Abstract

When subjected to axial loading, the response of a pile in a pile group is different from that of an isolated single pile, all other factors being the same. Three-dimensional finite-element analyses were performed to study the response to vertical loads of nondisplacement pile groups in sand. The analyses were done with an advanced bounding-surface-plasticity constitutive model. The mechanical response of soil elements at various locations between the group piles was thoroughly investigated to reveal the underlying pile–soil–pile interaction mechanisms. Pile group efficiency was found to be a function of the pile head settlement, number of piles in the group, pile-to-pile spacing, and relative density of the sand. The effect of cap–soil contact on the pile group resistance development was also studied. For small pile groups, the group efficiency is close to or greater than 1 at settlement levels likely to be of interest in design.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The work presented in this paper was partially funded by the Joint Transportation Research Program (JTRP) administered by the Indiana Department of Transportation (INDOT) and Purdue University through contract SPR-3636. The support of the Indiana Department of Transportation (INDOT) and the Federal Highway Administration (FHWA) are gratefully acknowledged.

References

AASHTO. 2014. AASHTO LRFD bridge design specifications. 7th ed. Washington, DC: AASHTO.
Abaqus. 2012. Abaqus analysis user’s manual: Abaqus 6.12-2. Providence, RI: SIMULIA.
Abbo, A. J., and S. W. Sloan. 1996. “An automatic load stepping algorithm with error control.” Int. J. Num. Methods Eng. 39 (10): 1737–1759. https://doi.org/10.1002/(SICI)1097-0207(19960530)39:10%3C1737::AID-NME927%3E3.0.CO;2-5.
Basile, F. 1998. “Non-linear analysis of vertically loaded pile groups.” In Proc., 3rd Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, edited by W. F. Van Impe, 425–432. Rotterdam, Netherlands: A.A. Balkema.
Basu, D., M. Prezzi, R. Salgado, and T. Chakraborty. 2008. “Settlement analysis of piles with rectangular cross sections in multi-layered soils.” Comput. Geotech. 35 (4): 563–575. https://doi.org/10.1016/j.compgeo.2007.09.001.
Basu, D., and R. Salgado. 2014. “Closure to ‘Load and resistance factor design of drilled shafts in sand’ by D. Basu and Rodrigo Salgado.” J. Geotech. Geoenviron. Eng. 140 (3): 07014002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001055.
Bozozuk, M. 1978. “Bridge foundations move.” Trans. Res. Rec. 678: 17–21.
Briaud, J. J., and L. M. Tucker. 1988. “Measured and predicted axial response of 98 piles.” J. Geotech. Eng. 114 (9): 984–1001. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:9(984).
Brown, D. A., J. P. Turner, and R. J. Castelli. 2010. Drilled shafts: Construction procedures and LRFD design methods. Washington, DC: Federal Highway Administration.
Butterfield, R., and P. K. Banerjee. 1971. “The elastic analysis of compressible piles and pile groups.” Géotechnique 21 (1): 43–60. https://doi.org/10.1680/geot.1971.21.1.43.
Castelli, F., and M. Maugeri. 2002. “Simplified nonlinear analysis for settlement prediction of pile groups.” J. Geotech. Geoenviron. Eng. 128 (1): 76–84. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(76).
Choi, Y. S., J. Lee, M. Prezzi, and R. Salgado. 2017. “Response of pile groups driven in sand subjected to combined loads.” Geotech. Geol. Eng. 35 (4): 1587–1604. https://doi.org/10.1007/s10706-017-0194-z.
Comodromos, E. M., C. T. Anagnostopoulos, and M. K. Georgiadis. 2003. “Numerical assessment of axial pile group response based on load test.” Comput. Geotech. 30 (6): 505–515. https://doi.org/10.1016/S0266-352X(03)00017-X.
Dafalias, Y. F., A. G. Papadimitriou, and X. S. Li. 2004. “Sand plasticity model accounting for inherent fabric anisotropy.” J. Eng. Mech. 130 (11): 1319–1333. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:11(1319).
Deeks, A. D., D. J. White, and M. D. Bolton. 2005. “A comparison of jacked, driven and bored piles in sand.” In Vol. 4 of Proc., 16th Int. Conf. on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, 2103–2106. Amsterdam, Netherlands: IOS Press.
Fioravante, V. 2002. “On the shaft friction modelling of non-displacement piles in sand.” Soils Found. 42 (2): 23–33. https://doi.org/10.3208/sandf.42.2_23.
Fioravante, V., L. Guerra, and M. B. Jamiolkowski. 2010. “On the shaft capacity of non-displacement piles in sand from centrifuge tests.” In Proc., 7th Int. Conf. on Physical Modeling in Geotechnics, 763–768. Boca Raton, FL: CRC Press.
Fleming, K., A. Weltman, M. Randolph, and K. Elson. 2008. Piling engineering. Boca Raton, FL: CRC Press.
Foray, P., L. Balachowsky, and G. Rault. 1998. “Scale effect in shaft friction due to the localisation of deformations.” In Proc., Int. Conf. Centrifuge 98, 211–216. Oxfordshire, UK: Taylor & Francis Group.
Foye, K. C., G. G. Abou-Jaoude, M. Prezzi, and R. Salgado. 2009. “Resistance factors for use in load and resistance factor design of driven pipe piles in sands.” J. Geotech. Geoenviron. Eng. 135 (1): 1–13. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(1).
Garnier, J., and D. Konig. 1998. “Scale effects in piles and nails loading tests in sand.” In Proc., Centrifuge ’98, 205–210. Oxfordshire, UK: Taylor & Francis Group.
Gavin, K., and B. Lehane. 2007. “Base load–displacement response of piles in sand.” Can. Geotech. J. 44 (9): 1053–1063. https://doi.org/10.1139/T07-048.
Grover, R. A. 1978. “Movements of bridge abutments and settlements of approach pavements in Ohio.” Transp. Res. Rec. 678: 12–17.
Guo, W. D., and M. F. Randolph. 1999. “An efficient approach for settlement prediction of pile groups.” Geotechnique 49 (2): 161–179. https://doi.org/10.1680/geot.1999.49.2.161.
Han, F., E. Ganju, M. Prezzi, R. Salgado, and M. Zaheer. 2019. “Axial resistance of open-ended pipe pile driven in gravelly sand.” Géotechnique. 1–40. https://doi.org/10.1680/jgeot.18.P.117.
Han, F., E. Ganju, R. Salgado, and M. Prezzi. 2018a. “Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle.” J. Geotech. Geoenviron. Eng. 144 (12): 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.
Han, F., J. Lim, R. Salgado, M. Prezzi, and M. Zaheer. 2016. Load and resistance factor design of bridge foundations accounting for pile group–soil interaction. West Lafayette, IN: Purdue University Press.
Han, F., M. Prezzi, R. Salgado, and M. Zaheer. 2017a. “Axial resistance of closed-ended steel-pipe piles driven in multilayered soil.” J. Geotech. Geoenviron. Eng. 143 (3): 04016102. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001589.
Han, F., R. Salgado, and M. Prezzi. 2018b. “Numerical and experimental study of axially loaded non-displacement piles in sand.” In Proc., Int. Conf. on Deep Foundations and Ground Improvement, 221–229. Hawthorne, NJ: Deep Foundations Institute.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2017b. “Shaft and base resistance of non-displacement piles in sand.” Comput. Geotech. 83 (Mar): 184–197. https://doi.org/10.1016/j.compgeo.2016.11.006.
Ismael, N. F. 2001. “Axial load tests on bored piles and pile groups in cemented sands.” J. Geotech. Geoenviron. Eng. 127 (9): 766–773. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(766).
Jardine, R., F. Chow, R. Overy, J. Standing, and S. Jamie. 2005. ICP design methods for driven piles in sands and clays. London: Thomas Telford.
Kolk, H. J., A. E. Baaijens, and M. Senders. 2005. “Design criteria for pipe piles in silica sands.” In Proc., Int. Symp. on Frontiers in Offshore Geotechnics, 711–716. Boca Raton, FL: CRC Press.
Lee, J., M. Prezzi, and R. Salgado. 2011. “Experimental investigation of the combined load response of model piles driven in sand.” Geotech. Test. J. 34 (6): 103269. https://doi.org/10.1520/GTJ103269.
Lee, J. H., and R. Salgado. 1999. “Determination of pile base resistance in sands.” J. Geotech. Geoenviron. Eng. 125 (8): 673–683. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(673).
Lee, K. M., and Z. R. Xiao. 2001. “A simplified nonlinear approach for pile group settlement analysis in multilayered soils.” Can. Geotech. J. 38 (5): 1063–1080. https://doi.org/10.1139/t01-034.
Lehane, B. M., R. J. Jardine, A. J. Bond, and R. Frank. 1993. “Mechanisms of shaft friction in sand from instrumented pile tests.” J. Geotech. Eng. 119 (1): 19–35. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(19).
Lehane, B. M., J. A. Schneider, and X. Xu. 2005. “The UWA-05 method for prediction of axial capacity of driven piles in sand.” In Proc., Int. Symp. on Frontiers in Offshore Geotechnics (IS-FOG 2005), 683–689. Boca Raton, FL: CRC Press.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Loukidis, D., and R. Salgado. 2008. “Analysis of the shaft resistance of non-displacement piles in sand.” Géotechnique 58 (4): 283–296. https://doi.org/10.1680/geot.2008.58.4.283.
Loukidis, D., and R. Salgado. 2009. “Modeling sand response using two-surface plasticity.” Comput. Geotech. 36 (1–2): 166–186. https://doi.org/10.1016/j.compgeo.2008.02.009.
Manzari, M. T., and Y. F. Dafalias. 1997. “A critical state two-surface plasticity model for sands.” Géotechnique 47 (2): 255–272. https://doi.org/10.1680/geot.1997.47.2.255.
Mascarucci, Y., S. Miliziano, and A. Mandolini. 2014. “A numerical approach to estimate shaft friction of bored piles in sands.” Acta Geotech. 9 (3): 547–560. https://doi.org/10.1007/s11440-014-0305-4.
McCabe, B. A., and B. B. Sheil. 2015. “Pile group settlement estimation: Suitability of nonlinear interaction factors.” Int. J. Geomech. 15 (3): 04014056. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000395.
Muqtadir, A., and C. S. Desai. 1986. “Three-dimensional analysis of a pile-group foundation.” Int. J. Num. Anal. Methods Geomech. 10 (1): 41–58. https://doi.org/10.1002/nag.1610100104.
Mylonakis, G., and G. Gazetas. 1998. “Settlement and additional internal forces of grouped piles in layered soil.” Géotechnique 48 (1): 55–72. https://doi.org/10.1680/geot.1998.48.1.55.
Ottaviani, M. 1976. “Discussion: Three-dimensional finite element analysis of vertically loaded pile groups.” Géotechnique 26 (1): 238–241. https://doi.org/10.1680/geot.1976.26.1.238.
Poulos, H. G., and E. H. Davis. 1980. Pile foundation analysis and design. New York: Wiley.
Pressley, J. S., and H. G. Poulos. 1986. “Finite element analysis of mechanisms of pile group behaviour.” Int. J. Num. Anal. Methods Geomech. 10 (2): 213–221. https://doi.org/10.1002/nag.1610100208.
Randolph, M. F. 2003. “Science and empiricism in pile foundation design.” Géotechnique 53 (10): 847–875. https://doi.org/10.1680/geot.2003.53.10.847.
Randolph, M. F., and C. P. Wroth. 1979. “An analysis of the vertical deformation of pile groups.” Géotechnique 29 (4): 423–439. https://doi.org/10.1680/geot.1979.29.4.423.
Reul, O. 2004. “Numerical study of the bearing behavior of piled rafts.” Int. J. Geomech. 4 (2): 59–68. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(59).
Reul, O., and M. F. Randolph. 2003. “Piled rafts in overconsolidated clay: Comparison of in situ measurements and numerical analyses.” Géotechnique 53 (3): 301–315. https://doi.org/10.1680/geot.2003.53.3.301.
Salgado, R. 2008. The engineering of foundations. New York: McGraw-Hill.
Salgado, R., F. Han, and M. Prezzi. 2017. “Axial resistance of non-displacement piles and pile groups in sand.” Rivista Italiana di Geotecnica 51 (4): 35–46. https://doi.org/10.19199/2017.4.0557-1405.35.
Salgado, R., H. Seo, and M. Prezzi. 2013. “Variational elastic solution for axially loaded piles in multilayered soil.” Int. J. Num. Anal. Methods Geomech. 37 (4): 423–440. https://doi.org/10.1002/nag.1110.
Salgado, R., S. I. Woo, and D. Kim. 2011. Development of load and resistance factor design for ultimate and serviceability limit states of transportation structure foundations. West Lafayette, IN: Purdue University Press.
Sayed, S. M., and R. M. Bakeer. 1992. “Efficiency formula for pile groups.” J. Geotech. Eng. 118 (2): 278–299. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(278).
Senna, R. S., J. C. A. Cintra, M. E. B. Rezende, and D. Carvalho. 1993. “Load distribution in bored pile groups.” In Proc., 2nd Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, 151–154. Rotterdam, Netherlands: A.A. Balkema.
Seo, H., and M. Prezzi. 2007. “Analytical solutions for a vertically loaded pile in multilayered soil.” Geomech. Geoeng. 2 (1): 51–60. https://doi.org/10.1080/17486020601099380.
Shen, W. Y., Y. K. Chow, and K. Y. Yong. 1997. “A variational approach for vertical deformation analysis of pile group.” Int. J. Num. Anal. Methods Geomech. 21 (11): 741–752. https://doi.org/10.1002/(SICI)1096-9853(199711)21:11%3C741::AID-NAG898%3E3.0.CO;2-D.
Skempton, A. W., and D. H. Macdonald. 1956. “The allowable settlements of buildings.” Proc. Inst. Civ. Eng. 5 (6): 727–768. https://doi.org/10.1680/ipeds.1956.12202.
Tehrani, F. S., F. Han, R. Salgado, and M. Prezzi. 2017. “Laboratory study of the effect of pile surface roughness on the response of soil and non-displacement piles.” In Proc., Geotechnical Frontiers 2017, 256–264. Reston, VA: ASCE.
Tehrani, F. S., F. Han, R. Salgado, M. Prezzi, R. D. Tovar, and A. G. Castro. 2016a. “Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand.” Géotechnique 66 (5): 386–400. https://doi.org/10.1680/jgeot.15.P.007.
Tehrani, F. S., R. Salgado, and M. Prezzi. 2016b. “Analysis of axial loading of pile groups in multilayered elastic soil.” Int. J. Geomech. 16 (2): 04015063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000540.
Terzaghi, K., R. B. Peck, and G. Mesri. 1996. Soil mechanics in engineering practice. 3rd ed. New York: Wiley.
Thiyyakkandi, S., M. McVay, and P. Lai. 2014. “Experimental group behavior of grouted deep foundations.” Geotech. Test. J. 37 (4): 20130144. https://doi.org/10.1520/GTJ20130144.
Tovar-Valencia, R. D., A. C. Galvis-Castro, R. Salgado, and M. Prezzi. 2018. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.
Trochanis, A. M., J. Bielak, and P. Christiano. 1991. “Three-dimensional nonlinear study of piles.” J. Geotech. Eng. 117 (3): 429–447. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(429).
Vesić, A. S. 1969. “Experiments with instrumented pile groups in sand.” In Performance of deep foundations. West Conshohocken, PA: ASTM.
Viggiani, C., A. Mandolini, and G. Russo. 2011. Piles and pile foundations. London: Spon Press.
Walkinshaw, J. L. 1978. “Survey of bridge movements in the western United States.” Trans. Res. Rec. 678: 6–12.
Wang, A. D., W. D. Wang, M. S. Huang, J. B. Wu, B. B. Sheil, and B. A. McCabe. 2016. “Interaction factor for large pile groups.” Geotech. Lett. 6 (1): 58–65. https://doi.org/10.1680/jgele.15.00139.
Xu, K. J., and H. G. Poulos. 2000. “General elastic analysis of piles and pile groups.” Int. J. Num. Anal. Methods Geomech. 24 (15): 1109–1138. https://doi.org/10.1002/1096-9853(20001225)24:15%3C1109::AID-NAG72%3E3.0.CO;2-N.
Xu, X., J. A. Schneider, and B. M. Lehane. 2008. “Cone penetration test (CPT) methods for end-bearing assessment of open- and closed-ended driven piles in siliceous sand.” Can. Geotech. J. 45 (8): 1130–1141. https://doi.org/10.1139/T08-035.
Xu, Y., and L. M. Zhang. 2007. “Settlement ratio of pile groups in sandy soils from field load tests.” J. Geotech. Geoenviron. Eng. 133 (8): 1048–1054. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(1048).
Yu, F., and J. Yang. 2012. “Base capacity of open-ended steel pipe piles in sand.” J. Geotech. Geoenviron. Eng. 138 (9): 1116–1128. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000667.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 7July 2019

History

Received: Aug 28, 2017
Accepted: Nov 21, 2018
Published online: May 14, 2019
Published in print: Jul 1, 2019
Discussion open until: Oct 14, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Associate, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907 (corresponding author). ORCID: https://orcid.org/0000-0001-7492-2778. Email: [email protected]; [email protected]
Rodrigo Salgado, F.ASCE [email protected]
Charles Pankow Professor in Civil Engineering, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]
Monica Prezzi, A.M.ASCE [email protected]
Professor of Civil Engineering, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]
Jeehee Lim, S.M.ASCE [email protected]
Ph.D. Student, Lyles School of Civil Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share