Technical Papers
May 28, 2020

Lateral Vibration of Piles and Pile Groups in Nonhomogeneous Transversely Isotropic Media

Publication: International Journal of Geomechanics
Volume 20, Issue 8

Abstract

A hybrid element method is presented for the dynamic analysis of piles and pile groups embedded in exponentially graded transversely isotropic media. In this method, the piles are modeled using finite elements, while the dynamic pile–soil–pile interaction is modeled through superposing the response of a series of massless rigid radiation discs defined at the nodal points of the elements. A set of complete potential functions are used to derive the analytical solutions for the lateral vibration of radiation discs embedded at different depths in a nonhomogeneous transversely isotropic half-space. A Boussinesq-type loading distribution is introduced to act on the radiation discs to satisfy the displacement compatibility conditions between piles and soil. Numerical results and comparisons with known analytical/numerical solutions are presented to demonstrate the application of this method. The influence of the soil nonhomogeneity on the lateral compliances of piles and pile groups is particularly emphasized.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data derived or used during the study are available from the corresponding author by request.

References

Abbiss, C. P. 1979. “A comparison of the stiffness of the chalk at Mundford from a seismic survey and a large scale tank test.” Géotechnique 29 (4): 461–468. https://doi.org/10.1680/geot.1979.29.4.461.
Ai, Z. Y., and Z. X. Li. 2015. “Dynamic analysis of a laterally loaded pile in a transversely isotropic multilayered half-space.” Eng. Anal. Boundary Elem. 54: 68–75. https://doi.org/10.1016/j.enganabound.2015.01.008.
Ai, Z. Y., Z. X. Li, and L. H. Wang. 2016. “Dynamic response of a laterally loaded fixed-head pile group in a transversely isotropic multilayered half-space.” J. Sound Vib. 385: 171–183. https://doi.org/10.1016/j.jsv.2016.09.016.
Amiri-Hezaveh, A., M. Eskandari-Ghadi, M. Rahimian, and A. K. Ghorbani-Tanha. 2013. “Impedance functions for surface rigid rectangular foundations on transversely isotropic multilayer half-spaces.” J. Appl. Mech. 80 (5): 051017. https://doi.org/10.1115/1.4023626.
Amiri-Hezaveh, A., H. Moghaddasi, P. Karimi, and M. Ostoja-Starzewski. 2017. “Dynamic interaction of plates in an inhomogeneous transversely isotropic space weakened by a crack.” ZAMM 97 (11): 1338–1357. https://doi.org/10.1002/zamm.201600282.
Banerjee, P. K., and T. G. Davies. 1977. “Analysis of pile groups embedded in Gibson soil.” In Proc., 9th Int. Conf. of Soil Mechanics and Foundation Engineering, 381–386. Japan: Japanese Society of Soil Mechanics and Foundation Engineering.
Banerjee, P. K., and T. G. Davies. 1978. “The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils.” Géotechnique 28 (3): 309–326. https://doi.org/10.1680/geot.1978.28.3.309.
Barros, P. L. A. 2006. “Impedances of rigid cylindrical foundations embedded in transversely isotropic soils.” Int. J. Numer. Anal. Methods Geomech. 30 (7): 683–702. https://doi.org/10.1002/nag.496.
Burland, J. B., T. I. Longworth, and J. F. A. Moore. 1977. “A study of ground movement and progressive failure caused by a deep excavation in Oxford Clay.” Géotechnique 27 (4): 557–591. https://doi.org/10.1680/geot.1977.27.4.557.
Chow, Y. K. 1987. “Axial and lateral response of pile groups embedded in nonhomogeneous soils.” Int. J. Numer. Anal. Methods Geomech. 11 (6): 621–638. https://doi.org/10.1002/nag.1610110607.
Eskandari-Ghadi, M., and A. Amiri-Hezaveh. 2014. “Wave propagations in exponentially graded transversely isotropic half-space with potential function method.” Mech. Mater. 68: 275–292. https://doi.org/10.1016/j.mechmat.2013.09.009.
Gharahi, A., M. Rahimian, M. Eskandari-Ghadi, and R. Y. S. Pak. 2013. “Elastostatic response of a pile embedded in a transversely isotropic half-space under transverse loading.” Int. J. Numer. Anal. Methods Geomech. 37 (17): 2897–2915. https://doi.org/10.1002/nag.2167.
Gharahi, A., M. Rahimian, M. Eskandari-Ghadi, and R. Y. S. Pak. 2014. “Dynamic interaction of a pile with a transversely isotropic elastic half-space under transverse excitations.” Int. J. Solids Struct. 51 (23–24): 4082–4093. https://doi.org/10.1016/j.ijsolstr.2014.08.001.
Granser, H. 1987. “Three-dimensional interpretation of gravity data from sedimentary basins using an exponential density-depth function.” Geophys. Prospect. 35 (9): 1030–1041. https://doi.org/10.1111/j.1365-2478.1987.tb00858.x.
Guzina, B. B., and R. Y. S. Pak. 1996. “Elastodynamic Green's functions for a smoothly heterogeneous half-space.” Int. J. Solids Struct. 33 (7): 1005–1021. https://doi.org/10.1016/0020-7683(95)00081-X.
Guzina, B. B., and R. Y. S. Pak. 1998. “Vertical vibration of a circular footing on a linear-wave-velocity half-space.” Géotechnique 48 (2): 159–168. https://doi.org/10.1680/geot.1998.48.2.159.
Jin, B., D. Zhou, and Z. Zhong. 2001. “Lateral dynamic compliance of pile embedded in poroelastic half space.” Soil Dyn. Earthquake Eng. 21 (6): 519–525. https://doi.org/10.1016/S0267-7261(01)00028-8.
Karimi, P., A. Amiri-Hezaveh, H. Moghaddasi, F. A. Sabet, and M. Ostoja-Starzewski. 2019. “Elastodynamics of a multilayered transversely isotropic half-space due to the rigid motion of foundation.” Wave Motion 88: 106–128. https://doi.org/10.1016/j.wavemoti.2019.02.002.
Kaynia, A. M. 1982. Dynamic stiffness and seismic response of pile groups. Cambridge, MA: Massachusetts Institute of technology.
Kaynia, A. M., and E. Kausel. 1991. “Dynamics of piles and pile groups in layered soil media.” Soil Dyn. Earthquake Eng. 10 (8): 386–401. https://doi.org/10.1016/0267-7261(91)90053-3.
Khojasteh, A., M. Rahimian, M. Eskandari, and R. Y. S. Pak. 2008. “Asymmetric wave propagation in a transversely isotropic half-space in displacement potentials.” Int. J. Eng. Sci. 46 (7): 690–710. https://doi.org/10.1016/j.ijengsci.2008.01.007.
Krishnan, R., G. Gazetas, and A. Velez. 1983. “Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum.” Géotechnique 33 (3): 307–325. https://doi.org/10.1680/geot.1983.33.3.307.
Liu, W., and M. Novak. 1994. “Dynamic response of single piles embedded in transversely isotropic layered media.” Earthquake Eng. Struct. Dyn. 23 (11): 1239–1257. https://doi.org/10.1002/eqe.4290231106.
Liu, Y., X. Wang, and M. Zhang. 2015. “Lateral vibration of pile groups partially embedded in layered saturated soils.” Int. J. Geomech. 15 (4): 04014063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000406.
Maxant, J. 1980. “Variation of density with rock type, depth, and formation in the Western Canada basin from density logs.” Geophysics 45 (6): 1061–1076. https://doi.org/10.1190/1.1441107.
Mitrinovic, D. S., and J. D. Keckic. 1984. The Cauchy method of residues: Theory and applications. Berlin: Springer Science & Business Media.
Miura, K., A. M. Kaynia, K. Masuda, E. Kitamura, and Y. Seto. 1994. “Dynamic behaviour of pile foundations in homogeneous and non-homogeneous media.” Earthquake Eng. Struct. Dyn. 23 (2): 183–192. https://doi.org/10.1002/eqe.4290230206.
Moghaddasi, H. 2012. Interaction of a rigid circular disc in transversely isotropic half-space under horizontal loading, faculty of engineering. Tehran, Iran: Univ. of Tehran.
Moghaddasi, H., M. Rahimian, A. Khojasteh, and R. Y. S. Pak. 2012. “Asymmetric interaction of a rigid disc embedded in a transversely isotropic half-space.” Q. J. Mech. Appl. Math. 65 (4): 513–533. https://doi.org/10.1093/qjmam/hbs014.
Muki, R., and E. Sternberg. 1970. “Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod.” Int. J. Solids Struct. 6 (1): 69–90. https://doi.org/10.1016/0020-7683(70)90082-X.
Padrón, L. A., J. J. Aznárez, and O. Maeso. 2007. “BEM–FEM coupling model for the dynamic analysis of piles and pile groups.” Eng. Anal. Boundary Elem. 31 (6): 473–484. https://doi.org/10.1016/j.enganabound.2006.11.001.
Pak, R. Y. S. 1989. “On the flexure of a partially embedded bar under lateral loads.” J. Appl. Mech. 56 (2): 263–269. https://doi.org/10.1115/1.3176077.
Pak, R. Y. S., and P. C. Jennings. 1987. “Elastodynamic response of pile under transverse excitations.” J. Eng. Mech. 113 (7): 1101–1116. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:7(1101).
Payton, R. 2012. Elastic wave propagation in transversely isotropic media. Berlin: Springer Science & Business Media.
Perić, D., T. V. Tran, and M. Miletić. 2017. “Effects of soil anisotropy on a soil structure interaction in a heat exchanger pile.” Comput. Geotech. 86: 193–202. https://doi.org/10.1016/j.compgeo.2017.01.005.
Poulos, H. G., and E. H. Davis. 1980. Pile foundation analysis and design. Hoboken, NJ: Wiley.
Rahimian, M., M. Eskandari-Ghadi, R. Y. Pak, and A. Khojasteh. 2007. “Elastodynamic potential method for transversely isotropic solid.” J. Eng. Mech. 133 (10): 1134–1145. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:10(1134).
Rajapakse, R. K. N. D., and A. H. Shah. 1987. “On the lateral harmonic motion of an elastic bar embedded in an elastic half-space.” Int. J. Solids Struct. 23 (2): 287–303. https://doi.org/10.1016/0020-7683(87)90061-8.
Rajapakse, R. K. N. D., and A. H. Shah. 1989. “Impedance curves for an elastic pile.” Soil Dyn. Earthquake Eng. 8 (3): 145–152. https://doi.org/10.1016/S0267-7261(89)80009-0.
Randolph, M. F. 2003. “Science and empiricism in pile foundation design.” Géotechnique 53 (10): 847–875. https://doi.org/10.1680/geot.2003.53.10.847.
Selvadurai, A. P. S., and A. Katebi. 2013. “Mindlin’s problem for an incompressible elastic half-space with an exponential variation in the linear elastic shear modulus.” Int. J. Eng. Sci. 65: 9–21. https://doi.org/10.1016/j.ijengsci.2013.01.002.
Selvadurai, A. P. S., and A. Katebi. 2015. “An adhesive contact problem for an incompressible non-homogeneous elastic halfspace.” Acta Mech. 226 (2): 249–265. https://doi.org/10.1007/s00707-014-1171-8.
Senm, R., E. Kausel, P. K. Banerjee. 1985. “Dynamic analysis of piles and pile groups embedded in non-homogeneous soils.” Int. J. Numer. Anal. Methods Geomech. 9 (6): 507–524. https://doi.org/10.1002/nag.1610090602.
Shahbodagh, B. 2008. Dynamic analysis of pile groups embedded in transversely isotropic media using a hybrid numerical method. M.Sc thesis. Faculty of Engineering, Univ. of Tehran.
Shahbodagh, B., M. Ashari, and N. Khalili. 2017. “A hybrid element method for dynamics of piles and pile groups in transversely isotropic media.” Comput. Geotech. 85: 249–261. https://doi.org/10.1016/j.compgeo.2016.12.029.
Shahmohamadi, M., A. Khojasteh, M. Rahimian, and R. Y. S. Pak. 2013. “Dynamics of a cylindrical pile in a transversely isotropic half-space under axial excitations.” J. Eng. Mech. 139 (5): 568–579. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000511.
Shahmohamadi, M., A. Khojasteh, M. Rahimian, and R. Y. S. Pak. 2018. “Interaction of a cylindrical thin-walled pile with an inhomogeneous isotropic elastic medium.” Int. J. Numer. Anal. Methods Geomech. 42 (15): 1840–1865. https://doi.org/10.1002/nag.2835.
Sheta, M., and M. Novak. 1982. “Vertical vibration of pile groups.” J. Geotech. Geoenviron. Eng. 108 (4): 570–590.
Tehrani, F. S., R. Salgado, and M. Prezzi. 2016. “Analysis of axial loading of pile groups in multilayered elastic soil.” Int. J. Geomech. 16 (2): 04015063. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000540.
Vahab, M., S. Akhondzadeh, A. R. Khoei, and N. Khalili. 2018. “An X-FEM investigation of hydro-fracture evolution in naturally-layered domains.” Eng. Fract. Mech. 191: 187–204. https://doi.org/10.1016/j.engfracmech.2018.01.025.
Wang, J., D. Zhou, T. Ji, and S. Wang. 2017. “Horizontal dynamic stiffness and interaction factors of inclined piles.” Int. J. Geomech. 17 (9): 04017075. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000966.
Wang, Y., and N. Rajapakse. 2000. “BE analysis of dynamics of rigid foundations embedded in transversely isotropic soils.” J. Chin. Inst. Eng. 23 (3): 275–288. https://doi.org/10.1080/02533839.2000.9670547.
Zhang, L., M. Zhao, and X. Zou. 2015. “Behavior of laterally loaded piles in multilayered soils.” Int. J. Geomech. 15 (2): 06014017. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000319.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 20Issue 8August 2020

History

Received: Mar 18, 2019
Accepted: Feb 24, 2020
Published online: May 28, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Hamed Moghaddasi [email protected]
Ph.D. Candidate, School of Civil and Environmental Engineering, Univ. of New South Wales, Sydney 2052, Australia. Email: [email protected]
Lecturer, School of Civil and Environmental Engineering, Univ. of New South Wales, Sydney 2052, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-7624-6731. Email: [email protected]
Nasser Khalili [email protected]
Professor, School of Civil and Environmental Engineering, Univ. of New South Wales, Sydney 2052, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share