Technical Papers
Jul 5, 2021

Role of Particle Breakage in Rockfill Materials: Investigated by Using Combined SBFEM/DEM with Two Different Breakage Models

Publication: International Journal of Geomechanics
Volume 21, Issue 9

Abstract

This research will investigate the numerical simulation of rockfill materials using a combined scaled boundary finite–discrete element method (SBFEM/DEM) with two breakage models. Two rockfill specimens that are subjected to biaxial compaction will be simulated. The influence of breakage on the macroscopic stress–strain behaviors will be investigated by comparing the results obtained when breakage and no breakage were considered using two different models. Further investigations will be carried out to identify the effect of particle breakage on the stress–strain relationship, particle size distribution (PSD), and the force chain transmission of the rockfill specimens under different breakage models. The simulation with Breakage Model 2 (BM2) generated more small particles than when Breakage Model 1 (BM1) was used; therefore, it had the lowest shear strength, the most contractive behavior, and the lowest interparticle contact forces. Because one particle will be crushed into many small particles in practice, BM2 was recommended as the first option.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (51909223), the CRSRI Open Research Program (CKWV2018470/KY), the Natural Science Basic Research Program of Shaanxi (2019JQ-921) and the Special Fund for the Launch of Scientific Research in Xjing University (XJ18T02).

References

Alaei, E., and A. Mahboubi. 2012. “A discrete model for simulating shear strength and deformation behaviour of rockfill material, considering the particle breakage phenomenon.” Granular Matter 14 (6): 707–717. https://doi.org/10.1007/s10035-012-0367-7.
Bagherzadeh-Khalkakhali, A., A. A. Mirghasemi, and S. Mohammadi. 2008. “Micromechanics of breakage in sharp-edge particles using combined DEM and FEM.” Particuology 6 (5): 347–361. https://doi.org/10.1016/j.partic.2008.07.002.
Bagherzadeh-Khalkakhali, A., A. A. Mirghasemi, and S. Mohammadi. 2011. “Numerical simulation of particle breakage of angular particles using combined DEM and FEM.” Powder Technol. 205 (1–3): 15–29. https://doi.org/10.1016/j.powtec.2010.07.034.
Ben-Nun, O., I. Einav, and A. Tordesillas. 2010. “Force attractor in confined comminution of granular materials.” Phys. Rev. Lett. 104 (10): 108001. https://doi.org/10.1103/PhysRevLett.104.108001.
Bolton, M. D., Y. Nakata, and Y. P. Cheng. 2008. “Micro- and macromechanical behaviour of DEM crushable materials.” Géotechnique 58 (6): 471–480. https://doi.org/10.1680/geot.2008.58.6.471.
Cheng, Y. P., M. D. Bolton, and Y. Nakata. 2004. “Crushing and plastic deformation of soils simulated using DEM.” Géotechnique 54 (2): 131–141. https://doi.org/10.1680/geot.2004.54.2.131.
Cundall, P. A., and O. D. L. Strack. 1979. “A discrete numerical model for granular assemblies.” Géotechnique 29 (1): 47–65. https://doi.org/10.1680/geot.1979.29.1.47.
Deeks, A. J., and J. P. Wolf. 2002. “A virtual work derivation of the scaled boundary finite-element method for elastostatics.” Comput. Mech. 28 (6): 489–504. https://doi.org/10.1007/s00466-002-0314-2.
Feng, Y. T., and D. R. J. Owen. 2004. “A 2D polygon/polygon contact model: Algorithmic aspects.” Eng. Comput. 21 (2/3/4): 265–277. https://doi.org/10.1108/02644400410519785.
Fragaszy, R. J., and M. E. Voss. 1986. “Undrained compression behavior of sand.” J. Geotech. Eng. 112 (3): 334–347. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(334).
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hoek, E., and E. T. Brown. 1997. “Practical estimates of rock mass strength.” Int. J. Rock Mech. Min. Sci. 34 (8): 1165–1186. https://doi.org/10.1016/S1365-1609(97)80069-X.
Jensen, R. P., M. E. Plesha, T. B. Edil, P. J. Bosscher, and N. B. Kahla. 2001. “DEM simulation of particle damage in granular media—structure interfaces.” Int. J. Geomech. 1 (1): 21–39. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:1(21).
Lobo-Guerrero, S., and L. E. Vallejo. 2005. “Analysis of crushing of granular material under isotropic and biaxial stress conditions.” Soils Found. 45 (4): 79–87. https://doi.org/10.3208/sandf.45.4_79.
Luo, T., E. T. Ooi, A. H. C. Chan, and S. J. Fu. 2017. “The combined scaled boundary finite-discrete element method: Grain breakage modelling in cohesion-less granular media.” Comput. Geotech. 88: 199–221. https://doi.org/10.1016/j.compgeo.2017.03.012.
Ma, G., Y. Chen, F. Yao, W. Zhou, and Q. Wang. 2019. “Evolution of particle size and shape towards a steady state: Insights from FDEM simulations of crushable granular materials.” Comput. Geotech. 112: 147–158. https://doi.org/10.1016/j.compgeo.2019.04.022.
Ma, G., W. Zhou, and X. Chang. 2014. “Modeling the particle breakage of rockfill materials with the cohesive crack model.” Comput. Geotech. 61: 132–143. https://doi.org/10.1016/j.compgeo.2014.05.006.
Ma, G., Y. Zou, Y. Chen, L. Tang, T. Ng, and W. Zhou. 2021. “Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials.” Powder Technol. 378: 263–273. https://doi.org/10.1016/j.powtec.2020.09.053.
Marsal, R. J. 1967. “Large scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43. https://doi.org/10.1061/JSFEAQ.0000958.
McDowell, G. R. 2002. “On the yielding and plastic compression of sand.” Soils Found. 42 (1): 139–145. https://doi.org/10.3208/sandf.42.139.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., M. R. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
McDowell, G. R., and J. P. de Bono. 2013. “On the micro mechanics of one-dimensional normal compression.” Géotechnique 63 (11): 895–908. https://doi.org/10.1680/geot.12.P.041.
McDowell, G. R., and O. Harrireche. 2002. “Discrete element modelling of yielding and normal compression of sand.” Géotechnique 52 (4): 299–304. https://doi.org/10.1680/geot.2002.52.4.299.
Munjiza, A., K. R. F. Andrews, and J. K. White. 1999. “Combined single and smeared crack model in combined finite-discrete element analysis.” Int. J. Numer. Methods Eng. 44 (1): 41–57. https://doi.org/10.1002/(SICI)1097-0207(19990110)44:1%3C41::AID-NME487%3E3.0.CO;2-A.
Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001a. “Microscopic particle crushing of sand subjected to high pressure One-dimensional compression.” Soils Found. 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
Nakata, Y., Y. Kato, M. Hyodo, A. F. L. Hyde, and H. Murata. 2001b. “One-Dimensional compression behaviour of uniformly graded sand related to single particle crushing strength.” Soils Found. 41 (2): 39–51. https://doi.org/10.3208/sandf.41.2_39.
Ooi, E. T., C. Song, F. Tin-Loi, and Z. Yang. 2012. “Polygon scaled boundary finite elements for crack propagation modelling.” Int. J. Numer. Methods Eng. 91 (3): 319–342. https://doi.org/10.1002/nme.4284.
Raisianzadeh, J., A. A. Mirghasemi, and S. Mohammadi. 2018. “2D simulation of breakage of angular particles using combined DEM and XFEM.” Powder Technol. 336: 282–297. https://doi.org/10.1016/j.powtec.2018.06.006.
Raisianzadeh, J., S. Mohammadi, and A. A. Mirghasemi. 2019. “Micromechanical study of particle breakage in 2D angular rockfill media using combined DEM and XFEM.” Granular Matter 21 (3): 48. https://doi.org/10.1007/s10035-019-0904-8.
Song, C., and J. P. Wolf. 1997. “The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics.” Comput. Methods Appl. Mech. Eng. 147 (3–4): 329–355. https://doi.org/10.1016/S0045-7825(97)00021-2.
Talischi, C., G. H. Paulino, A. Pereira, and I. F. M. Menezes. 2012. “Polymesher: A general-purpose mesh generator for polygonal elements written in Matlab.” Struct. Multidiscip. Optim. 45 (3): 309–328. https://doi.org/10.1007/s00158-011-0706-z.
Tsoungui, O., D. Vallet, and J. C. Charmet. 1999. “Numerical model of crushing of grains inside two-dimensional granular materials.” Powder Technol. 105 (1–3): 190–198. https://doi.org/10.1016/S0032-5910(99)00137-0.
Wang, P., Z. Karatza, and C. Arson. 2019. “DEM modelling of sequential fragmentation of zeolite granules under oedometric compression based on XCT observations.” Powder Technol. 347: 66–75. https://doi.org/10.1016/j.powtec.2019.02.050.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Chen, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., C. S. Desai, A. Daouadji, A. W. Stuedlein, H. Liu, and H. Abuel-Naga. 2020b. “Grain crushing in geoscience materials–key issues on crushing response, measurement and modeling: Review and preface.” Geosci. Front. 11 (2): 363–374. https://doi.org/10.1016/j.gsf.2019.11.006.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014a. “Bounding surface model for rockfill materials dependent on density and pressure under triaxial stress conditions.” J. Eng. Mech. 140 (4): 04014002. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000702.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014b. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019a. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2020c. “Effects of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (2): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., Z. Sun, C. S. Desai, and M. Meng. 2019b. “Strength and surviving probability in grain crushing under acidic erosion and compression.” Int. J. Geomech. 19 (11): 04019123. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019c. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Zhou, W., D. Wang, G. Ma, X. Cao, C. Hu, and W. Wu. 2020. “Discrete element modeling of particle breakage considering different fragment replacement modes.” Powder Technol. 360: 312–323. https://doi.org/10.1016/j.powtec.2019.10.002.
Zhou, X., G. Ma, and Y. Zhang. 2019. “Grain size and time effect on the deformation of rockfill dams: A case study on the Shuibuya CFRD.” Géotechnique 69 (7): 606–619. https://doi.org/10.1680/jgeot.17.P.299.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 9September 2021

History

Received: Oct 13, 2020
Accepted: May 7, 2021
Published online: Jul 5, 2021
Published in print: Sep 1, 2021
Discussion open until: Dec 5, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing Univ., Xi’an 710123, China; Visiting Scholar, Key Laboratory of Geomechanics and Engineering, Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China. ORCID: https://orcid.org/0000-0002-7905-5973. Email: [email protected]
Graduate Student, Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing Univ., Xi’an 710123, China. Email: [email protected]
Associate Professor, Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing Univ., Xi’an 710123, China (corresponding author). Email: [email protected]
Yongzhen Zuo [email protected]
Senior Engineer, Key Laboratory of Geomechanics and Engineering, Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, China. Email: [email protected]
Huanfeng Qiu [email protected]
Senior Engineer, Institute of Hydropower and Water Conservancy Engineering, PowerChina Guiyang Engineering Corporation Limited, Guizhou 550081, China. Email: [email protected]
Senior Engineer, General Management Department, PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Stochastic Finite-Element Analysis of Earth–Rockfill Dams Considering the Spatial Variability of Soil Parameters, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002454, 22, 12, (2022).
  • Fracturing and Ultimate State of Binary Carbonate Sands, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002450, 22, 7, (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share