Technical Papers
Feb 22, 2021

Constitutive Modeling for Two Sands under High Pressure

Publication: International Journal of Geomechanics
Volume 21, Issue 5

Abstract

Particle breakage is a typical characteristic of crushable granular soil under high pressure, which has great effects on its stress–strain behaviors. The phenomenon of the critical state line (CSL) shifting downward in the compression plane caused by particle breakage was depicted by a breakage-dependent critical state plane (BCSP). Particle breakage was incorporated into a void ratio–pressure state parameter to modify Rowe’s stress–dilatancy equation, and then, the state parameter was incorporated into the bounding stress ratio and plastic modulus. Due to the impact of high pressure on particle breakage, the pressure-dependent plastic modulus parameters were introduced. A breakage-dependent bounding surface plasticity model was proposed to capture the influence of particle breakage on the state-dependent stress–strain behaviors for silica and coral sands, and the transition of complex breakage-dependent critical states resulted from the competition between the contraction due to particle breakage and the dilatancy due to particle rearrangement.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51922024, 41831282, 51978104, and 51678094) and the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyjjqX0014).

Notation

The following symbols are used in this paper:
Br
relative breakage index (unit: %);
d
dilatancy;
dp′ and dq
mean effective stress increment and deviatoric stress increment, respectively (unit: MPa);
d0, α ϑd, and kd
dilatancy parameters;
dɛa
axial strain increment (unit: %);
dɛv and dɛs
volumetric strain and shear strain increments, respectively (unit: %);
dεve and dεse
elastic volumetric and shear strain increments, respectively (unit: %);
dεvp and dεsp
plastic volumetric and shear strain increments, respectively (unit: %);
e
current void ratio;
e0
initial void ratio;
ecs
critical state void ratio;
ecs0
initial critical state void ratio;
G0
elastic shear modulus parameter;
Hp
plastic modulus;
h0
pressure-dependent plastic modulus parameter;
Iep
void ratio–pressure state parameter;
Iep0
initial void ratio–pressure state parameter;
Ke and Ge
elastic bulk modulus and elastic shear modulus, respectively;
kb
bounding stress-ratio parameter;
kW
breakage-energy parameter;
Mb
bounding stress ratio;
Mcs
critical state stress ratio;
nvf and nsf
compression-related and shearing-related components of the loading unit vector, respectively;
nvg and nsg
compression-related and shearing-related components of the plastic flow unit vector, respectively;
pa
atmospheric pressure (unit: MPa);
p
mean effective stress (unit: MPa);
pcs
critical-state mean effective stress (unit: MPa);
p0
initial confining pressure (unit: MPa);
q
deviatoric stress (unit: MPa);
Sb
coefficients of bounding stress ratio;
Sd
coefficient of dilatancy ratio;
Wp
plastic work (unit: MJ/m3);
η
stress ratio;
λ, eB0, kB and χB
breakage-dependent critical-state parameters;
σ1 and σ3
maximum and minimum principle stress, respectively (unit: MPa);
ϕcs
critical state friction angle (unit: degree);
ϕm and ψm
mobilized friction angle and dilatation angle, respectively (unit: degree);
χh and kh
plastic modulus parameters;
χW
breakage-energy parameter (unit: MJ/m3); and
υ
Poisson’s ratio.

References

Alonso, E. E., E. E. Romero, and E. Ortega. 2016. “Yielding of rockfill in relative humidity-controlled triaxial experiments.” Acta Geotech. 11 (3): 455–477. https://doi.org/10.1007/s11440-016-0437-9.
Altuhafi, F. N., R. J. Jardine, V. N. Georgiannou, and W. W. Moinet. 2018. “Effects of particle breakage and stress reversal on the behaviour of sand around displacement piles.” Géotechnique 68 (6): 546–555. https://doi.org/10.1680/jgeot.17.P.117.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Bardet, J. P. 1986. “Bounding surface plasticity model for sands.” J. Eng. Mech. 112 (11): 1198–1217. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1198).
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Been, K., M. G. Jefferiest, and J. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Chang, D., Y. Lai, and J. Gao. 2019. “An investigation on the constitutive response of frozen saline coarse sandy soil based on particle breakage and plastic shear mechanisms.” Cold Reg. Sci. Technol. 159 (March): 94–105. https://doi.org/10.1016/j.coldregions.2018.12.011.
Chen, Q., B. Indraratna, J. P. Carter, and S. Nimbalkar. 2016. “Isotropic-kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space.” Can. Geotech. J. 53 (4): 646–658. https://doi.org/10.1139/cgj-2015-0166.
Chen, W.-B., K. Liu, Z.-Y. Yin, and J.-H. Yin. 2020. “Crushing and flooding effects on one-dimensional time-dependent behaviors of a granular soil.” Int. J. Geomech. 20 (2): 04019156. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001560.
Chiu, C. F., and X. J. Fu. 2008. “Interpreting undrained instability of mixed soils by equivalent intergranular state parameter.” Géotechnique 58 (9): 751–755. https://doi.org/10.1680/geot.2008.58.9.751.
Chu, J., and W. K. Leong. 2002. “Effect of fines on instability behaviour of loose sand.” Géotechnique 52 (10): 751–755. https://doi.org/10.1680/geot.2002.52.10.751.
Chu, J., and D. Wanatowski. 2008. “Instability conditions of loose sand in plane strain.” J. Geotech. Geoenviron. Eng. 134 (1): 136–142. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(136).
Chu, J., and D. Wanatowski. 2009. “Effect of loading mode on strain softening and instability behavior of sand in plane-strain tests.” J. Geotech. Geoenviron. Eng. 135 (1): 108–120. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(108).
Ciantia, M. O., M. Arroyo, C. O'Sullivan, A. Gens, and T. Liu. 2019. “Grading evolution and critical state in a discrete numerical model of Fontainebleau sand.” Géotechnique 69 (1): 1–15. https://doi.org/10.1680/jgeot.17.P.023.
Ciantia, M. O., and C. O’Sullivan. 2020. “Calculating the state parameter in crushable sands.” Int. J. Geomech. 20 (7): 04020095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001707.
Cil, M. B., R. C. Hurley, and L. Graham-Brady. 2020. “Constitutive model for brittle granular materials considering competition between breakage and dilation.” J. Eng. Mech. 146 (1): 04019110. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001690.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Dafalias, Y. F., and E. P. Popov. 1976. “Plastic internal variables formalism of cyclic plasticity.” J. Appl. Mech. 43 (4): 645–651. https://doi.org/10.1115/1.3423948.
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
Desai, C. S. 2000. “Evaluation of liquefaction using disturbed state and energy approaches.” J. Geotech. Geoenviron. Eng. 126 (7): 618–631. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(618).
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Fukuoka, H., K. Sassa, and G. Wang. 2007. “Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests.” Landslides 4 (1): 63–74. https://doi.org/10.1007/s10346-006-0053-0.
Fukuoka, H., K. Sassa, G. Wang, and R. Sasaki. 2006. “Observation of shear zone development in ring-shear apparatus with a transparent shear box.” Landslides 3 (3): 239–251. https://doi.org/10.1007/s10346-006-0043-2.
Gajo, A., and D. M. Wood. 1999. “Severn-Trent sand: A kinematic-hardening constitutive model: The qp formulation.” Géotechnique 49 (5): 595–614. https://doi.org/10.1680/geot.1999.49.5.595.
Ganju, E., F. Han, M. Prezzi, R. Salgado, and J. S. Pereira. 2020. “Quantification of displacement and particle crushing around a penetrometer tip.” Geosci. Front. 11 (2): 389–399. https://doi.org/10.1016/j.gsf.2019.05.007.
Ghafghazi, M., D. A. Shuttle, and J. T. DeJong. 2014. “Particle breakage and the critical state of sand.” Soils Found. 54 (3): 451–461. https://doi.org/10.1016/j.sandf.2014.04.016.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Hardin, B. O., and F. E. Richart. 1963. “Elastic wave velocities in granular soils.” J. Soil Mech. Found. 89 (1): 33–66.
Hasanlourad, M., H. Salehzadeh, and H. Shahnazari. 2008. “Dilation and particle breakage effects on the shear strength of calcareous sands based on energy aspects.” Int. J. Civ. Eng. 6 (2): 108–119.
Heitor, A., B. Indraratna, C. I. Kaliboullah, C. Rujikiatkamjorn, and G. W. McIntosh. 2016. “Drained and undrained shear behavior of compacted coal wash.” J. Geotech. Geoenviron. Eng. 142 (5): 04016006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001422.
Hu, W., Z. Y. Yin, C. Dano, and P.-Y. Hicher. 2011. “A constitutive model for granular materials considering grain breakage.” Sci. China Technol. Sci. 54 (8): 2188–2196. https://doi.org/10.1007/s11431-011-4491-0.
Huang, J., S. Xu, H. Yi, and S. Hu. 2014. “Size effect on the compression breakage strengths of glass particles.” Power Technol. 268 (1): 86–94. https://doi.org/10.1016/j.powtec.2014.08.037.
Huang, J. Y., S. S. Hu, S. L. Xu, and S. N. Luo. 2017. “Fractal crushing of granular materials under confined compression at different strain rates.” Int. J. Impact Eng. 106 (August): 259–265. https://doi.org/10.1016/j.ijimpeng.2017.04.021.
Hyodo, M., Y. Wu, N. Aramaki, and Y. Nakata. 2017. “Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures.” Can. Geotech. J. 54 (2): 207–218. https://doi.org/10.1139/cgj-2016-0212.
Indraratna, B., T. N. Ngo, and C. Rujikiatkamjorn. 2020. “Performance of ballast influenced by deformation and degradation: Laboratory testing and numerical modeling.” Int. J. Geomech. 20 (1): 04019138. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001515.
Indraratna, B., and W. Salim. 2002. “Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy.” Geotech. Eng. 155 (4): 243–252.
Indraratna, B., Q. D. Sun, and S. Nimbalkar. 2015. “Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage.” Can. Geotech. J. 52 (1): 73–86. https://doi.org/10.1139/cgj-2013-0361.
Jefferies, M. G. 1993. “Nor-sand: A simple critical state model for sand.” Géotechnique 43 (1): 91–103. https://doi.org/10.1680/geot.1993.43.1.91.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Kan, M. E., and H. A. Taiebat. 2014. “A bounding surface plasticity model for highly crushable granular materials.” Soils Found. 54 (6): 1188–1201. https://doi.org/10.1016/j.sandf.2014.11.012.
Kan, M. E., H. A. Taiebat, and N. Khalili. 2014. “Simplified mapping rule for bounding surface simulation of complex loading paths in granular materials.” Int. J. Geomech. 14 (2): 239–253. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000307.
Kikumoto, M., D. M. Wood, and A. Russell. 2010. “Particle crushing and deformation behaviour.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Kuwajima, K., M. Hyodo, and A. F. L. Hyde. 2009. “Pile bearing capacity factors and soil crushabiity.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Lade, P. V., C. D. Liggio, and J. Nam. 2009. “Strain rate, creep, and stress drop-creep experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 135 (7): 941–953. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000067.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lashkari, A. 2016. “Prediction of flow liquefaction instability of clean and silty sands.” Acta Geotech. 11 (5): 987–1014. https://doi.org/10.1007/s11440-015-0413-9.
Lashkari, A., and M. S. Yaghtin. 2018. “Sand flow liquefaction instability under shear–volume coupled strain paths.” Géotechnique 68 (11): 1002–1024. https://doi.org/10.1680/jgeot.17.P.164.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Ling, H. I., and S. Yang. 2006. “Unified sand model based on the critical state and generalized plasticity.” J. Eng. Mech. 132 (12): 1380–1391. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:12(1380).
Liu, G.-Y., W.-J. Xu, Q.-C. Sun, and N. Govender. 2020a. “Study on the particle breakage of ballast based on a GPU accelerated discrete element method.” Geosci. Front. 11 (2): 461–471. https://doi.org/10.1016/j.gsf.2019.06.006.
Liu, H., K. Zeng, and Y. Zou. 2020b. “Particle breakage of calcareous sand and its correlation with input energy.” Int. J. Geomech. 20 (2): 04019151. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001541.
Liu, H., and D. Zou. 2013. “Associated generalized plasticity framework for modeling gravelly soils considering particle breakage.” J. Eng. Mech. 139 (5): 606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513.
Liu, J. M., D. G. Zou, X. J. Kong, and H. B. Liu. 2016. “Stress–dilatancy of Zipingpu gravel in triaxial compression tests.” Sci. China Technol. Sci. 59 (2): 214–224. https://doi.org/10.1007/s11431-015-5919-8.
Liu, M., and Y. Gao. 2017. “Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity.” Int. J. Geomech. 17 (5): 04016113. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000759.
Lobo-Guerrero, S., and L. Vallejo. 2006. “Modeling granular crushing in ring shear tests: Experimental and numerical analyses.” Soils Found. 46 (2): 147–157. https://doi.org/10.3208/sandf.46.147.
Luzzani, L., and M. R. Coop. 2002. “On the relationship between particle breakage and the critical state of sands.” Soils Found. 42 (2): 71–82. https://doi.org/10.3208/sandf.42.2_71.
Man, S., and R. Chik-Kwong Wong. 2017. “Compression and crushing behavior of ceramic proppants and sand under high stresses.” J. Petrol. Sci. Eng. 158 (September): 268–283. https://doi.org/10.1016/j.petrol.2017.08.052.
Mao, W., S. Aoyama, and I. Towhata. 2020a. “A study on particle breakage behavior during pile penetration process using acoustic emission source location.” Geosci. Front. 11 (2): 413–427. https://doi.org/10.1016/j.gsf.2019.04.006.
Mao, W., H. Hamaguchi, and J. Koseki. 2020b. “Discrimination of particle breakage below pile tip after model pile penetration in sand using image analysis.” Int. J. Geomech. 20 (1): 04019142. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001535.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
McDowell, G. R., and A. Amon. 2000. “The application of Weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
McDowell, G. R., M. D. Bolton, and D. Robertson. 1996. “The fractal crushing of granular materials.” J. Mech. Phys. Solids 44 (12): 2079–2101. https://doi.org/10.1016/S0022-5096(96)00058-0.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nakata, Y., M. Hyodo, A. F. L. Hyde, Y. Kato, and H. Murata. 2001. “Microscopic particle crushing of sand subjected to high pressure one-dimensional compression.” Soils Found. 41 (1): 69–82. https://doi.org/10.3208/sandf.41.69.
Ning, F., J. Liu, X. Kong, and D. Zou. 2020. “Critical state and grading evolution of rockfill material under different triaxial compression tests.” Int. J. Geomech. 20 (2): 04019154. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001550.
Omidvar, M., M. Iskander, and S. Bless. 2012. “Stress–strain behavior of sand at high strain rates.” Int. J. Impact Eng. 49: 192–213. https://doi.org/10.1016/j.ijimpeng.2012.03.004.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Ovalle, C., and P.-Y. Hicher. 2020. “Modeling the effect of wetting on the mechanical behavior of crushable granular materials.” Geosci. Front. 11 (2): 487–494. https://doi.org/10.1016/j.gsf.2019.06.009.
Pan, J., J. Jiang, Z. Cheng, H. Xu, and Y. Zuo. 2020. “Large-scale true triaxial test on stress–strain and strength properties of rockfill.” Int. J. Geomech. 20 (1): 04019146. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001527.
Parab, N. D., Z. Guo, M. C. Hudspeth, B. J. Claus, K. Fezzaa, T. Sun, and W. W. Chen. 2017. “Fracture mechanisms of glass particles under dynamic compression.” Int. J. Impact Eng. 106: 146–154. https://doi.org/10.1016/j.ijimpeng.2017.03.021.
Rabbi, A. T. M. Z., M. M. Rahman, and D. Cameron. 2019. “Critical state study of natural silty sand instability under undrained and constant shear drained path.” Int. J. Geomech. 19 (8): 04019083. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001462.
Roscoe, K. H., and J. B. Burland. 1968. “On the generalised stress–strain behaviour of ‘wet’ clay.” In Engineering plasticity, edited by J. Heyman and F. A. Leckie, 535–609. Cambridge: Cambridge University Press.
Rowe, P. W. 1962. “The stress–dilatancy relation for static equilibrium of an assembly of particles in contact.” Proc. R. Soc. Lond. A 269 (1339): 500–527. https://doi.org/10.1098/rspa.1962.0193.
Russell, A. R., and N. Khalili. 2004. “A bounding surface plasticity model for sands exhibiting particle crushing.” Can. Geotech. J. 41 (6): 1179–1192. https://doi.org/10.1139/t04-065.
Sadrekarimi, A., and S. M. Olson. 2010. “Particle damage observed in ring shear tests on sands.” Can. Geotech. J. 47 (5): 497–515. https://doi.org/10.1139/T09-117.
Sadrekarimi, A., and S. M. Olson. 2011a. “Critical state friction angle of sands.” Géotechnique 61 (9): 771–783. https://doi.org/10.1680/geot.9.P.090.
Sadrekarimi, A., and S. M. Olson. 2011b. “Yield strength ratios, critical strength ratios, and brittleness of sandy soils from laboratory tests.” Can. Geotech. J. 48 (3): 493–510. https://doi.org/10.1139/T10-078.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Suescun-Florez, E., M. Omidvar, M. Iskander, and S. Bless. 2015. “Review of high strain rate testing of granular soils.” Geotech. Test. J. 38 (4): 20140267–536. https://doi.org/10.1520/GTJ20140267.
Sun, Q. D., B. Indraratna, and S. Nimbalkar. 2016. “Deformation and degradation mechanisms of railway ballast under high frequency cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015056. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001375.
Sun, Y., Y. Gao, and Y. Shen. 2019. “Mathematical aspect of the state-dependent stress–dilatancy of granular soil under triaxial loading.” Géotechnique 69 (2): 158–165. https://doi.org/10.1680/jgeot.17.T.029.
Sun, Y., Y. Gao, S. Song, and C. Chen. 2020. “Three-dimensional state-dependent fractional plasticity model for soils.” Int. J. Geomech. 20 (2): 04019161. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001557.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Géotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Tengattini, A., A. Das, and I. Einav. 2016. “A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation.” Géotechnique 66 (9): 695–710. https://doi.org/10.1680/jgeot.14.P.164.
Tong, C.-X., G. J. Burton, S. Zhang, and D. Sheng. 2020. “Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests.” Acta Geotech. 15: 2379–2394. https://doi.org/10.1007/s11440-020-00931-x.
Ueng, T.-S., and T.-J. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Géotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
Valdes, J. R., and E. Koprulu. 2007. “Characterization of fines produced by sand crushing.” J. Geotech. Geoenviron. Eng. 133 (12): 1626–1630. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1626).
Varadarajan, A., K. G. Sharma, S. M. Abbas, and A. K. Dhawan. 2006. “Constitutive model for rockfill materials and determination of material constants.” Int. J. Geomech. 6 (4): 226–237. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:4(226).
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Wafid Agung, M., K. Sassa, H. Fukuoka, and G. Wang. 2004. “Evolution of shear-zone structure in undrained ring-shear tests.” Landslides 1 (2): 101–112. https://doi.org/10.1007/s10346-004-0001-9.
Wan, R. G., and P. J. Guo. 1998. “A simple constitutive model for granular soils: Modified stress–dilatancy approach.” Comput. Geotech. 22 (2): 109–133. https://doi.org/10.1016/S0266-352X(98)00004-4.
Wang, G., Z. Wang, Q. Ye, and X. Wei. 2020. “Particle breakage and deformation behavior of carbonate sand under drained and undrained triaxial compression.” Int. J. Geomech. 20 (3): 04020012. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001601.
Wang, X.-Z., Y.-Y. Jiao, R. Wang, M.-J. Hu, Q.-S. Meng, and F.-Y. Tan. 2011. “Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea.” Eng. Geol. 120 (1–4): 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Wang, Z.-L., Y. F. Dafalias, X.-S. Li, and F. I. Makdisi. 2002. “State pressure index for modeling sand behavior.” J. Geotech. Geoenviron. Eng. 128 (6): 511–519. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(511).
Wei, H., Z. Tao, J. He, Q. Meng, and X. Wang. 2018. “Evolution of particle breakage for calcareous sands during ring shear tests.” Int. J. Geomech. 18 (2): 04017153. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001073.
Wei, X., and J. Yang. 2019. “A critical state constitutive model for clean and silty sand.” Acta Geotech. 14 (2): 329–345. https://doi.org/10.1007/s11440-018-0675-0.
Wood, D. M., K. Belkheir, and D. F. Liu. 1994. “Strain softening and state parameter for sand modelling.” Géotechnique 44 (2): 335–339. https://doi.org/10.1680/geot.1994.44.2.335.
Wood, D. M., and K. Maeda. 2008. “Changing grading of soil: Effect on critical states.” Acta Geotech. 3 (1): 3–14. https://doi.org/10.1007/s11440-007-0041-0.
Wu, Y., H. Yamamoto, J. Cui, and H. Y. Cheng. 2020. “Influence of load mode on particle crushing characteristics of silica sand at high stresses.” Int. J. Geomech. 20 (3): 04019194. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001600.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Bounding surface plasticity model incorporating the state pressure index for rockfill materials.” J. Eng. Mech. 140 (11): 04014087. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000802.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019a. “Effect of particle shape on stress–dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., Y. Sun, F. Yin, H. Liu, and J. Xiang. 2017. “Constitutive modeling for transparent granular soils.” Int. J. Geomech. 17 (7): 04016150. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019b. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Xu, M., and E. Song. 2009. “Numerical simulation of the shear behavior of rockfills.” Comput. Geotech. 36 (8): 1259–1264. https://doi.org/10.1016/j.compgeo.2009.05.010.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Geoenviron. Eng. 122 (2): 147–154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
Yang, J., and X. S. Li. 2004. “State-dependent strength of sands from the perspective of unified modeling.” J. Geotech. Geoenviron. Eng. 130 (2): 186–198. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(186).
Yang, Z. X., T. T. Xu, and X. S. Li. 2019. “J2-deformation type model coupled with state dependent dilatancy.” Comput. Geotech. 105 (January): 129–141. https://doi.org/10.1016/j.compgeo.2018.09.018.
Yao, Y. P., D. A. Sun, and T. Luo. 2004. “A critical state model for sands dependent on stress and density.” Int. J. Numer. Anal. Methods Geomech. 28 (4): 323–337. https://doi.org/10.1002/nag.340.
Yin, Z., P. Hicher, C. Dano, and Y. Jin. 2017. “Modeling mechanical behavior of very coarse granular materials.” J. Eng. Mech. 143 (1): C4016006.
Yu, F. 2017a. “Characteristics of particle breakage of sand in triaxial shear.” Powder Technol. 320 (October): 656–667. https://doi.org/10.1016/j.powtec.2017.08.001.
Yu, F. 2017b. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, F. 2018. “Particle breakage in triaxial shear of a coral sand.” Soils Found. 58 (4): 866–880. https://doi.org/10.1016/j.sandf.2018.04.001.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
Yu, H. S. 1998. “CASM: A unified state parameter model for clay and sand.” Int. J. Numer. Anal. Methods Geomech. 22 (8): 621–653. https://doi.org/10.1002/(SICI)1096-9853(199808)22:8%3C621::AID-NAG937%3E3.0.CO;2-8.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.
Zhang, J., and M. Luo. 2020. “Dilatancy and critical state of calcareous sand incorporating particle breakage.” Int. J. Geomech. 20 (4): 04020030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001637.
Zhang, X., and B. A. Baudet. 2013. “Particle breakage in gap-graded soil.” Géotechnique Letters 3 (2): 72–77. https://doi.org/10.1680/geolett.13.00022.
Zhang, Y. D., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and weibull statistics.” Géotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zheng, W., and D. Tannant. 2016. “Frac sand crushing characteristics and morphology changes under high compressive stress and implications for sand pack permeability.” Can. Geotech. J. 53 (9): 1412–1423. https://doi.org/10.1139/cgj-2016-0045.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 21Issue 5May 2021

History

Received: Aug 20, 2020
Accepted: Nov 27, 2020
Published online: Feb 22, 2021
Published in print: May 1, 2021
Discussion open until: Jul 22, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, M.ASCE [email protected]
Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Chenggui Wang [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Zhichao Zhang [email protected]
Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Zhen-yu Yin [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong 999077, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share