A conceptual introduction to Hamiltonian Monte Carlo. New York: Columbia Univ.
BSI (British Standards Institution). 2009. Gas supply system-pipelines for maximum operating pressure over 16 bar-functional requirements. BS EN:1594-09. Brussels, Belgium: BSI.
Chan, C. M., L. M. Zhang, and J. T. Ng. 2009. “Optimization of pile groups using hybrid genetic algorithms.” J. Geotech. Geoenviron. Eng. 135 (4): 497–505. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:4(497).
Chapman, D. N., and Y. Ichioka. 1999. “Prediction of jacking forces for microtunneling operations.” Trenchless Technol. Res. 14 (1): 31–41.
Cheng, C. Y., G. R. Dasari, Y. K. Chow, and C. F. Leung. 2007. “Finite element analysis of tunnel–soil–pile interaction using displacement controlled model.” Tunnelling Underground Space Technol. 22 (4): 450–466. https://doi.org/10.1016/j.tust.2006.08.002.
Cheng, W.-C., X.-D. Bai, B. B. Sheil, G. Li, and F. Wang. 2020. “Identifying characteristics of pipejacking parameters to assess geological conditions using optimisation algorithm-based support vector machines.” Tunnelling Underground Space Technol. 106 (21): 103592. https://doi.org/10.1016/j.tust.2020.103592.
Cheng, W.-C., J. C. Ni, A. Arulrajah, and H.-W. Huang. 2018. “A simple approach for characterising tunnel bore conditions based upon pipe-jacking data.” Tunnelling Underground Space Technol. 71 (Jan): 494–504. https://doi.org/10.1016/j.tust.2017.10.002.
Cheng, W.-C., J. C. Ni, J. S.-L. Shen, and H.-W. Huang. 2017. “Investigation into factors affecting jacking force: A case study.” Proc. Inst. Civ. Eng.Geotech. Eng. 170 (4): 322–334.
Choo, C. S., and D. E. L. Ong. 2015. “Evaluation of pipe-jacking forces based on direct shear testing of reconstituted tunneling rock spoils.” J. Geotech. Geoenviron. Eng. 141 (10): 04015044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001348.
CPAA (Concrete Pipe Association of Australasia). 2013. CPAA design manual: Jacking design guidelines. Gordon, Australia: CPAA.
FSTT (French Society for Trenchless Technology). 2006. Microtunneling and horizontal drilling: Recommendations. Tangier, Morocco: FSTT.
Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2013. Bayesian data analysis. London: CRC Press.
German ATV Rules and Standards. 1990. Structural calculation of driven pipes. ATV-A 161 E-90. Hennef, Germany: German ATV Rules and Standards.
Giudici, P., G. H. Givens, and B. K. Mallick. 2013. Wiley series in computational statistics. New York: Wiley.
Goldberg, D. E. 1989. Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing.
Greene, B. H., and A. Harkness. 1995. “Installation of a large diameter reinforced concrete pipe by jacking methods.” Environ. Eng. Geosci. 1 (4): 518–523. https://doi.org/10.2113/gseegeosci.I.4.518.
Harr, M. E. 1984. Reliability-based design in civil engineering. Raleigh, NC: North Carolina State Univ.
Holland, J. H. 1992. “Genetic algorithms.” Sci. Am. 267 (1): 66–72. https://doi.org/10.1038/scientificamerican0792-66.
Hsiao, E. C., M. Schuster, C. H. Juang, and G. T. Kung. 2008. “Reliability analysis of excavation-induced ground settlement for building serviceability evaluation.” J. Geotech. Geoenviron. Eng. 134 (10): 1448–1458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1448).
Jaynes, E. T., and G. L. Bretthorst. 2003. Probability theory: The logic of science. Cambridge, UK: Cambridge University Press.
Ji, X., P. Ni, and M. Barla. 2019a. “Analysis of jacking forces during pipe jacking in granular materials using particle methods.” Underground Space 4 (4): 277–288. https://doi.org/10.1016/j.undsp.2019.03.002.
Ji, X., W. Zhao, P. Ni, M. Barla, J. Han, P. Jia, Y. Chen, and C. Zhang. 2019b. “A method to estimate the jacking force for pipe jacking in sandy soils.” Tunnelling Underground Space Technol. 90 (2): 119–130. https://doi.org/10.1016/j.tust.2019.04.002.
Jin, Y., G. Biscontin, and P. Gardoni. 2018. “A Bayesian definition of ‘most probable’ parameters.” Geotech. Res. 5 (3): 130–142. https://doi.org/10.1680/jgere.18.00027.
JMTA (Japan Micro Tunneling Association). 2000. Pipe-jacking application. Tokyo: JMTA.
Juang, C. H., Z. Luo, S. Atamturktur, and H. W. Huang. 2013. “Bayesian updating of soil parameters for braced excavations using field observations.” J. Geotech. Geoenviron. Eng. 139 (3): 395–406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000782.
Juang, C. H., and L. Wang. 2013. “Reliability-based robust geotechnical design of spread foundations using multi-objective genetic algorithm.” Comput. Geotech. 2013: 96–106.
Kelly, R., and J. Huang. 2015. “Bayesian updating for one-dimensional consolidation measurements.” Can. Geotech. J. 52 (9): 1318–1330. https://doi.org/10.1139/cgj-2014-0338.
Kulhawy, F. H. 1992. “On the evaluation of static soil properties.” ASCE Geotech. 31: 95–115.
Li, J., P. Hu, M. Uzielli, and M. J. Cassidy. 2018. “Bayesian prediction of peak resistance of a spudcan penetrating sand-over-clay.” Géotechnique 68 (10): 905–917. https://doi.org/10.1680/jgeot.17.P.154.
Li, X. Y., L. M. Zhang, S. H. Jiang, D. Q. Li, and C. B. Zhou. 2016. “Assessment of slope stability in the monitoring parameter space.” J. Geotech. Geoenviron. Eng. 142 (7): 04016029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001490.
Lumb, P. 1966. “The variability of natural soils.” Can. Geotech. J. 3 (2): 74–97. https://doi.org/10.1139/t66-009.
Marshall, M. A. 1998. Pipe-jacked tunnelling: Jacking loads and ground movements. Oxford, UK: Univ. of Oxford.
Meskele, T., and A. W. Stuedlein. 2015a. “Drivability analyses for pipe-ramming installations.” J. Geotech. Geoenviron. Eng. 141 (3): 04014107. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001232.
Meskele, T., and A. W. Stuedlein. 2015b. “Static soil resistance to pipe ramming in granular soils.” J. Geotech. Geoenviron. Eng. 141 (3): 04014108. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001237.
Milligan, G. W. E., and P. Norris. 1999. “Pipe–soil interaction during pipe jacking.” Proc. Inst. Civ. Eng. Geotech. Eng. 137 (1): 27–44. https://doi.org/10.1680/gt.1999.370104.
Namli, M., and E. Guler. 2017. “Effect of bentonite slurry pressure on interface friction of pipe jacking.” J. Pipeline Syst. Eng. Pract. 8 (2): 04016016. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000255.
Norris, P. 1992. The behaviour of jacked concrete pipes during site installation. Oxford, UK: Univ. of Oxford.
O’Dwyer, K. G., B. A. McCabe, and B. B. Sheil. 2019. “Interpretation of pipe-jacking and lubrication records for drives in silty soil.” Underground Space 5 (3): 199–209.
O’Dwyer, K. G., B. A. McCabe, B. B. Sheil, and D. P. Hernon. 2018. Blackpool South Strategy Project: Analysis of pipe jacking records. Dublin, Ireland: Civil Engineering Research in Ireland.
Ong, D. E. L., and C. S. Choo. 2016. “Back-analysis and finite element modeling of jacking forces in weathered rocks.” Tunnelling Underground Space Technol. 51 (Jan): 1–10. https://doi.org/10.1016/j.tust.2015.10.014.
Peck, R. B. 1969. “Advantages and limitations of the observational method in applied soil mechanics.” Géotechnique 19 (2): 171–187. https://doi.org/10.1680/geot.1969.19.2.171.
Pellet-Beaucour, A.-L., and R. Kastner. 2002. “Experimental and analytical study of friction forces during microtunneling operations.” Tunnelling Underground Space Technol. 17 (1): 83–97. https://doi.org/10.1016/S0886-7798(01)00044-X.
People’s Republic of China. 2002. Structural design code for pipeline of water supply and waste water engineering. GB 50332-02. Beijing: Inspection and Quarantine of the People’s Republic of China.
Phillips, B. M., R. Royston, B. B. Sheil, and B. W. Byrne. 2019. “Instrumentation and monitoring of a concrete jacking pipe.” In Proc., Int. Conf. on Smart Infrastructure and Construction 2019 (ICSIC) Driving Data-Informed Decision-Making, 457–462. London: ICE Publishing.
PJA (Pipe Jacking Association). 1995. Guide to best practice for the installation of pipe jacks and microtunnels. London: PJA.
Qi, X.-H., and W.-H. Zhou. 2017. “An efficient probabilistic back-analysis method for braced excavations using wall deflection data at multiple points.” Comput. Geotech. 85 (12): 186–198. https://doi.org/10.1016/j.compgeo.2016.12.032.
Reilly, C. C., and T. L. L. Orr. 2012. “Analysis of interface friction effects on microtunnel jacking forces in coarse-grained soils.” In Proc., Bridge and Concrete Research in Ireland Conf. 121–126. Dublin: Civil Engineering Research Association of Ireland.
Ripley, K. J. 1989. “The performance of jacked pipes.” Ph.D. thesis. Dept. of Engineering Science, Univ. of Oxford.
Royston, R., B. M. Phillips, B. B. Sheil, and B. W. Byrne. 2016. “Bearing capacity beneath tapered blades of open dug caissons in sand.” In Proc., Civil Engineering Research in Ireland 2016 Conf., 473–478. Galway, Ireland: Civil Engineering Research Association of Ireland.
Royston, R., B. B. Sheil, and B. W. Byrne. 2020a. “Monitoring the construction of a large-diameter caisson in sand.” Proc. Inst. Civ. Eng. 1–17. https://doi.org/10.1680/jgeen.19.00266.
Royston, R., B. B. Sheil, and B. W. Byrne. 2020b. “Undrained bearing capacity of the cutting face of large-diameter caissons.” Géotechnique 2020 (1): 210. https://doi.org/10.1680/jgeot.20.P.210.
Shah, D. D., S. K. Jain, and R. W. Prybella Jr. 1993. “Performance of remotely controlled fiberglass pipe jacking system.” J. Constr. Eng. Manage. 119 (4): 832–851. https://doi.org/10.1061/(ASCE)0733-9364(1993)119:4(832).
Sheil, B. 2020. “Prediction of microtunnelling jacking forces using a probabilistic observational approach.” Tunnelling Underground Space Technol. 109 (12): 103749. https://doi.org/10.1016/j.tust.2020.103749.
Sheil, B. B. 2021. “Hybrid framework for forecasting circular excavation collapse: Combining physics-based and data-driven modeling.” J. Geotech. Geoenviron. Eng. 147 (12): 04021140. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002683.
Sheil, B. B., B. Curran, and B. A. McCabe. 2016. “Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock.” Tunnelling Underground Space Technol. 51 (Jan): 326–337. https://doi.org/10.1016/j.tust.2015.10.019.
Sheil, B. B., S. K. Suryasentana, and W.-C. Cheng. 2020a. “Assessment of anomaly detection methods applied to microtunneling.” J. Geotech. Geoenviron. Eng. 146 (9): 04020094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002326.
Sheil, B. B., S. K. Suryasentana, M. A. Mooney, and H. Zhu. 2020b. “Machine learning to inform tunnelling operations: Recent advances and future trends.” Proc. Inst. Civ. Eng. 1–22.
Shou, K., J. Yen, and M. Liu. 2010. “On the frictional property of lubricants and its impact on jacking force and soil–pipe interaction of pipe-jacking.” Tunnelling Underground Space Technol. 25 (4): 469–477. https://doi.org/10.1016/j.tust.2010.02.009.
Shou, K. J., and J. M. Jiang. 2010. “A study of jacking force for a curved pipejacking.” J. Rock Mech. Geotech. Eng. 2 (4): 298–304.
Sofianos, A. I., P. Loukas, and C. Chantzakos. 2004. “Pipe jacking a sewer under Athens.” Tunneling Underground Space Technol. 19 (2): 83–97.
Spross, J., and F. Johansson. 2017. “When is the observational method in geotechnical engineering favourable?” Struct. Saf. 66 (Apr): 17–26. https://doi.org/10.1016/j.strusafe.2017.01.006.
Staheli, K. 2006. Jacking force prediction: An interface friction approach based onpipe surface roughness. Atlanta: Georgia Institute of Technology.
Stein, D., K. Möllers, and R. Bielecki. 1989. Microtunnelling. New York: Wiley-VCH.
Sterling, R. L. 2020. “Developments and research directions in pipe jacking and microtunneling.” Underground Space 5 (1): 1–19. https://doi.org/10.1016/j.undsp.2018.09.001.
Sun, J., J. Li, and Q. Liu. 2008. “Search for critical slip surface in slope stability analysis by spline-based GA method.” J. Geotech. Geoenviron. Eng. 134 (2): 252–256. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:2(252).
Wang, L., Z. Luo, J. H. Xiao, and C. H. Juang. 2014. “Probabilistic inverse analysis of excavation-induced wall and ground responses for assessing damage potential of adjacent buildings.” Geotech. Geol. Eng. 32 (2): 273–285. https://doi.org/10.1007/s10706-013-9709-4.
Wang, L., N. Ravichandran, and C. H. Juang. 2012. “Bayesian updating of KJHH model for prediction of maximum ground settlement in braced excavations using centrifuge data.” Comput. Geotech. 44 (Jan): 1–8. https://doi.org/10.1016/j.compgeo.2012.03.003.
Wang, Y., S.-K. Au, and Z. J. Cao. 2010. “Bayesian approach for probabilistic characterization of sand friction angles.” Eng. Geol. 114 (3–4): 354–363. https://doi.org/10.1016/j.enggeo.2010.05.013.
Whittle, A. J., Y. M. A. Hashash, and R. V. Whitman. 1993. “Analysis of deep excavations in Boston.” J. Geotech. Eng. 119 (1): 69–90. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(69).
Xu, J., and Y. R. Zheng. 2001. “Random back analysis of field geotechnical parameter by response surface method.” Rock Soil Mech. 22 (2): 167–170.
Xue, J.-F., and K. Gavin. 2007. “Simultaneous determination of critical slip surface and reliability index for slopes.” J. Geotech. Geoenviron. Eng. 133 (7): 878–886. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(878).
Yang, C. X., Y. H. Wu, T. Hon, and X.-T. Feng. 2011. “Application of extended Kalman filter to back analysis of the natural stress state accounting for measuring uncertainties.” Int. J. Numer. Anal. Meth. Geomech. 35 (6): 694–712. https://doi.org/10.1002/nag.920.
Ye, Y., L. Peng, Y. Zhou, W. Yang, C. Shi, and Y. Lin. 2020. “Prediction of friction resistance for slurry pipe jacking.” Appl. Sci. 10 (1): 207. https://doi.org/10.3390/app10010207.
Yen, J., and K. Shou. 2015. “Numerical simulation for the estimation the jacking force of pipe jacking.” Tunnelling Underground Space Technol. 49 (2): 218–229. https://doi.org/10.1016/j.tust.2015.04.018.
Yin, Z.-Y., Y.-F. Jin, J. S. Shen, and P.-Y. Hicher. 2018. “Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement.” Int. J. Numer. Anal. Methods Geomech. 42 (1): 70–94. https://doi.org/10.1002/nag.2714.
Zhang, J., W. H. Tang, and L. M. Zhang. 2010a. “Efficient probabilistic back-analysis of slope stability model parameters.” J. Geotech. Geoenviron. Eng. 136 (1): 99–109. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000205.
Zhang, J., L. M. Zhang, and W. H. Tang. 2009a. “Bayesian framework for characterizing geotechnical model uncertainty.” J. Geotech. Geoenviron. Eng. 135 (7): 932–940. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000018.
Zhang, L. L., W. H. Tang, and L. M. Zhang. 2009b. “Bayesian model calibration using geotechnical centrifuge tests.” J. Geotech. Geoenviron. Eng. 135 (2): 291–299. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:2(291).
Zhang, L. L., J. Zhang, L. M. Zhang, and W. H. Tang. 2010b. “Back analysis of slope failure with Markov chain Monte Carlo simulation.” Comput. Geotech. 37 (7–8): 905–912. https://doi.org/10.1016/j.compgeo.2010.07.009.
Zhang, P., S. S. Behbahani, B. Ma, T. Iseley, and L. Tan. 2018. “A jacking force study of curved steel pipe roof in Gongbei tunnel: Calculation review and monitoring data analysis.” Tunnelling Underground Space Technol. 72 (2): 305–322. https://doi.org/10.1016/j.tust.2017.12.016.
Zheng, D., J. Huang, D.-Q. Li, R. Kelly, and S. W. Sloan. 2018. “Embankment prediction using testing data and monitored behaviour: A Bayesian updating approach.” Comput. Geotech. 93 (2): 150–162. https://doi.org/10.1016/j.compgeo.2017.05.003.
Zhou, S., Y. Wang, and X. Huang. 2009. “Experimental study on the effect of injecting slurry inside a jacking pipe tunnel in silt stratum.” Tunnelling Underground Space Technol. 24 (4): 466–471. https://doi.org/10.1016/j.tust.2008.11.003.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 1January 2022

History

Received: Aug 31, 2020
Accepted: Jun 17, 2021
Published online: Oct 27, 2021
Published in print: Jan 1, 2022
Discussion open until: Mar 27, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Royal Academy of Engineering Research Fellow, Dept. of Engineering Science, Univ. of Oxford, Oxford OX1 3PJ, UK (corresponding author). ORCID: https://orcid.org/0000-0002-1462-1401. Email: [email protected]
Stephen K. Suryasentana [email protected]
Chancellor’s Fellow (Lecturer), Dept. of Civil and Environmental Engineering, Univ. of Strathclyde, Glasgow G11XJ, UK. Email: [email protected]
DPhil Candidate, Dept. of Engineering Science, Univ. of Oxford, Oxford OX1 3PJ, UK. ORCID: https://orcid.org/0000-0002-6991-4316. Email: [email protected]
Bryn M. Phillips [email protected]
DPhil Candidate, Dept. of Engineering Science, Univ. of Oxford, Oxford OX1 3PJ, UK; Engineer, Ward and Burke Construction Ltd., Unit N, Bourne End Business Park, Cores End Rd., Bourne End, Bucks SL8 5AS, UK. Email: [email protected]
Professor, School of Civil Engineering, Xi’an Univ. of Architecture and Technology, Xi’an 710055, China; Professor, Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi’an 710055, China. ORCID: https://orcid.org/0000-0002-1902-7815. Email: [email protected]
Chair Professor of Geotechnical Engineering, Director of Geotechnical Centrifuge Facility, Dept. of Civil and Environmental Engineering, Hong Kong Univ. of Science and Technology, Clear Water Bay 87P8+H5, Hong Kong. ORCID: https://orcid.org/0000-0001-7208-5515. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Practical Approach for Data-Efficient Metamodeling and Real-Time Modeling of Monopiles Using Physics-Informed Multifidelity Data Fusion, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-12395, 150, 8, (2024).
  • Formulation optimization and performance analysis of the thixotropic slurry for large-section rectangular pipe jacking in anhydrous sand, Construction and Building Materials, 10.1016/j.conbuildmat.2022.129380, 357, (129380), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share