Technical Papers
Jun 8, 2021

Analytical Solutions for General Two-Wedge Stability

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 8

Abstract

A force-based limit equilibrium analysis is presented for the stability of a general two-dimensional, two-wedge sliding mass of soil, including a vertical or nonvertical wedge interface. The analysis is conducted using three failure planes and can accommodate variable conditions for wedge geometry, pore pressure, shear strength parameters, reinforcement, applied loads, and pseudostatic seismic coefficients. A constant factor of safety is assumed for each failure plane and reinforcement element, although this assumption can be relaxed through selection of strength parameters. The factor of safety is obtained analytically and requires solution for the roots of a polynomial equation. Verification checks show exact agreement with existing solutions for simplified conditions, including Mononobe–Okabe dynamic active force. Numeric examples are provided to demonstrate the method and illustrate the importance of several parameters for stability of a landfill bottom liner system and reinforced soil retaining wall. The analytical solutions take compact form, provide insight for the two-wedge method, and offer good capability to tailor conditions for applications that can be suitably characterized by wedge failure.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abu-Hejleh, N., J. G. Zornberg, T. Wang, and J. Watcharamonthein. 2002. “Monitored displacements of unique geosynthetic-reinforced soil bridge abutments.” Geosynth. Int. 9 (1): 71–95. https://doi.org/10.1680/gein.9.0211.
Allen, T. M., and R. J. Bathurst. 2013. “Comparison of working stress and limit equilbirium behavior of reinforced soil walls.” In Proc., Geo-Congress 2013, Geotechnical Special Publication 230, 500–514. Reston, VA: ASCE. https://doi.org/10.1061/9780784412770.033.
Allen, T. M., and R. J. Bathurst. 2018. “Application of the simplified stiffness method to design of reinforced soil walls.” J. Geotech. Geoenviron. Eng. 144 (5): 13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001874.
Bathurst, R. J., and Z. Cai. 1995. “Pseudo-static seismic analysis of geosynthetic-reinforced segmental retaining walls.” Geosynth. Int. 2 (5): 787–830. https://doi.org/10.1680/gein.2.0037.
Bathurst, R. J., and K. Hatami. 1998. “Seismic response analysis of a geosynthetic-reinforced soil retaining wall.” Geosynth. Int. 5 (1–2): 127–166. https://doi.org/10.1680/gein.5.0117.
Bathurst, R. J., K. Hatami, and M. C. Alfaro. 2012. “Geosynthetic-reinforced soil walls and slopes: Seismic aspects.” Chap. 16, Handbook of geosynthetic engineering, 2nd ed., 317–363. London: ICE Publishing.
Bathurst, R. J., D. Walters, N. Vlachopoulos, P. Burgess, and T. M. Allen. 2000. “Full scale testing of geosynthetic reinforced walls.” In Proc., GeoDenver 2000, 201–217. Reston, VA: ASCE. https://doi.org/10.1061/40515(291)14.
Bishop, A. W. 1955. “The use of the slip circle in the stability analysis of slopes.” Géotechnique 5 (1): 7–17. https://doi.org/10.1680/geot.1955.5.1.7.
Blatz, J. A., and R. J. Bathurst. 2003. “Limit equilibrium analysis of large-scale reinforced and unreinforced embankments loaded by a strip footing.” Can. Geotech. J. 40 (6): 1084–1092. https://doi.org/10.1139/t03-053.
Bonaparte, R., and G. R. Schmertmann. 1988. “Reinforcement extensibility in reinforced soil wall design.” In Vol. 147 of The application of polymeric reinforcement in soil retaining structures, edited by P. M. Jarrett and A. McGown, 409–457. Dordrecht: Springer. https://doi.org/10.1007/978-94-009-1405-6_16.
Bonaparte, R., G. R. Schmertmann, and N. D. Williams. 1986. “Seismic design of slopes reinforced with geogrids and geotextiles.” In Proc., 3rd Int. Conf. on Geotextiles, 273–278. Austin, TX: International Geosynthetics Society.
Bray, J. D., and T. Travasarou. 2009. “Pseudostatic coefficient for use in simplified seismic slope stability evaluation.” J. Geotech. Geoenviron. Eng. 135 (9): 1336–1340. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000012.
Coulomb, C. A. 1776. “Essai sur une application des régles des maximis et minimis á quelques problémes de statique relatifs á l’architecture.” Mém. Acad. Roy. Pres. Divers Savants. 7: 343–387.
Culmann, K. 1866. Die graphische statik. Zurich, Switzerland: Meyer & Zeller (A. Reimann).
Dobie, M. J. D., and P. F. McCombie. 2015. “Reinforced soil design using a two-part wedge mechanism: Justification and evidence.” In Proc., 16th European Conf. on Soil Mechanics and Geotechnical Engineering, 1409–1414. London: ICE Publishing.
Duncan, J. M. 1996. “State of the art: Limit equilibrium and finite-element analysis of slopes.” J. Geotech. Eng. 122 (7): 577–596. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:7(577).
Duncan, J. M., and S. G. Wright. 1980. “The accuracy of equilibrium methods of slope stability analysis.” Eng. Geol. 16 (1): 5–17. https://doi.org/10.1016/0013-7952(80)90003-4.
Duncan, J. M., S. G. Wright, and T. L. Brandon. 2014. Soil strength and slope stability. 2nd ed., 336. New York: Wiley.
Eid, H. T., T. D. Stark, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397).
El-Emam, M. M., R. J. Bathurst, and K. Hatami. 2004. “Numerical modeling of reinforced soil retaining walls subjected to base acceleration.” In Proc., 13th World Conf. on Earthquake Engineering, 15. Tokyo: International Association for Earthquake Engineering.
Fellenius, W. 1936. “Calculation of the stability of earth dams.” In Vol. 4 of Proc., Transactions of the 2nd Congress on Large Dams, Int. Commission on Large Dams of the World Power Conf., 445–462. Washington, DC: International Commission on Large Dams.
Filz, G. M., J. J. B. Esterhuizen, and J. M. Duncan. 2001. “Progressive failure of lined waste impoundments.” J. Geotech. Geoenviron. Eng. 127 (10): 841–848. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(841).
Fox, P. J. 2004. “Analytical solutions for stability of slurry trench.” J. Geotech. Geoenviron. Eng. 130 (7): 749–758. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(749).
Français, J. F. 1820. Recherches sur la poussée des terres sur la forme et les dimensions des murs de revetment et sur les talus d’excavation. Paris: Français.
Gässler, G., and G. Gudehus. 1981. “Soil nailing–some aspects of a new technique.” In Vol. 3 of Proc., 10th Int. Conf. on Soil Mechanics and Foundation Engineering, 665–670. Rotterdam, Netherlands: A.A. Balkema.
Gilboy, G. 1934. “Mechanics of hydraulically filled dams.” J. Boston Soc. Civ. Eng. 20 (7): 185–203.
Giroud, J. P., and C. Ah-Line. 1984. “Design of earth and concrete covers for geomembranes.” In Proc., Int. Conf. on Geomembranes, Denver, CO, 487–492. Saint Paul, MN: Industrial Fabrics Association International Publishers.
Giroud, J. P., N. D. Williams, T. Pelte, and J. F. Beech. 1995. “Stability of geosynthetic-soil layered systems on slopes.” Geosynth. Int. 2 (6): 1115–1148. https://doi.org/10.1680/gein.2.0048.
Griffiths, D. V., and P. A. Lane. 1999. “Slope stability analysis by finite elements.” Géotechnique 49 (3): 387–403. https://doi.org/10.1680/geot.1999.49.3.387.
Hong, Y.-S., R.-H. Chen, C.-S. Wu, and J.-R. Chen. 2005. “Shaking table tests and stability analysis of steep nailed slopes.” Can. Geotech. J. 42 (5): 1264–1279. https://doi.org/10.1139/t05-055.
Horii, K., H. Kishida, M. Tateyama, and F. Tatsuoka. 1994. “Computerized design method for geosynthetic-reinforced soil retaining walls for railway embankments.” In Recent case histories of permanent geosynthetic-reinforced soil retaining walls, edited by F. Tatsuoka and D. Leshchinsky, 205–218. Rotterdam, Netherlands: A.A. Balkema.
Huang, C. C., L. H. Chou, and F. Tatsuoka. 2003. “Seismic displacements of geosynthetic-reinforced soil modular block walls.” Geosynth. Int. 10 (1): 2–23. https://doi.org/10.1680/gein.2003.10.1.2.
Huang, C.-C., and Y.-H. Chen. 2004. “Seismic stability of soil retaining walls situated on slope.” J. Geotech. Geoenviron. Eng. 130 (1): 45–57. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(45).
Ismeik, M., and E. Guler. 1998. “Effect of wall facing on the seismic stability of geosynthetic-reinforced retaining walls.” Geosynth. Int. 5 (1–2): 41–53. https://doi.org/10.1680/gein.5.0113.
Janbu, N. 1954. “Application of composite slip surfaces for stability analysis.” In Vol. 3 of Proc., European Conf. on Stability of Earth Slopes, 43–49. Stockholm, Sweden: Svenska Geotekniska Föreningen.
Jewell, R. A., N. Paine, and R. I. Woods. 1984. “Design methods for steep reinforced embankments.” In Polymer grid reinforcement, 70–81. London: Thomas Telford.
Koerner, R. M., and T.-Y. Soong. 1998. “Analysis and design of veneer cover soils.” In Vol. 1 of Proc., 6th Int. Conf. on Geosynthetics, 1–23. Roseville, MN: Industrial Fabrics Association International.
Koseki, J., R. J. Bathurst, E. Güler, J. Kuwano, and M. Maugeri. 2006. “Seismic stability of reinforced soil walls.” In Proc., 8th Int. Conf. on Geosynthetics, 28. Yokohama, Japan: Millpress.
Leshchinsky, D., H. Ling, and G. Hanks. 1995. “Unified design approach to geosynthetic reinforced slopes and segmental walls.” Geosynth. Int. 2 (5): 845–881. https://doi.org/10.1680/gein.2.0039.
Ling, H. I. 2001. “Recent applications of sliding block theory to geotechnical design.” Soil Dyn. Earthq. Eng. 21 (3): 189–197. https://doi.org/10.1016/S0267-7261(01)00007-0.
Ling, H. I., and D. Leshchinsky. 1997. “Seismic stability and permanent displacement of landfill cover systems.” J. Geotech. Geoenviron. Eng. 123 (2): 113–122. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(113).
Ling, H. I., and D. Leshchinsky. 1998. “Effects of vertical acceleration on seismic design of geosynthetic-reinforced soil structures.” Géotechnique 48 (3): 347–373. https://doi.org/10.1680/geot.1998.48.3.347.
Lo Grasso, A. S., M. Maugeri, and P. Recalcati. 2005. “Seismic behavior of geosynthetic-reinforced slopes with overload by shaking table tests.” In Slopes and retaining structures under seismic and static conditions, geotechnical special publication no. 140. Reston, VA: ASCE.
Martin, J. P., and R. M. Koerner. 1985. “Geotechnical design considerations for geomembrane lined slopes: Slope stability.” Geotext. Geomembr. 2 (4): 299–321. https://doi.org/10.1016/0266-1144(85)90016-0.
Matsuo, O., T. Tsutsumi, K. Yokoyama, and Y. Saito. 1998. “Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls.” Geosynth. Int. 5 (1–2): 97–126. https://doi.org/10.1680/gein.5.0116.
Michalowski, R. L. 1995. “Slope stability analysis: A kinematical approach.” Géotechnique 45 (2): 283–293. https://doi.org/10.1680/geot.1995.45.2.283.
Michalowski, R. L. 2013. “Stability assessment of slopes with cracks using limit analysis.” Can. Geotech. J. 50 (10): 1011–1021. https://doi.org/10.1139/cgj-2012-0448.
Mononobe, N., and H. Matsuo. 1929. “On the determination of earth pressures during earthquakes.” In Vol. 9 of Proc., World Engineering Congress, 177–185. Hong Kong: International Association of Engineers.
Morgenstern, N. R., and V. E. Price. 1965. “The analysis of the stability of general slip surfaces.” Géotechnique 15 (1): 79–93. https://doi.org/10.1680/geot.1965.15.1.79.
NAVFAC (Naval Facilities Engineering Command). 1986. Soil mechanics, design manual 7.01. Alexandria, VA: NAVFAC.
NCMA (National Concrete Masonry Association). 2010. Design manual for segmental retaining walls. 3rd ed., 284. Herndon, VA: NCMA.
Newmark, N. M. 1965. “Effects of earthquakes on dams and embankments.” Géotechnique 15 (2): 139–160. https://doi.org/10.1680/geot.1965.15.2.139.
Okabe, S. 1924. “General theory on earth pressure and seismic stability of retaining wall and dam.” J. Jpn. Soc. Civ. Eng. 10 (6): 1277–1323.
Palmeira, E. M. 2009. “Soil-geosynthetic interaction: Modelling and analysis.” Geotext. Geomembr. 27 (5): 368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003.
Palmeira, E. M., and R. C. Gomes. 1996. “Comparisons of predicted and observed failure mechanisms in model reinforced soil walls.” Geosynth. Int. 3 (3): 329–347. https://doi.org/10.1680/gein.3.0065.
Qian, X., and R. M. Koerner. 2009. “Stability analysis when using an engineered berm to increase landfill space.” J. Geotech. Geoenviron. Eng. 135 (8): 1082–1091. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000065.
Qian, X., and R. M. Koerner. 2010. “Modification to translational failure analysis of landfills incorporating seismicity.” J. Geotech. Geoenviron. Eng. 136 (5): 718–727. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000281.
Rowe, R. K. 1998. “Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste.” In Vol. 1 of Proc., 6th Int. Conf. on Geosynthetics, 27–102. Roseville, MN: Industrial Fabrics Association International.
Sarma, S. K. 1973. “Stability analysis of embankments and slopes.” Géotechnique 23 (3): 423–433. https://doi.org/10.1680/geot.1973.23.3.423.
Seed, H. B., and H. A. Sultan. 1967. “Stability analyses for a sloping core embankment.” J. Soil Mech. Found. Div. 93 (4): 69–83. https://doi.org/10.1061/JSFEAQ.0001011.
Seed, H. B., and R. V. Whitman. 1970. “Design of earth retaining structures for dynamic loads.” In Proc., Lateral Stresses in the Ground and Design of Earth Retaining Structures, ASCE Specialty Conf., 103–147. Ithaca, NY: Cornell Univ.
Seed, R. B., J. K. Mitchell, and H. B. Seed. 1990. “Kettleman hills waste landfill slope failure. II: Stability analyses.” J. Geotech. Eng. 116 (4): 669–690. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(669).
Spencer, E. 1967. “A method for analysis of the stability of embankments assuming parallel inter-slice forces.” Géotechnique 17 (1): 11–26. https://doi.org/10.1680/geot.1967.17.1.11.
Stark, T. D., H. T. Eid, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. II: Stability analyses.” J. Geotech. Geoenviron. Eng. 126 (5): 408–419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408).
Stark, T. D., and A. R. Poeppel. 1994. “Landfill liner interface strengths from torsional-ring-shear tests.” J. Geotech. Eng. 120 (3): 597–615. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:3(597).
Stocker, M. F., G. W. Körber, G. Gässler, and G. Gudehus. 1979. “Soil nailing.” In Vol. 2 of Proc., Int. Conf. on Soil Reinforcement, 469–474. Washington, DC: Transportation Research Board.
Sultan, H. A., and H. B. Seed. 1967. “Stability of sloping core earth dams.” J. Soil Mech. Found. Div. 93 (4): 45–67. https://doi.org/10.1061/JSFEAQ.0001002.
Swedish State Railways, Geotechnical Commission. 1922. Statens Järnvägars Geotekniska Kommission: Slutbetänkande. Linköping Sweden: Swedish State Railways, Geotechnical Commission.
Tatsuoka, F. 2019. “Geosynthetic-reinforced soil structures for railways and roads: Development from walls to bridges.” Innovative Infrastruct. Solutions 4 (1): 1–18. https://doi.org/10.1007/s41062-019-0236-x.
Tatsuoka, F., J. Koseki, M. Tateyama, Y. Munaf, and K. Horii. 1998. “Seismic stability against high seismic loads on geosynthetic-reinforced soil retaining structures.” In Vol. 1 of Proc., 6th Int. Conf. on Geosynthetics, 103–142. Roseville, MN: Industrial Fabrics Association International.
Tatsuoka, F., M. Tateyama, Y. Tamura, and H. Yamauchi. 2000. “Lessons from the failure of full-scale models and recent geosynthetic-reinforced soil retaining walls.” In Vol. 1 of Proc., 2nd Asian Geosynthetics Conf., GeoAsia 2000, 23–53. Austin, TX: International Geosynthetic Society.
Tatsuoka, F., and H. Yamauchi. 1986. “A reinforcing method for steep clay slopes using a non-woven geotextile.” Geotext. Geomembr. 4 (3–4): 241–268. https://doi.org/10.1016/0266-1144(86)90044-0.
Taylor, D. W. 1948. Fundamentals of soil mechanics. New York: Wiley.
Triplett, E. J., and P. J. Fox. 2001. “Shear strength of HDPE geomembrane/geosynthetic clay liner interfaces.” J. Geotech. Geoenviron. Eng. 127 (6): 543–552. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:6(543).
Tufenkjian, M. R., and M. Vucetic. 2000. “Dynamic failure mechanism of soil-nailed excavation models in centrifuge.” J. Geotech. Geoenviron. Eng. 126 (3): 227–235. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(227).
USACE. 2003. Engineering and design: Slope stability. Washington, DC: US Army Corps of Engineers.
Wong, K. S., B. B. Broms, and B. Chandrasekaran. 1994. “Failure modes at model tests of a geotextile reinforced wall.” Geotext. Geomembr. 13 (6–7): 475–493. https://doi.org/10.1016/0266-1144(94)90009-4.
Woods, R. I., and R. A. Jewell. 1990. “A computer design method for reinforced soil structures.” Geotext. Geomembr. 9 (3): 233–259. https://doi.org/10.1016/0266-1144(90)90055-H.
Xie, Y., B. Leshchinsky, and J. Han. 2019. “Evaluation of bearing capacity on geosynthetic-reinforced soil structures considering multiple failure mechanisms.” J. Geotech. Geoenviron. Eng. 145 (9): 04019040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002072.
Xu, P., and K. Hatami. 2019. “Sliding stability and lateral displacement analysis of reinforced soil retaining walls.” Geotext. Geomembr. 47 (4): 483–492. https://doi.org/10.1016/j.geotexmem.2019.03.004.
Yang, K.-H., P. Utomo, and T.-L. Liu. 2013. “Evaluation of force-equilibrium and deformation-based design approaches for predicting reinforcement loads within geosynthetic-reinforced soil structures.” J. GeoEng. 8 (2): 41–54.
Yang, K.-H., J. G. Zornberg, C.-N. Liu, and H.-D. Lin. 2012. “Stress distribution and development within geosynthetic-reinforced soil slopes.” Geosynth. Int. 19 (1): 62–78. https://doi.org/10.1680/gein.2012.19.1.62.
Yu, H. S., R. Salgado, S. W. Sloan, and J. M. Kim. 1998. “Limit analysis versus limit equilibrium for slope stability.” J. Geotech. Geoenviron. Eng. 124 (1): 1–11. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(1).
Zekkos, D., J. D. Bray, E. Kavazanjian Jr., N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe II. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).
Zheng, Y., and P. J. Fox. 2016. “Numerical investigation of geosynthetic-reinforced soil bridge abutments under static loading.” J. Geotech. Geoenviron. Eng. 142 (5): 04016004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001452.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 8August 2021

History

Received: May 20, 2020
Accepted: Jan 8, 2021
Published online: Jun 8, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Patrick J. Fox, F.ASCE [email protected]
Shaw Professor and Head, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • A Displacement-Dependent Limit-Equilibrium Slice Method for Slope Stability Analysis, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8268, 23, 6, (2023).
  • Influence of heterogeneity and elevated temperatures on the seismic translational stability of engineered landfills, Waste Management, 10.1016/j.wasman.2023.01.004, 158, (1-12), (2023).
  • Two-wedge slope stability analysis considering a nonvertical wedge interface, Bulletin of Engineering Geology and the Environment, 10.1007/s10064-023-03126-2, 82, 3, (2023).
  • Upper-bound limit analysis of MSE walls subjected to strip footing load, Geosynthetics International, 10.1680/jgein.22.00154, (1-13), (2022).
  • Analytical Solutions for Internal Stability of a Geosynthetic-Reinforced Soil Retaining Wall at the Limit State, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/(ASCE)GT.1943-5606.0002844, 148, 10, (2022).
  • Analytical Solutions for Active Lateral Earth Force, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/(ASCE)GT.1943-5606.0002806, 148, 6, (2022).
  • Analytical Solutions for General Three-Wedge Stability, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002535, 22, 12, (2022).
  • Analytical Solutions for Three-Wedge Stability with Vertical Wedge Interfaces, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002126, 21, 10, (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share