Technical Papers
May 28, 2020

Numerical Modeling of Dynamic Compaction Induced Settlement of MSW Landfills

Publication: International Journal of Geomechanics
Volume 20, Issue 8

Abstract

The objective of this study is to estimate dynamic compaction (DC) induced settlement of municipal solid waste (MSW) landfills using numerical modeling. Finite element (FE) based analysis is carried out and the corresponding reduction in waste volume, crater depth, and settlements induced at the ground surface due to densification are examined for a range of compression ratios of MSW. The response of MSW is modeled by adopting the Drucker-Prager constitutive law, and the effect of large strains developed during DC is simulated using the arbitrary Lagrangian-Eulerian (ALE) remeshing approach. The developed model is validated by comparing the numerical results with published settlement values from various landfill sites. The effectiveness of DC in increasing the design life and overall capacity of MSW landfills is subsequently investigated by varying waste compressibility, energy, momentum, and tamper radius. The analysis results indicated that the optimum number of tamper drops on MSW vary in the range 5–12 depending on waste compressibility, whereas, the optimum radius to be adopted in the field is approximately 1.6 m. In addition, the crater depth was found to increase for wastes with higher compressibility, and the effect of tamper momentum was found to be pronounced compared with tamper energy. Based on the optimized design parameters obtained, an empirical equation is formulated for predicting DC induced settlement of MSW landfills in the field. The utility of this study is to aid in decision making regarding the implementation of DC to MSW landfills and to focus the efforts of full-scale expensive field trials.

Get full access to this article

View all available purchase options and get full access to this article.

References

Bareither, C. A., C. H. Benson, and T. B. Edil. 2012. “Compression behavior of municipal solid waste: Immediate compression.” J. Geotech. Geoenviron. Eng. 138 (9): 1047–1062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000672.
Beaven, R. P., and S. W. Powrie. 1995. “Hydrogeological and geotechnical properties of refuse using a large scale compression cell.” In Proc., 5th Int. Waste Management and Landfill Symp., Sardinia ‘95, edited by T. H. Christensen, R. Cossu, R. Stegmann, G. Montresori, and G. Maria Motzo, 746–760. Cagliari, Italy: CISA.
Chen, R. H., K. S. Chen, and C. N. Liu. 2010. “Study of the mechanical compression behavior of municipal solid waste by temperature-controlled compression tests.” Environm. Earth Sci. 61 (8): 1677–1690. https://doi.org/10.1007/s12665-010-0481-y.
Chow, Y. K., D. M. Yong, K. Y. Yong, and S. L. Lee. 1994. “Dynamic compaction of loose granular soils: Effect of print spacing.” J. Geotech. Eng. 120 (7): 1115–1133. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:7(1115).
CPHEEO (Central Public Health and Environmental Engineering Organization). 2016. Municipal solid waste management manual. New Delhi, India: Ministry of Urban Development, Government of India.
Dassault Systems. 2012. Abaqus analysis users manual. Providence, RI: Simula Corp.
Dimaggio, F. L., and I. S. Sandler. 1971. “Material models for granular soils.” J. Eng. Mech. Div. 97 (3): 935–950.
Dixon, N., and D. R. V. Jones. 2005. “Engineering properties of municipal solid waste.” Geotext. Geomembr. 23 (3): 205–233. https://doi.org/10.1016/j.geotexmem.2004.11.002.
Dixon, N., U. Langer, and P. Gotteland. 2008. “Classification and mechanical behavior relationships for municipal solid waste: Study using synthetic waste.” J. Geotech. Geoenviron. Eng. 134 (1): 79–90. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(79).
Eid, H. T., T. D. Stark, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure. I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397).
Ering, P., and G. L. Sivakumar Babu. 2016. “Slope stability and deformation analysis of Bangalore MSW landfills using constitutive model.” Int. J. Geomech. 16 (4): 04015092. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000587.
Feng, S. J., K. W. Gao, Y. X. Chen, Y. Li, L. M. Zhang, and H. X. Chen. 2017. “Geotechnical properties of municipal solid waste at Laogang Landfill, China.” Waste Manage. (Oxford) 63: 354–365. https://doi.org/10.1016/j.wasman.2016.09.016.
Feng, S. J., W. H. Shui, K. Tan, L. Y. Gao, and L. J. He. 2011. “Field evaluation of dynamic compaction on granular deposits.” J. Perform. Constr. Facil 25 (3): 241–249. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000160.
Ghassemi, A., A. Pak, and H. Shahir. 2010. “Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils.” Comput. Geotech. 37 (1–2): 10–24. https://doi.org/10.1016/j.compgeo.2009.06.009.
Gu, Q., and F. H. Lee. 2002. “Ground responses to dynamic compaction of dry sand.” Géotechnique 52 (7): 481–493. https://doi.org/10.1680/geot.2002.52.7.481.
Harris, J. M., A. L. Shafer, W. DeGroff, G. R. Hater, M. Gabr, and M. A. Barlaz. 2006. “Shear strength of degraded reconstituted municipal solid waste.” Geotech. Test. J. 29 (2): 141–148.
Holtz, R. D., and W. D. Kovacs. 1981. An introduction to geotechnical engineering. Englewood Cliffs, NJ: Prentice Hall.
Hoornweg, D., and P. Bhada-Tata. 2012. What a waste: A global review of solid waste management. Urban development series, Knowledge Papers No. 15. Washington, DC: World Bank.
Kundu, S., and B. V. S. Viswanadham. 2016. “Numerical modelling of the densification of municipal solid waste landfills using dynamic compaction.” In Geo-Chicago 2016, Geotechnical Special Publication 269, edited by A. De, K. R. Reddy, N. Yesiller, D. Zekkos, and A. Farid, 202–211. Reston, VA: ASCE.
Kundu, S., and B. V. S. Viswanadham. 2018. “Numerical studies on the effectiveness of dynamic compaction in loose granular deposits using shear wave velocity profiling.” Indian Geotech. J. 48 (2): 305–315. https://doi.org/10.1007/s40098-018-0298-2.
Landva, A. O., A. J. Valsangkar, and S. G. Pelkey. 2000. “Lateral earth pressure at rest and compressibility of municipal solid waste.” Can. Geotech. J. 37 (6): 1157–1165. https://doi.org/10.1139/t00-057.
Lee, F. H., and Q. Gu. 2004. “Method for estimating dynamic compaction effect on sand.” J. Geotech. Geoenviron. Eng. 130 (2): 139–152. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(139).
Leonards, G. A., W. A. Cutter, and R. D. Holtz. 1980. “Dynamic compaction of granular soils.” J. Geotech. Eng. Div. 106 (1): 35–44.
Lewis, P. J., and J. A. Langer. 1994. “Dynamic compaction of landfill beneath embankment.” In Vertical and Horizontal Deformations of Foundations and Embankments, Geotechnical Special Publication 40, edited by A. T. Yeung, and G. Y. Félio, 451–461. Reston, VA: ASCE.
Ling, H. I., D. Leshchinsky, Y. Mohri, and T. Kawabata. 1998. “Estimation of municipal solid waste landfill settlement.” J. Geotech. Geoenviron. Eng. 124 (1): 21–28. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(21).
Machado, S. L., M. F. Carvalho, and O. M. Vilar. 2002. “Constitutive model for municipal solid waste.” J. Geotech. Geoenviron. Eng. 128 (11): 940–951. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940).
Marques, A. C. M., G. M. Filz, and O. M. Vilar. 2003. “Composite compressibility model for municipal solid waste.” J. Geotech. Geoenviron. Eng. 129 (4): 372–378. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(372).
Mayne, P. W., J. S. Jones, and J. C. Dumas. 1984. “Ground response to dynamic compaction.” J. Geotech. Eng. 110 (6): 757–774. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:6(757).
Menard, L., and Y. Broise. 1975. “Theoretical and practical aspect of dynamic consolidation.” Géotechnique 25 (1): 3–18. https://doi.org/10.1680/geot.1975.25.1.3.
Pan, J. L., and A. R. Selby. 2002. “Simulation of dynamic compaction of loose granular soils.” Adv. Eng. Software 33 (7–10): 631–640. https://doi.org/10.1016/S0965-9978(02)00067-4.
Perelberg, S., P. J. H. Boyd, K. N. Montague, and J. R. Greenwood. 1987. “M25 bell lane Pit: Ground improvement by dynamic compaction.” In Proc., ICE on Building on Marginal and Derelict Land, 267–280. London: Thomas Telford.
Pincus, H. J., M. A. Gabr, and S. N. Valero. 1995. “Geotechnical properties of municipal solid waste.” Geotech. Test. J. 18 (2): 241–251. https://doi.org/10.1520/GTJ10324J.
Poran, C. J., and J. A. Rodriguez. 1992. “Finite element analysis of impact behavior of sand.” Soils Found. 32 (4): 68–80. https://doi.org/10.3208/sandf1972.32.4_68.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, and J. E. Bogner. 2011. “Geotechnical properties of municipal solid waste at different phases of biodegradation.” Waste Manage. (Oxford) 31 (11): 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002.
Reddy, K. R., H. Hettiarachchi, N. Parakalla, J. Gangathulasi, J. E. Bogner, and T. Lagier. 2009. “Compressibility and shear strength of municipal solid waste under short-term leachate recirculation operations.” Waste Manage. Res. 27 (6): 578–587. https://doi.org/10.1177/0734242X09103825.
Singh, M. K., J. S. Sharma, and I. R. Fleming. 2009. “Shear strength testing of intact and recompacted samples of municipal solid waste.” Can. Geotech. J. 46 (10): 1133–1145. https://doi.org/10.1139/T09-052.
Sivakumar Babu, G. L., P. Lakshmikanthan, and L. G. Santhosh. 2015. “Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.” Waste Manage. (Oxford) 39: 63–70. https://doi.org/10.1016/j.wasman.2015.02.013.
Stoltz, G., J. P. Gourc, and L. Oxarango. 2010. “Characterization of the physico-mechanical parameters of MSW.” Waste Manage. (Oxford) 30 (8–9): 1439–1449. https://doi.org/10.1016/j.wasman.2010.03.016.
Stulgis, R. P., C. Soydemir, R. J. Telgener, and R. D. Hewitt. 1996. “Use of geosynthetics in “piggyback landfills”: A case study.” Geotext. Geomembr. 14 (7–8): 341–364. https://doi.org/10.1016/0266-1144%2896%2900021-0.
Sutthasil, N., C. Chiemchaisri, W. Chiemchaisri, K. Wangyao, S. Towprayoon, K. Endo, and M. Yamada. 2014. “Comparison of solid waste stabilization and methane emission from anaerobic and semi-aerobic landfills operated in tropical condition.” Environ. Eng. Res. 19 (3): 261–268. https://doi.org/10.4491/eer.2014.S1.003.
Van Impe, W. F., and A. Bouazza. 1996. “Densification of domestic waste fills by dynamic compaction.” Can. Geotech. J. 33 (6): 879–887. https://doi.org/10.1139/t96-118.
Viswanadham, B. V. S., and H. L. Jessberger. 2005. “Centrifuge modeling of geosynthetic reinforced clay liners of landfills.” J. Geotech. Geoenviron. Eng. 131 (5): 564–574. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(564).
Wall, D. K., and C. Zeiss. 1995. “Municipal landfill biodegradation and settlement.” J. Environ. Eng. 121 (3): 214–224. https://doi.org/10.1061/(ASCE)0733-9372(1995)121:3(214).
Wu, H., H. Wang, Y. Zhao, T. Chen, and W. Lu. 2012. “Evolution of unsaturated hydraulic properties of municipal solid waste with landfill depth and age.” Waste Manage. (Oxford) 32 (3): 463–470. https://doi.org/10.1016/j.wasman.2011.10.029.
Zekkos, D., J. D. Bray, E. Kavazanjian, N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).
Zekkos, D., M. Kabalan, and M. Flanagan. 2013. “Lessons learned from case histories of dynamic compaction at municipal solid waste sites.” J. Geotech. Geoenviron. Eng. 139 (5): 738–751. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000804.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 8August 2020

History

Received: Jun 1, 2019
Accepted: Feb 24, 2020
Published online: May 28, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Saptarshi Kundu [email protected]
Currently Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India (corresponding author). ORCID: https://orcid.org/0000-0002-3264-8616. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share