Technical Papers
Mar 10, 2021

Effects of Leachate Recirculation System Variables on Long-Term Bioreactor Landfill Performance Using Coupled Thermo-Hydro-Bio-mechanical Model

Publication: International Journal of Geomechanics
Volume 21, Issue 5

Abstract

This study will apply a newly developed coupled thermo-hydro-bio-mechanical (CTHBM) numerical model to a typical full-scale landfill cell geometry with horizontal trenches (HTs) as the leachate recirculation system (LRS) and will evaluate the effect of the leachate injection pressure (IP), the horizontal spacing of the leachate injection locations (IS), and the mode of leachate injection (IM), on some of the major long-term hydraulic (e.g., wetted area), mechanical (e.g., differential waste settlement), biochemical [e.g., methane (CH4) gas production], and thermal (e.g., elevated temperatures) characteristics of bioreactor landfills. Based on the results from a series of numerical simulations with different IP, IS, and IM, it was determined that the variable IP had the most significant impact on the landfill performance compared with IS or IM. Higher IPs lead to a linear increase in the wetted area and a corresponding increase in the degraded waste area, thereby reducing the time taken for waste stabilization. However, an increase in IP leads to larger elevated temperature zones within the landfill and larger differential settlements on the landfill surface. Larger IS caused significantly higher differential waste settlements due to the formation of unwetted zones within the landfill cell. Increasing the duration of gaps between the intermittent injection periods significantly reduced the extent of elevated temperature zones formed within the landfill. The relative shear displacements in the geosynthetic interface in the bottom liner and final cover system were mainly influenced by the IP.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) (CMMI #1537514), Environmental Research and Education Foundation (EREF), and the Itasca Education Program by Itasca Consulting Group Inc. (ICGI). Any opinions, findings, conclusions, and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the EREF, ICGI, or NSF. Special thanks to Dr. Christine Detournay for her valuable guidance in using the FLAC code in this study.

References

Bareither, C. A., C. H. Benson, M. A. Barlaz, T. B. Edil, and T. M. Tolaymat. 2010. “Performance of North American bioreactor landfills. I: Leachate hydrology and waste settlement.” J. Environ. Eng. 136 (8): 824–838. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000219.
Bareither, C. A., R. J. Breitmeyer, C. H. Benson, M. A. Barlaz, and T. B. Edil. 2012. “Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance.” J. Geotech. Geoenviron. Eng. 138 (6): 658–670. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000636.
Barlaz, M. A., C. A. Bareither, A. Hossain, J. Saquing, I. Mezzari, C. H. Benson, T. M. Tolaymat, and R. Yazdani. 2010. “Performance of North American bioreactor landfills. II: Chemical and biological characteristics.” J. Environ. Eng. 136 (8): 839–853. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000220.
Benson, C. 2017. “Characteristics of gas and leachate at an elevated temperature landfill.” In Geotechnical frontiers 2017, waste containment, barriers, remediation, and sustainable geoengineering, Geotechnical Special Publication 276, edited by T. Brandon and R. Valentine, 313–322. Reston, VA: ASCE.
Benson, C. H., M. A. Barlaz, D. T. Lane, and J. M. Rawe. 2007. “Practice review of five bioreactor/recirculation landfills.” Waste Manage. 27 (1): 13–29. https://doi.org/10.1016/j.wasman.2006.04.005.
Bente, S., V. Krase, U. Kowalsky, and D. Dinkler. 2017. “Model for degradation-induced settlements as part of a coupled landfill model.” Int. J. Numer. Anal. Methods Geomech. 41 (12): 1390–1410. https://doi.org/10.1002/nag.2687.
Byrne, R. J. 1994. “Design issues with strain-softening interfaces in landfill liners.” In Proc., Waste Technology. Session 4, Paper 4. Charleston, SC: Np.
Chen, Y. M., X. B. Xu, and L. T. Zhan. 2012. “Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model.” Sci. China Technol. Sci. 55 (1): 81–89. https://doi.org/10.1007/s11431-011-4667-7.
Chen, Y. M., W. J. Xu, D. S. Ling, L. T. Zhan, and W. Gao. 2020. “A degradation–consolidation model for the stabilization behavior of landfilled municipal solid waste.” Comput. Geotech. 118: 103341. https://doi.org/10.1016/j.compgeo.2019.103341.
Fei, X., and D. Zekkos. 2018. “Coupled experimental assessment of physico-biochemical characteristics of municipal solid waste undergoing enhanced biodegradation.” Géotechnique 68 (12): 1031–1043. https://doi.org/10.1680/jgeot.16.P.253.
Feng, S.-J., B.-Y. Cao, X. Zhang, and H.-J. Xie. 2015. “Modeling of leachate recirculation using vertical wells in bioreactor landfills.” Environ. Sci. Pollut. Res. 22 (12): 9067–9079. https://doi.org/10.1007/s11356-014-4045-7.
Feng, S.-J., Q.-T. Zheng, and H. X. Chen. 2017. “Unsaturated flow parameters of municipal solid waste.” Waste Manage. 63: 107–121. https://doi.org/10.1016/j.wasman.2017.01.025.
Filz, G. M., J. J. B. Esterhuizen, and J. M. Duncan. 2001. “Progressive failure of lined waste impoundments.” J. Geotech. Geoenviron. Eng. 127 (10): 841–848. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(841).
Gawande, N. A., D. R. Reinhart, and G.-T. Yeh. 2010. “Modeling microbiological and chemical processes in municipal solid waste bioreactor, part I: Development of a three-phase numerical model BIOKEMOD-3P.” Waste Manage. 30 (2): 202–210. https://doi.org/10.1016/j.wasman.2009.09.009.
Giri, R. K., and K. R. Reddy. 2014a. “Design charts for selecting minimum setback distance from side slope to horizontal trench system in bioreactor landfills.” Geotech. Geol. Eng. 32 (4): 1017–1027. https://doi.org/10.1007/s10706-014-9777-0.
Giri, R. K., and K. R. Reddy. 2014b. “Slope stability of bioreactor landfill with leachate recirculation using horizontal trench system.” In Geoenvironmental Engineering, Geotechnical Special Publication 241, edited by K. R. Reddy and S. Shen, 120–129. Reston, VA: ASCE.
Gonzalorena, R., A. López, and A. Lobo. 2011. “Simulation of the Southampton isolated landfill cell using Moduelo 4.0.” In Proc., 4th Int. Workshop, Hydro-Physico-Mechanics of Landfills. Santander, Spain: Np.
Haarstrick, A., D. C. Hempel, L. Ostermann, H. Ahrens, and D. Dinkler. 2001. “Modelling of the biodegradation of organic matter in municipal landfills.” Waste Manage. Res. 19 (4): 320–331. https://doi.org/10.1177/0734242X0101900409.
Hanson, J. L., N. Yeşiller, M. T. Onnen, W.-L. Liu, N. K. Oettle, and J. A. Marinos. 2013. “Development of numerical model for predicting heat generation and temperatures in MSW landfills.” Waste Manage. 33 (10): 1993–2000. https://doi.org/10.1016/j.wasman.2013.04.003.
Hao, Z., M. Sun, J. J. Ducoste, C. H. Benson, S. Luettich, M. J. Castaldi, and M. A. Barlaz. 2017. “Heat generation and accumulation in municipal solid waste landfills.” Environ. Sci. Technol. 51 (21): 12434–12442. https://doi.org/10.1021/acs.est.7b01844.
Haydar, M. M., and M. V. Khire. 2005. “Leachate recirculation using horizontal trenches in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 131 (7): 837–847. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(837).
Hubert, J., X. F. Liu, and F. Collin. 2016. “Numerical modeling of the long term behavior of municipal solid waste in a bioreactor landfill.” Comput. Geotech. 72: 152–170. https://doi.org/10.1016/j.compgeo.2015.10.007.
Hudson, A. P. 2007. “Evaluation of the vertical and horizontal hydraulic conductivities of household wastes.” Ph.D. thesis, School of Civil Engineering and the Environment, Univ. of Southampton.
ICGI (Itasca Consulting Group, Inc.). 2019. FLAC – Fast Lagrangian analysis of continua. Minneapolis ICGI.
ITRC (Interstate Technology & Regulatory Council ). 2006. Characterization, design, construction and monitoring of bioreactor landfills. Washington, DC: Alternative Landfill Technologies Team, ITRC.
Ivanova, L. K., D. J. Richards, and D. J. Smallman. 2008a. “The long-term settlement of landfill waste.” Proc. Inst. Civ. Eng. Waste Resour. Manag. 161 (3): 121–133.
Ivanova, L. K., D. J. Richards, and D. J. Smallman. 2008b. “Assessment of the anaerobic biodegradation potential of MSW.” Proc. Inst. Civ. Eng. Waste Resour. Manag. 161 (4): 167–180.
Jafari, N. H., T. D. Stark, and T. Thalhamer. 2017. “Spatial and temporal characteristics of elevated temperatures in municipal solid waste landfills.” Waste Manage. 59: 286–301. https://doi.org/10.1016/j.wasman.2016.10.052.
Jain, P., T. G. Townsend, and T. M. Tolaymat. 2010. “Steady-state design of vertical wells for liquids addition at bioreactor landfills.” Waste Manage. 30 (11): 2022–2029. https://doi.org/10.1016/j.wasman.2010.02.020.
Jones, D. R. V., and N. Dixon. 1998. “Shear strength properties of geomembrane/geotextile interfaces.” Geotext. Geomembr. 16 (1): 45–71. https://doi.org/10.1016/S0266-1144(97)10022-X.
Jones, D., and N. Dixon. 2005. “Landfill lining stability and integrity: The role of waste settlement.” Geotext. Geomembr. 23 (1): 27–53. https://doi.org/10.1016/j.geotexmem.2004.08.001.
Karademir, T. 2011. “Elevated temperature effects on interface shear behavior.” Ph.D. thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology.
Khire, M. V., T. Johnson, and R. Holt. 2020. “Geothermal modeling of elevated temperature landfills.” In GeoCongress 2020: Modeling, Geomaterials, and Site Characterization, Geotechnical Special Publication 317, edited by J. P. Hambleton, R. Makhnenko, and A. S. Budge, pp. 417–424. Reston, VA: ASCE.
Kowalsky, U., S. Bente, and D. Dinkler. 2014. “Modeling of coupled THMC processes in porous media.” Coupled Syst. Mech. 3 (1): 27–52. https://doi.org/10.12989/csm.2014.3.1.027.
Kumar, G., K. Kopp, K. R. Reddy, J. L. Hanson, and N. Yeşiller. 2019. “Incorporating thermal effects in modeling of MSW landfills.” In Vol. 2 of Proc., 8th Int. Congress on Environmental Geotechnics, edited by L. Zhan, Y. Chen, and A. Bouazza. Singapore: Springer.
Kumar, G., K. Kopp, K. R. Reddy, J. L. Hanson, and N. Yeşiller. 2020a. “Influence of waste temperatures on long-term landfill performance: Coupled numerical modeling.” J. Environ. Eng. 147 (3): 04020158. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001855.
Kumar, G., and K. R. Reddy. 2019a. “Constitutive models for municipal solid waste in landfills.” In Proc., XVI Pan-American Conf. on Soil Mechanics and Geotechnical Engineering, Geotechnical Engineering in the XXI Century: Lessons Learned and Future Challenges, 654–662. Amsterdam, Netherlands: IOS Press.
Kumar, G., and K. R. Reddy. 2019b. “Rapid stabilization of municipal solid waste in bioreactor landfills: Predictive performance using coupled modeling.” Global NEST J. 21 (4): 505–512.
Kumar, G., and K. R. Reddy. 2020a. “Comprehensive coupled thermo-hydro-bio-mechanical model for holistic performance assessment of municipal solid waste landfills.” Comput. Geotech. (In Press). https://doi.org/10.1016/j.compgeo.2020.103920.
Kumar, G., and K. R. Reddy. 2020b. “Numerical modeling of temperature effects on stability and integrity of geomembrane – geotextile interface in municipal solid waste landfill.” Int. J. Geosyn. Ground Eng. (Under Review).
Kumar, G., and K. R. Reddy. 2020c. “Numerical modeling of landfill processes: Complexity vs. practicality.” In Vol. 89 of Sustainable Environmental Geotechnics, edited by K. R. Reddy, A. K. Agnihotri, Y. Yukselen-Aksoy, B. K. Dubey, and A. Bansal, 85–94. Cham: Springer. Chapter 10, Lecture Notes in Civil Engineering, (ISBN: 9783030513498).
Kumar, G., K. R. Reddy, and C. D. Foster. 2020c. “Modeling elasto-visco-bioplastic mechanical behavior of municipal solid waste in landfills.” Acta Geotech. https://doi.org/10.1007/s11440-020-01072-x.
Kumar, G., K. R. Reddy, and J. R. McDougall. 2020b. “Numerical modeling of coupled biochemical and thermal behavior of municipal solid waste in landfills.” Comput. Geotech. 128: 103836. https://doi.org/10.1016/j.compgeo.2020.103836.
Liu, W. L. 2007. “Thermal analysis of landfills.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Wayne State Univ.
Lu, S.-F., J.-H. Xiong, S.-J. Feng, H.-X. Chen, Z.-B. Bai, W.-D. Fu, and F. Lü. 2019. “A finite-volume numerical model for bio-hydro-mechanical behaviors of municipal solid waste in landfills.” Comput. Geotech. 109: 204–219. https://doi.org/10.1016/j.compgeo.2019.01.012.
Machado, S. L., M. F. Carvalho, and O. M. Vilar. 2002. “Constitutive model for municipal solid waste.” J. Geotech. Geoenviron. Eng. 128 (11): 940–951. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940).
Machado, S. L., O. M. Vilar, and M. F. Carvalho. 2008. “Constitutive model for long term municipal solid waste mechanical behavior.” Comput. Geotech. 35 (5): 775–790. https://doi.org/10.1016/j.compgeo.2007.11.008.
Machado, S. L., O. M. Vilar, M. de Fátima Carvalho, and M. Karimpour-Fard. 2017. “A constitutive framework to model the undrained loading of municipal solid waste.” Comput. Geotech. 85: 207–219. https://doi.org/10.1016/j.compgeo.2016.12.002.
Martin, J. W., T. D. Stark, T. Thalhamer, G. T. Gerbasi-Graf, and R. E. Gortner. 2013. “Detection of aluminum waste reactions and waste fires.” J. Hazard. Toxic Radioact. Waste 17 (3): 164–174. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000171.
McDougall, J. 2007. “A hydro-bio-mechanical model for settlement and other behaviour in landfilled waste.” Comput. Geotech. 34 (4): 229–246. https://doi.org/10.1016/j.compgeo.2007.02.004.
Noorany, I., J. A. Sweet, and I. M. Smith. 1992. “Deformation of fill slopes caused by wetting.” In Vol. 2 of Stability and performance of slopes and embankments II, Geotechnical Special Publication 31, edited by R. B. Seed and R. W. Boulanger, 1244–1257. New York: ASCE.
Olivier, F., and J.-P. Gourc. 2007. “Hydro-mechanical behavior of municipal solid waste subject to leachate recirculation in a large-scale compression reactor cell.” Waste Manage. 27 (1): 44–58. https://doi.org/10.1016/j.wasman.2006.01.025.
ORNL (Oak Ridge National Laboratory). 1981. Regional analysis of ground and above-ground climate. Rep. No. ORNL/Sub-81/40451/1. Washington, DC: U.S. Department of Energy, Office of Buildings Energy, R&D.
Reddy, K. R., J. Gangathulasi, N. S. Parakalla, H. Hettiarachchi, J. E. Bogner, and T. Lagier. 2009b. “Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations.” Waste Manage. Res. 27 (6): 578–587. https://doi.org/10.1177/0734242X09103825.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, and J. E. Bogner. 2011. “Geotechnical properties of municipal solid waste at different phases of biodegradation.” Waste Manage. 31 (11): 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, J. Bogner, and T. Lagier. 2009c. “Geotechnical properties of synthetic municipal solid waste.” Int. J. Geotech. Eng. 3 (3): 429–438. https://doi.org/10.3328/IJGE.2009.03.03.429-438.
Reddy, K. R., H. Hettiarachchi, N. S. Parakalla, J. Gangathulasi, and J. E. Bogner. 2009a. “Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA.” Waste Manage. 29 (2): 952–959. https://doi.org/10.1016/j.wasman.2008.05.011.
Reddy, K. R., H. S. Kulkarni, and M. V. Khire. 2013. “Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills.” J. Hazard. Toxic Radioact. Waste 17 (4): 272–284. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000180.
Reddy, K. R., G. Kumar, and R. K. Giri. 2017a. “Modeling coupled processes in municipal solid waste landfills: An overview with key engineering challenges.” Int. J. Geosynth. Ground Eng. 3 (1): 6. https://doi.org/10.1007/s40891-016-0082-2.
Reddy, K. R., G. Kumar, and R. K. Giri. 2017b. “Influence of dynamic coupled hydro-bio-mechanical processes on response of municipal solid waste and liner system in bioreactor landfills.” Waste Manage. 63: 143–160. https://doi.org/10.1016/j.wasman.2016.12.040.
Reddy, K. R., G. Kumar, and R. K. Giri. 2018a. “Modeling coupled hydro-bio-mechanical processes in bioreactor landfills: Framework and validation.” Int. J. Geomech. 18 (9): 04018102. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001164.
Reddy, K. R., G. Kumar, and R. K. Giri. 2018b. “System effects on bioreactor landfill performance based on coupled hydro-bio-mechanical modeling.” J. Hazard. Toxic Radioact. Waste 22 (1): 04017024. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000379.
Reddy, K. R., G. Kumar, R. K. Giri, and B. M. Basha. 2018c. “Reliability assessment of bioreactor landfills using Monte Carlo simulation and coupled hydro-bio-mechanical model.” Waste Manage. 72: 329–338. https://doi.org/10.1016/j.wasman.2017.11.010.
Rivière, D., V. Vigneron, N. Baffaleuf, G. Le Lay, M. Guerbois, and J. Cacho Rivero. 2011. “Diagnostic of a French bioreactor landfill after 8.5 years of degradation.” In Proc., Sardinia 2011, 13th Int. Waste Management and Landfill Symp., 497–498. Santa Margherita di Pula, Italy: Np.
Schupp, S. 2020. “Evaluating the temperature range for biological activity in landfills experiencing elevated temperatures.” Ph.D. thesis, Dept. of Civil, Construction, and Environmental Engineering, North Carolina State Univ.
Sharma, H. D., and K. R. Reddy. 2004. Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Hoboken, NJ: John Wiley & Sons.
Sia, A. H. I., and N. Dixon. 2012. “Numerical modelling of landfill lining system–waste interaction: Implications of parameter variability.” Geosynth. Int. 19 (5): 393–408. https://doi.org/10.1680/gein.12.00025.
Singh, K., R. Kadambala, P. Jain, Q. Xu, and T. G. Townsend. 2014. “Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection.” Waste Manage. Res. 32 (6): 482–491. https://doi.org/10.1177/0734242X14532003.
Stark, T. D., J. W. Martin, G. T. Gerbasi, T. Thalhamer, and R. E. Gortner. 2012. “Aluminum waste reaction indicators in a municipal solid waste landfill.” J. Geotech. Geoenviron. Eng. 138 (3): 252–261. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000581.
Staub, M. J., J.-P. Gourc, N. Drut, G. Stoltz, and A. A. Mansour. 2013. “Large-scale bioreactor pilots for monitoring the long-term hydromechanics of MSW.” J. Hazard. Toxic Radioact. Waste 17 (4): 285–294. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000160.
Townsend, T. G., J. Powell, P. Jain, Q. Xu, T. Tolaymat, and D. Reinhart. 2015. Sustainable practices for landfill design and operation. Singapore: Springer.
USEPA. 2019. “Advancing sustainable materials management: 2015 fact sheet.” Accessed August 16, 2020. https://www.epa.gov/sites/production/files/2019-11/documents/2017_facts_and_figures_fact_sheet_final.pdf.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
White, J. K., and R. P. Beaven. 2013. “Developments to a landfill processes model following its application to two landfill modelling challenges.” Waste Manage. 33 (10): 1969–1981. https://doi.org/10.1016/j.wasman.2012.12.006.
Xu, Q., T. Tolaymat, and T. G. Townsend. 2012. “Impact of pressurized liquids addition on landfill slope stability.” J. Geotech. Geoenviron. Eng. 138 (4): 472–480. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000609.
Zekkos, D., J. D. Bray, E. Kavazanjian Jr., N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).
Zhan, L.-T., H. Xu, Y.-M. Chen, J.-W. Lan, W.-A. Lin, X.-B. Xu, and P.-J. He. 2017. “Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Liquid-gas interactions observed from a large-scale experiment.” Waste Manage. 68: 307–318. https://doi.org/10.1016/j.wasman.2017.06.023.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 5May 2021

History

Received: Aug 19, 2020
Accepted: Nov 28, 2020
Published online: Mar 10, 2021
Published in print: May 1, 2021
Discussion open until: Aug 10, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chicago, 842 West Taylor St., Chicago, IL 60607. ORCID: https://orcid.org/0000-0002-6089-3029. Email: [email protected]
Professor, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois at Chicago, 842 West Taylor St., Chicago, IL 60607 (corresponding author). ORCID: https://orcid.org/0000-0002-6577-1151. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share