Technical Papers
Nov 10, 2021

In Situ State of Tailing Silts Using a Numerical Model of Piezocone Penetration Test Developed by Norsand Model

Publication: International Journal of Geomechanics
Volume 22, Issue 1

Abstract

Tailings are the reservoirs containing a high proportion of saturated silts that may be extremely difficult to sample in their undisturbed condition. This is mostly due to the fabric disturbance and densification that can alter soil behavior. Meanwhile, assessing the in situ state of deposits is indispensable to stability analyses. A useful parameter defining states of soils is state parameter (Ψ), usually determined using the results of the cone penetration test. In this study, several series of numerical analyses of the piezocone penetration test (CPTu) were carried out for saturated tailing silts to evaluate the resistance against penetration for different soil properties and initial states. The numerical simulation adopted the Norsand model as an appropriate constitutive law to capture silt behavior. Analyses indicated that the familiar methods for determining the initial state of soils from CPTu results fail to precisely estimate the initial state parameter (Ψ0) in saturated tailing silts. Therefore, the numerical model was applied to tailing silts to propose relationships using cone penetration resistance to predict the initial state parameter. In addition, the numerical model procedure and the proposed relationships are validated with available numerical and field -piezocone soundings measurements.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abu-Farsakh, M., M. Tumay, and G. Voyiadjis. 2003. “Numerical parametric study of piezocone penetration test in clays.” Int. J. Geomech. 3 (2): 170–181. https://doi.org/10.1061/(ASCE)1532-3641(2003)3:2(170).
Ahmadi, M. M., P. M. Byrne, and R. G. Campanella. 2005. “Cone tip resistance in sand: Modeling, verification, and applications.” Can. Geotech. J. 42 (4): 977–993. https://doi.org/10.1139/t05-030.
Ahmadi, M. M., and A. A. Golestani Dariani. 2017. “Cone penetration test in sand: A numerical-analytical approach.” Comput. Geotech. 90: 176–189. https://doi.org/10.1016/j.compgeo.2017.06.010.
Ahmadi, M. M., and P. K. Robertson. 2005. “Thin-layer effects on the CPT qc measurement.” Can. Geotech. J. 42 (5): 1302–1317. https://doi.org/10.1139/t05-036.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM D5778. West Conshohocken, PA: ASTM.
Baligh, M. M. 1985. “Strain path method.” J. Geotech. Eng. 111 (9): 1108–1136. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:9(1108).
Been, K., J. H. A. Crooks, D. E. Becker, and M. G. Jefferies. 1986. “The cone penetration test in sands: Part I, state parameter interpretation.” Géotechnique 36 (2): 239–249. https://doi.org/10.1680/geot.1986.36.2.239.
Been, K., J. H. A. Crooks, and M. G. Jefferies. 1988. “Interpretation of material state from the CPT in sands and clays.” In Penetration Testing in the UK: Proc., Geotechnology Conf. Organized by the Institution of Civil Engineers and Held in Birmingham on 6–8 July 1988, 215–218. London: Thomas Telford.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Been, K., and M. G. Jefferies. 1992. “Towards systematic CPT interpretation.” In Predictive Soil Mechanics: Proc., Wroth Memorial Symp., 121–134. London: Thomas Telford.
Been, K., M. G. Jefferies, J. H. A. Crooks, and L. Rothenburgs. 1987a. “The cone penetration test in sands: Part II, general inference of state.” Géotechnique 37 (3): 285–299. https://doi.org/10.1680/geot.1987.37.3.285.
Been, K., B. E. Lingnau, J. H. A. Crooks, and B. Leach. 1987b. “Cone penetration test calibration for Erksak (Beaufort Sea) sand.” Can. Geotech. J. 24 (4): 601–610. https://doi.org/10.1139/t87-074.
Bryant, W. R., W. Hottman, and P. Trabant. 1975. “Permeability of unconsolidated and consolidated marine sediments, Gulf of Mexico.” Mar. Geotechnol. 1 (1): 1–14. https://doi.org/10.1080/10641197509388149.
Carrera, A., M. R. Coop, and R. Lancellotta. 2011. “Influence of grading on the mechanical behaviour of Stava tailings.” Géotechnique 61 (11): 935–946. https://doi.org/10.1680/geot.9.P.009.
Carter, J. P., J. R. Booker, and S. K. Yeung. 1986. “Cavity expansion in cohesive frictional soils.” Géotechnique 36 (3): 349–358. https://doi.org/10.1680/geot.1986.36.3.349.
Ceccato, F., L. Beuth, and P. Simonini. 2016a. “Analysis of piezocone penetration under different drainage conditions with the two-phase material point method.” J. Geotech. Geoenviron. Eng. 142 (12): 04016066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001550.
Ceccato, F., L. Beuth, P. A. Vermeer, and P. Simonini. 2016b. “Two-phase material point method applied to the study of cone penetration.” Comput. Geotech. 80: 440–452. https://doi.org/10.1016/j.compgeo.2016.03.003.
Chadwick, P. 1959. “The quasi-static expansion of a spherical cavity in metals and ideal soils.” Q. J. Mech. Appl. Math. 12 (1): 52–71. https://doi.org/10.1093/qjmam/12.1.52.
Chang, N., G. Heymann, and C. Clayton. 2011. “The effect of fabric on the behaviour of gold tailings.” Géotechnique 61 (3): 187–197. https://doi.org/10.1680/geot.9.P.066.
Ciantia, M. O., M. Arroyo, J. Butlanska, and A. Gens. 2016. “DEM modelling of cone penetration tests in a double-porosity crushable granular material.” Comput. Geotech. 73: 109–127. https://doi.org/10.1016/j.compgeo.2015.12.001.
Drucker, D. C., and W. Prager. 1952. “Soil mechanics and plastic analysis or limit design.” Q. Appl. Math. 10 (2): 157–165. https://doi.org/10.1090/qam/48291.
Fourie, A. B., and G. Papageorgiou. 2001. “Defining an appropriate steady state line for merriespruit gold tailings.” Can. Geotech. J. 38 (4): 695–706. https://doi.org/10.1139/t00-111.
Ghafghazi, M., and D. A. Shuttle. 2008. “Interpretation of sand state from cone penetration resistance.” Géotechnique 58 (8): 623–634. https://doi.org/10.1680/geot.2008.58.8.623.
Golestani Dariani, A. A., and M. M. Ahmadi. 2019. “CPT cone factor: Numerical-analytical approach.” Int. J. Geomech. 19 (12): 04019132. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001521.
Herrmann, L. R., and J. Mello. 1994. Investigation of an alternative finite element procedure: A one-step, steady-state analysis. Port Hueneme, CA: Naval Facilities Engineering Service Center, California Univ.
Huang, W., D. Sheng, S. W. Sloan, and H. S. Yu. 2004. “Finite element analysis of cone penetration in cohesionless soil.” Comput. Geotech. 31 (7): 517–528. https://doi.org/10.1016/j.compgeo.2004.09.001.
James, M., M. Aubertin, D. Wijewickreme, and G. W. Wilson. 2011. “A laboratory investigation of the dynamic properties of tailings.” Can. Geotech. J. 48 (11): 1587–1600. https://doi.org/10.1139/t11-060.
Janda, A., and J. Y. Ooi. 2016. “DEM modeling of cone penetration and unconfined compression in cohesive solids.” Powder Technol. 293: 60–68. https://doi.org/10.1016/j.powtec.2015.05.034.
Jarast, P., and M. Ghayoomi. 2018. “Numerical modeling of cone penetration test in unsaturated sand inside a numerical modeling of cone penetration test in unsaturated sand inside a calibration chamber.” Int. J. Geomech. 18 (2): 04017148. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001052.
Jefferies, M. G. 1993. “Nor-Sand: A simle critical state model for sand.” Géotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Jefferies, M. G. 1997. “Plastic work and isotropic softening in unloading.” Géotechnique 47 (5): 1037–1042. https://doi.org/10.1680/geot.1997.47.5.1037.
Jefferies, M. G., and K. Been. 2000. “Implications for critical state theory from isotropic compression of sand.” Géotechnique 50 (4): 419–429. https://doi.org/10.1680/geot.2000.50.4.419.
Jefferies, M. G., and K. Been. 2015. Soil liquefaction: A critical state apporach. Boca Raton, FL: CRC Press.
Jefferies, M. G., and D. A. Shuttle. 2002. “Dilatancy in general Cambridge-type models.” Géotechnique 52 (9): 625–638. https://doi.org/10.1680/geot.2002.52.9.625.
Jefferies, M. G., and D. A. Shuttle. 2005. “Norsand: Features, calibration and use.” In Geo-frontiers Congress 2005, Soil Constitutive Models: Evaluation, Selection, and Calibration, Geotechnical Special Publication 128, edited by J. A. Yamamuro, and V. N. Kaliakin, 204–236. Reston, VA: ASCE.
Jiang, M. J., H. S. Yu, and D. Harris. 2006. “Discrete element modelling of deep penetration in granular soils.” Int. J. Numer. Anal. Methods Geomech. 30 (4): 335–361. https://doi.org/10.1002/nag.473.
Khodayari, M. R., and M. M. Ahmadi. 2020. “Excess pore water pressure along the friction sleeve of a piezocone penetrating in clay: Numerical study.” Int. J. Geomech. 20 (7): 04020100. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001702.
Konkol, J., and L. Balachowski. 2017. “Numerical modeling of cone penetration test in slightly overconsolidated clay with arbitrary Lagrangian-Eulerian formulation.” Procedia Eng. 175: 273–278. https://doi.org/10.1016/j.proeng.2017.01.023.
Ladanyi, B., and M. Roy. 1987. “Point resistance of piles in sand.” In Proc., 9th Southeast Asian Geotechnical Conf., 6.29–6.42. Pathum Thani, Thailand: Southeast Asian Geotechnical Society, Asian Institute of Technology, and Engineering Institute of Thailand.
Mahmoodzadeh, H., M. F. Randolph, and D. Wang. 2014. “Numerical simulation of piezocone dissipation test in clays.” Géotechnique 64 (8): 657–666. https://doi.org/10.1680/geot.14.P.011.
McNeilan, T. W., and W. T. Bugno. 1985. “Cone penetration test results in offshore California silts.” In Strength testing of marine sediments: Laboratory and in-situ measurements, edited by R. Chaney, and K. Demars, 55–71. West Conshohocken, PA: ASTM.
Mead, S. P. 2011. “Faro mine remediation project–an overview.” In Proc., 6th Int. Conf. on Mine Closure, 433–440. Perth, Australia: Australian Centre for Geomechanics.
Meyerhof, G. G. 1961. “The ultimate bearing capacity of wedge-shaped foundations.” In Proc., 5th Int. Conf. on Soil Mechanics and Foundations, 103–109. Ottawa: National Research Council.
Mo, P. Q., and H. S. Yu. 2018. “A state parameter-based cavity expansion analysis for interpretation of CPT data in sands.” In Cone Penetration Testing 2018: Proc., 4th Int. Symp. on Cone Penetration Testing, 447–453. Boca Raton, FL: CRC Press.
Northcutt, S., and D. Wijewickreme. 2013. “Effect of particle fabric on the coefficient of lateral earth pressure observed during one-dimensional compression of sand.” Can. Geotech. J. 50 (5): 457–466. https://doi.org/10.1139/cgj-2012-0162.
Nova, R., and D. M. Wood. 1982. “A constitutive model for soil under monotonic and cyclic loading.” In Soil mechanics-transient and cyclic loading, 343–373. Hoboken, NJ: Wiley.
Paniagua, P., J. Fonseca, A. S. Gylland, and S. Nordal. 2015. “Microstructural study of deformation zones during cone penetration in silt at variable penetration rates.” Can. Geotech. J. 52 (12): 2088–2098. https://doi.org/10.1139/cgj-2014-0498.
Real, F., and A. Franco. 1990. “Tailings disposal at neves-corvo mine, Portugal.” Int. J. Mine Water 9 (1–4): 209–221. https://doi.org/10.1007/BF02503693.
Reid, D. 2015. “Estimating slope of critical state line from cone penetration test—An update.” Can. Geotech. J. 52 (1): 46–57. https://doi.org/10.1139/cgj-2014-0068.
Reid, D., R. Fanni, K. Koh, and I. Orea. 2018. “Characterisation of a subaqueously deposited silt iron ore tailings.” Géotech. Lett. 8 (4): 278–283. https://doi.org/10.1680/jgele.18.00105.
Robertson, P. K. 2009. “Interpretation of cone penetration tests—A unified approach.” Can. Geotech. J. 46 (11): 1337–1355. https://doi.org/10.1139/T09-065.
Robertson, P. K. 2010a. “Estimating in-situ state parameter and friction angle in sandy soils from CPT.” In Proc., 2nd Int. Symp. on Cone Penetration Testing, 471–478. Huntington Beach, CA: CPT'10 Organizing Committee.
Robertson, P. K. 2010b. “Evaluation of flow liquefaction and liquefied strength using the cone penetration test.” J. Geotech. Geoenviron. Eng. 136 (6): 842–853. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286.
Robertson, P. K., and C. E. Wride. 1998. “Evaluating cyclic liquefaction potential using the cone penetration test.” Can. Geotech. J. 35 (3): 442–459. https://doi.org/10.1139/t98-017.
Salgado, R., J. K. Mitchell, and M. Jamiolkowski. 1997. “Cavity expansion and penetration resistance in sand.” J. Geotech. Geoenviron. Eng. 123 (4): 344–354. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:4(344).
Schofield, A., and P. Wroth. 1968. Critical state soil mechanics. New York: McGraw-Hill.
Sheng, D., L. Cui, and Y. Ansari. 2013. “Interpretation of cone factor in undrained soils via full-penetration finite-element analysis.” Int. J. Geomech. 13 (6): 745–753. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000279.
Shuttle, D. A. 2006. “Can the effect of sand fabric on plastic hardening be determined using a self-bored pressuremeter?” Can. Geotech. J. 43 (7): 659–673. https://doi.org/10.1139/t06-033.
Shuttle, D. A., and J. Cunning. 2007. “Liquefaction potential of silts from CPTu.” Can. Geotech. J. 44 (1): 1–19. https://doi.org/10.1139/t06-086.
Shuttle, D. A., and M. G. Jefferies. 1998. “Dimensionless and unbiased CPT interpretation in sand.” Int. J. Numer. Anal. Methods Geomech. 22 (5): 351–391. https://doi.org/10.1002/(SICI)1096-9853(199805)22:5%3C351::AID-NAG921%3E3.0.CO;2-8.
Shuttle, D. A., and M. G. Jefferies. 2016. “Determining silt state from CPTu.” Geotech. Res. 3 (3): 90–118. https://doi.org/10.1680/jgere.16.00008.
Sladen, J. A. 1989. “Problems with interpretation of sand state from cone penetration test.” Géotechnique 39 (2): 323–332. https://doi.org/10.1680/geot.1989.39.2.323.
Susila, E., and R. D. Hryciw. 2003. “Large displacement FEM modelling of the cone penetration test (CPT) in normally consolidated sand.” Int. J. Numer. Anal. Methods Geomech. 27 (7): 585–602. https://doi.org/10.1002/nag.287.
Teh, C. I., and G. T. Houlsby. 1991. “An analytical study of the cone penetration test in clay.” Géotechnique 41 (1): 17–34. https://doi.org/10.1680/geot.1991.41.1.17.
Vesic, A. S. 1972. “Expansion of cavities in infinite soil mass.” J. Soil Mech. Found. Div. 98 (3): 265–290. https://doi.org/10.1061/JSFEAQ.0001740.
Vesic, A. S. 1977. Design of pile foundations, Synthesis of Highway Practice 42, pp. 68. Washington, DC: Transportation Research Board, National Research Council.
Vesic, A. S., and G. W. Clough. 1968. “Behavior of granular materials under high stresses.” J. Soil Mech. Found. Div. 94 (3): 661–688. https://doi.org/10.1061/JSFEAQ.0001134.
Yi, J. T., S. H. Goh, F. H. Lee, and M. F. Randolph. 2012. “A numerical study of cone penetration in fine-grained soils allowing for consolidation effects.” Géotechnique 62 (8): 707–719. https://doi.org/10.1680/geot.8.P.155.
Yu, H. S., and G. T. Houlsby. 1991. “Finite cavity expansion in dilatant soils: Loading analysis.” Géotechnique 41 (2): 173–183. https://doi.org/10.1680/geot.1991.41.2.173.
Yu, H. S., L. R. Herrmann, and R. W. Boulanger. 2000. “Analysis of steady cone penetration in clay.” J. Geotech. Geoenviron. Eng. 126 (7): 594–605. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(594).

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 1January 2022

History

Received: Apr 16, 2021
Accepted: Sep 21, 2021
Published online: Nov 10, 2021
Published in print: Jan 1, 2022
Discussion open until: Apr 10, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Senior Geotechnical Engineer, Dept. of Civil Engineering, Sharif Univ. of Technology, P.O. Box 11365-11155, Tehran 1458889694, Iran. ORCID: https://orcid.org/0000-0002-7592-5660. Email: [email protected]
Professor, Geotechnical Engineering Group, Dept. of Civil Engineering, Sharif Univ. of Technology, P.O. Box 11365-11155, Tehran 1458889694, Iran (corresponding author). ORCID: https://orcid.org/0000-0003-2563-4053. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share