Abstract

Particle breakage and particle shape are two prominent characteristics of carbonate sand. In this study, a series of drained shearing tests with different axial strains and confining pressures were performed to investigate particle-breakage development and particle-shape evolution under triaxial loading conditions. In addition, the correlations between particle-breakage evolution and particle-shape evolution and among the particle-shape parameters from both the specimen-scale morphology of all particles in a specimen and the grain-scale morphology of 3,200 grains in a specimen were studied. The test results showed that particle breakage develops with increasing axial strain and confining pressure. The relative breakage index has very strong correlations with the representative overall particle shape and the representative particle-shape parameters except the representative convexity. Moderate or high intercorrelations were observed for the particle-shape parameters of selected grains except convexity. Generally, convexity has the poorest relationship with the other three particle-shape parameters.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 51922024, 52078085, and 52108301) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014).

References

Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Ben-Nun, O., and I. Einav. 2010. “The role of self-organization during confined comminution of granular materials.” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368 (1910): 231–247. https://doi.org/10.1098/rsta.2009.0205.
Buscarnera, G., and I. Einav. 2021. “The mechanics of brittle granular materials with coevolving grain size and shape.” Proc. R. Soc. A Math. Phys. Eng. Sci. 477 (2249): 20201005. https://doi.org/10.1098/rspa.2020.1005.
Cao, Z., J. Chen, X. Ye, C. Gu, Z. Guo, and Y. Cai. 2021. “Experimental study on particle breakage of carbonate gravels under cyclic loadings through large-scale triaxial tests.” Transp. Geotech. 30: 100632. https://doi.org/10.1016/j.trgeo.2021.100632.
Cheng, Z., and J. Wang. 2018. “Quantification of particle crushing in consideration of grading evolution of granular soils in biaxial shearing: A probability-based model.” Int. J. Numer. Anal. Methods Geomech. 42 (3): 488–515. https://doi.org/10.1002/nag.2752.
Ciantia, M. O., M. Arroyo, F. Calvetti, and A. Gens. 2015. “An approach to enhance efficiency of DEM modelling of soils with crushable grains: An approach to enhance efficiency of DEM modelling of soils with crushable grains.” Géotechnique 65 (2): 91–110. https://doi.org/10.1680/geot.13.P.218.
Cil, M. B., C. Sohn, and G. Buscarnera. 2020. “DEM modeling of grain size effect in brittle granular soils.” J. Eng. Mech. 146 (3): 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
Das, S. K., and A. Das. 2019. “Influence of quasi-static loading rates on crushable granular materials: A DEM analysis.” Powder Technol. 344: 393–403. https://doi.org/10.1016/j.powtec.2018.12.024.
De Bono, J. P., and G. R. McDowell. 2014. “Discrete element modelling of one-dimensional compression of cemented sand.” Granular Matter 16 (1): 79–90. https://doi.org/10.1007/s10035-013-0466-0.
De Bono, J. P., and G. R. McDowell. 2016. “The fractal micro mechanics of normal compression.” Comput. Geotech. 78: 11–24. https://doi.org/10.1016/j.compgeo.2016.04.018.
Donohue, S., C. O’Sullivan, and M. Long. 2009. “Particle breakage during cyclic triaxial loading of a carbonate sand.” Géotechnique 59 (5): 477–482. https://doi.org/10.1680/geot.2008.T.003.
Einav, I. 2007a. “Breakage mechanics. I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Einav, I. 2007b. “Breakage mechanics. II: Modelling granular materials.” J. Mech. Phys. Solids 55 (6): 1298–1320. https://doi.org/10.1016/j.jmps.2006.11.004.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Indraratna, B., Y. Sun, and S. Nimbalkar. 2016. “Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (7): 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463.
Kuwajima, K., M. Hyodo, and A. F. Hyde. 2009. “Pile bearing capacity factors and soil crushabiity.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Li, H. Y., H. W. Chai, X. H. Xiao, J. Y. Huang, and S. N. Luo. 2020. “Fractal breakage of porous carbonate sand particles: Microstructures and mechanisms.” Powder Technol. 363: 112–121. https://doi.org/10.1016/j.powtec.2020.01.007.
Li, L., R. D. Beemer, and M. Iskander. 2021a. “Granulometry of two marine calcareous sands.” J. Geotech. Geoenviron. Eng. 147 (3): 04020171. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002431.
Li, Y., Z. Lin, B. Li, L. He, and J. Gong. 2021b. “Effects of gradation and grain crushing on the liquefaction resistance of calcareous sand.” Geomech. Geophys. Geo-Energy Geo-Resour. 7 (1): 12. https://doi.org/10.1007/s40948-020-00208-3.
Lin, L., S. Li, L. Sun, X. L. Liu, and W. W. Chen. 2020. “Evolution of particle size distribution for carbonate sand under impact load.” Powder Technol. 376: 549–564. https://doi.org/10.1016/j.powtec.2020.08.046.
Liu, H., K. Zeng, and Y. Zou. 2020. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Liu, H., and D. Zou. 2013. “Associated generalized plasticity framework for modeling gravelly soils considering particle breakage.” J. Eng. Mech. 139 (5): 606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Liu, X., and J. Yang. 2018. “Shear wave velocity in sand: Effect of grain shape.” Géotechnique 68 (8): 742–748. https://doi.org/10.1680/jgeot.17.T.011.
Liu, Y., H. Liu, and H. Mao. 2017. “DEM investigation of the effect of intermediate principle stress on particle breakage of granular materials.” Comput. Geotech. 84 (Apr): 58–67. https://doi.org/10.1016/j.compgeo.2016.11.020.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 58 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Mao, W., S. Aoyama, and I. Towhata. 2020. “A study on particle breakage behavior during pile penetration process using acoustic emission source location.” Geosci. Front. 11 (2): 413–427. https://doi.org/10.1016/j.gsf.2019.04.006.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Muir Wood, D., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Peng, Y., H. Liu, C. Li, X. Ding, X. Deng, and C. Wang. 2021. “The detailed particle breakage around the pile in coral sand.” Acta Geotech. 16 (6): 1971–1981. https://doi.org/10.1007/s11440-020-01089-2.
Qadimi, A., and M. R. Coop. 2007. “The undrained cyclic behaviour of a carbonate sand.” Géotechnique 57 (9): 739–750. https://doi.org/10.1680/geot.2007.57.9.739.
Seo, D., C. Sohn, M. B. Cil, and G. Buscarnera. 2021. “Evolution of particle morphology and mode of fracture during the oedometric compression of sand.” Géotechnique 71 (10): 853–865. https://doi.org/10.1680/jgeot.18.P.300.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159: 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Shi, J., W. Haegeman, and V. Cnudde. 2021. “Anisotropic small-strain stiffness of calcareous sand affected by sample preparation, particle characteristic and gradation.” Géotechnique 71 (4): 305–319. https://doi.org/10.1680/jgeot.18.P.348.
Shi, J., Y. Xiao, J. Hu, H. Wu, H. Liu, and W. Haegeman. 2022. “Small-strain shear modulus of calcareous sand under anisotropic consolidation.” Can. Geotech. J. 59 (6): 878–888. https://doi.org/10.1139/cgj-2021-0329.
Sun, Z., J. Chu, and Y. Xiao. 2021. “Formulation and implementation of an elastoplastic constitutive model for sand-fines mixtures.” Int. J. Numer. Anal. Methods Geomech. 45 (18): 2682–2708. https://doi.org/10.1002/nag.3282.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Géotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Tong, C.-X., G. J. Burton, S. Zhang, and D. Sheng. 2020. “Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests.” Acta Geotech. 15 (9): 2379–2394. https://doi.org/10.1007/s11440-020-00931-x.
Valdes, J. R., and E. Koprulu. 2007. “Characterization of fines produced by sand crushing.” J. Geotech. Geoenviron. Eng. 133 (12): 1626–1630. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1626).
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020a. “Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, G., and J. Zha. 2020. “Particle breakage evolution during cyclic triaxial shearing of a carbonate sand.” Soil Dyn. Earthquake Eng. 138: 106326. https://doi.org/10.1016/j.soildyn.2020.106326.
Wang, Y., C. Shao, and Y. Xu. 2017. “Fractal crushing of solid particles.” KSCE J. Civ. Eng. 21 (3): 987–993. https://doi.org/10.1007/s12205-016-0508-3.
Wang, Z., G. Wang, and Q. Ye. 2020b. “A constitutive model for crushable sands involving compression and shear induced particle breakage.” Comput. Geotech. 126: 103757. https://doi.org/10.1016/j.compgeo.2020.103757.
Wei, H., X. Li, S. Zhang, T. Zhao, M. Yin, and Q. Meng. 2021. “Influence of particle breakage on drained shear strength of calcareous sands.” Int. J. Geomech. 21 (7): 04021118. https://doi.org/10.1061/(asce)gm.1943-5622.0002078.
Wei, H., T. Zhao, Q. Meng, X. Wang, and B. Zhang. 2020. “Quantifying the morphology of calcareous sands by dynamic image analysis.” Int. J. Geomech. 20 (4): 04020020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001640.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., X. He, A. W. Stuedlein, J. Chu, T. M. Evans, and L. A. van Paassen. 2022a. “Crystal growth of MICP through microfluidic chip tests.” J. Geotech. Geoenviron. Eng. 148 (5): 06022002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002756.
Xiao, Y., X. He, W. Wu, A. W. Stuedlein, T. M. Evans, J. Chu, H. Liu, L. A. van Paassen, and H. Wu. 2021a. “Kinetic biomineralization through microfluidic chip tests.” Acta Geotech. 16 (10): 3229–3237. https://doi.org/10.1007/s11440-021-01205-w.
Xiao, Y., H. Liu, P. Xiao, and J. Xiang. 2016. “Fractal crushing of carbonate sands under impact loading.” Géotech. Lett. 6 (3): 199–204. https://doi.org/10.1680/jgele.16.00056.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019c. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2020b. “Effects of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (2): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019d. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Y. Sun, W. Zhou, J. Shi, and C. S. Desai. 2022b. “Evolution of particle shape produced by sand breakage.” Int. J. Geomech. 22 (4): 04022003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002333.
Xiao, Y., Z. Sun, A. M. Stuedlein, C. Wang, Z. Wu, and Z. Zhang. 2020c. “Bounding surface plasticity model for stress-strain and grain-crushing behaviors of rockfill materials.” Geosci. Front. 11 (2): 495–510. https://doi.org/10.1016/j.gsf.2019.06.010.
Xiao, Y., C. Wang, H. Wu, and C. S. Desai. 2021b. “New simple breakage index for crushable granular soils.” Int. J. Geomech. 21 (8): 04021136. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002091.
Xiao, Y., C. Wang, Z. Zhang, H. Liu, and Z.-y. Yin. 2021c. “Constitutive modeling for two sands under high pressure.” Int. J. Geomech. 21 (5): 04021042. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001987.
Xiao, Y., Z. Zhang, A. W. Stuedlein, and T. M. Evans. 2021d. “Liquefaction modeling for biocemented calcareous sand.” J. Geotech. Geoenviron. Eng. 147 (12): 04021149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002666.
Xu, D.-s., M. Huang, and Y. Zhou. 2020. “One-dimensional compression behavior of calcareous sand and marine clay mixtures.” Int. J. Geomech. 20 (9): 04020137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763.
Yan, W. M., and Y. Shi. 2014. “Evolution of grain grading and characteristics in repeatedly reconstituted assemblages subject to one-dimensional compression.” Géotech. Lett. 4 (July-September): 223–229. https://doi.org/10.1680/geolett.14.00039.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yasufuku, N., and A. F. L. Hyde. 1995. “Pile end-bearing capacity in crushable sands.” Géotechnique 45 (4): 663–676. https://doi.org/10.1680/geot.1995.45.4.663.
Yu, F. 2017. “Characteristics of particle breakage of sand in triaxial shear.” Powder Technol. 320 (October): 656–667. https://doi.org/10.1016/j.powtec.2017.08.001.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
Yu, J., C. Shen, S. Liu, and Y. P. Cheng. 2020. “Exploration of the survival probability and shape evolution of crushable particles during one-dimensional compression using dyed gypsum particles.” J. Geotech. Geoenviron. Eng. 146 (11): 04020121. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002371.
Yu, Q., J. Liu, U. D. Patil, and A. J. Puppala. 2018. “New approach for predicting particle breakage of granular material using the grey system theory.” J. Mater. Civ. Eng. 30 (9): 04018210. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002395.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, J., M. Li, Z. Liu, and N. Zhou. 2017. “Fractal characteristics of crushed particles of coal gangue under compaction.” Powder Technol. 305: 12–18. https://doi.org/10.1016/j.powtec.2016.09.049.
Zhang, J., and M. Luo. 2020. “Dilatancy and critical state of calcareous sand incorporating particle breakage.” Int. J. Geomech. 20 (4): 04020030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001637.
Zhang, S., C.-X. Tong, X. Li, and D. Sheng. 2015. “A new method for studying the evolution of particle breakage.” Géotechnique 65 (11): 911–922. https://doi.org/10.1680/jgeot.14.P.240.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Géotech. Lett. 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.
Zhang, X., W. Hu, G. Scaringi, B. A. Baudet, and W. Han. 2018. “Particle shape factors and fractal dimension after large shear strains in carbonate sand.” Géotech. Lett. 8 (1): 73–79. https://doi.org/10.1680/jgele.17.00150.
Zhao, L., S. Zhang, M. Deng, and X. Wang. 2021. “Statistical analysis and comparative study of multi-scale 2D and 3D shape features for unbound granular geomaterials.” Transp. Geotech. 26: 100377. https://doi.org/10.1016/j.trgeo.2020.100377.
Zheng, W., X. Hu, and D. D. Tannant. 2020. “Shape characterization of fragmented sand grains via X-ray computed tomography imaging.” Int. J. Geomech. 20 (3): 04020003. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001599.
Zheng, W., and D. Tannant. 2016. “Frac sand crushing characteristics and morphology changes under high compressive stress and implications for sand pack permeability.” Can. Geotech. J. 53 (9): 1412–1423. https://doi.org/10.1139/cgj-2016-0045.
Zhu, F., and J. Zhao. 2021. “Interplays between particle shape and particle breakage in confined continuous crushing of granular media.” Powder Technol. 378: 455–467. https://doi.org/10.1016/j.powtec.2020.10.020.
Zuo, L., S. D. N. Lourenco, and B. A. Baudet. 2019. “Experimental insight into the particle morphology changes associated with landslide movement.” Landslides 16 (4): 787–798. https://doi.org/10.1007/s10346-018-1113-y.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 9September 2022

History

Received: Feb 18, 2022
Accepted: Apr 25, 2022
Published online: Jun 30, 2022
Published in print: Sep 1, 2022
Discussion open until: Nov 30, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Yuyang Ling [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Jinquan Shi, M.ASCE [email protected]
Assistant Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, Ph.D. [email protected]
P.E.
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Constitutive Modeling for Biocemented Calcareous Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-9089, 24, 8, (2024).
  • Effect of Particle Morphology on Strength of Glass Sands, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8661, 23, 8, (2023).
  • Numerical investigation of the effect of particle gradation on the lateral response of pile in coral sand, Computers and Geotechnics, 10.1016/j.compgeo.2022.105012, 152, (105012), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share