Technical Papers
Sep 18, 2018

Damage Assessment Using Modeling of Large-Scale Confined Masonry Building

Publication: Journal of Engineering Mechanics
Volume 144, Issue 12

Abstract

The seismic behavior of a representative medium-rise building of Mexico City is evaluated using the capacity spectrum method. This method is widely used in the seismic assessment of buildings because it allows obtaining fragility curves which permit evaluating the ability of a building to resist earthquakes. A real full-height multistory model is proposed to test the capabilities of the algorithm exhibited. The model is outlined through structural drawings sized and structured in accordance with building code regulations for masonry structures in Mexico City. Computational requirements for the analysis of large structures are indicated in addition to improvements to a nonlinear computing code for better performance in terms of memory management and execution times. Finally, a comparison of obtained results and building code regulations is carried out, highlighting differences in the obtained results. The need to handle meshes with a high number of finite elements (FEs) led to development of a new layered finite element that can reproduce the nonlinear behavior of its constituent materials when there are out-of-plane stresses without having to introduce additional degrees of freedom. The proposed FE is compared with the standard FE, presenting different kinematics, and excellent results are obtained. This work emerges from the need to combine and improve existing technologies in the field of finite-element analysis. One such technology is the numerical simulation of the behavior of composite materials. Therefore, it was also necessary to develop a computing program capable of reading both finite-element meshes and patterns of fibers to calculate the information of the composite materials, such as volumetric participation and fiber’s orientation.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work has been supported by the European Commission, under the Marie Curie program, at the IRSES agreement 612607 (TCAINMAND project), by the European Research Council through of the Advanced Grant: ERC-2012-AdG 320815 COMP-DES-MAT, Advanced tools for computational design of engineering materials, by the European Community under grant: NMP-2009-2.5-1 246067, Multiscale Reinforcement of Semi-crystalline Thermoplastic Sheets and Honeycombs, by the Spanish Ministerio de Economia y Competividad through the project MAT2014-60647-R, Multi-scale and multi-objective optimization of composite laminate structures (OMMC), and by the the Mexican government through the grant provided by CONACyT to complete PhD studies. All this support is gratefully acknowledged.

References

Alzate, Y. V. 2013. “Análisis estructural estático y dinámico probabilista de edificios de hormigón armado. aspectos metodológicos y aplicaciones a la evaluación del daño.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya.
CEN (European Committee for Standardization). 2004. Eurocode 8–design of structures for earthquake resistance. Part 1: General rules, seismic actions and rules for buildings. EN 1998-1. Brussels, Belgium: CEN.
Chaboche, J. 1988a. “Continuum damage mechanics. Part I: General concepts.” J. Appl. Mech. 55 (1): 59–64. https://doi.org/10.1115/1.3173661.
Chaboche, J. 1988b. “Continuum damage mechanics. Part II: Damage growth, crack initiation, and crack growth.” J. Appl. Mech. 55 (1): 65–72. https://doi.org/10.1115/1.3173662.
CIMNE (Centre Internacional de Mètodes Numèrics a l'Enginyeria). 2014. PLCd-Non-linear thermomechanic finite element code. Barcelona, España: International Center of Numerical Methods in Engineering.
Dagum, L., and R. Menon 1998. “OpenMP: An industry standard API for shared-memory programming.” IEEE Comput. Sci. Eng. 5 (1): 46–55. https://doi.org/10.1109/99.660313.
Escudero, C., S. Oller, X. Martinez, and A. Barbat. 2017. “Procedures based on composite fem technology for the resolution of concrete-framed structures with masonry in-fills: Comparison with Mexican building code.” J. Eng. Mech. 143 (9): 04017080. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001275.
Escudero, C., S. Oller, X. Martinez, and A. H. Barbat. 2016. “A laminated structural finite element for the behavior of large non-linear reinforced concrete structures.” Finite Elem. Anal. Des. 119 (Oct): 78–94. https://doi.org/10.1016/j.finel.2016.06.001.
Faria, R., J. Oliver, and M. Cervera. 1998. “A strain-based plastic viscous-damage model for massive concrete structures.” Int. J. Solids Struct. 35 (14): 1533–1558. https://doi.org/10.1016/S0020-7683(97)00119-4.
GC Ingeniería y Diseño. 2007. ANEMgcW 3.07-Análisis de Edificios de Mampostería. Puebla, Mexico: GC Ingeniería.
Gobierno del Distrito Federal. 2004a. Normas Técnicas Complementarias para Diseño por Sismo. México: Gaceta Oficial de la Ciudad de México.
Gobierno del Distrito Federal. 2004b. Normas Técnicas Complementarias para Diseño y Construcciones de Estructuras de Concreto. México: Gaceta Oficial de la Ciudad de México.
Gobierno del Distrito Federal. 2004c. Normas Técnicas Complementarias para Diseño y Construcciones de Estructuras de Mampostería. México: Ciudad de México.
Gobierno del Distrito Federal. 2004d. Reglamento de Construcciones del Distrito Federal. México: Ciudad de México.
Jason, L., A. Huerta, G. Pijaudier-Cabot, and S. Ghavamian. 2006. “An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model.” Comput. Methods Appl. Mech. Eng. 195 (52): 7077–7092. https://doi.org/10.1016/j.cma.2005.04.017.
Ju, J. 1989. “On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects.” Int. J. Solids Struct. 25 (7): 803–833. https://doi.org/10.1016/0020-7683(89)90015-2.
Kupfer, H. B., and K. H. Gerstle. 1973. “Behavior of concrete under biaxial stresses.” J. Eng. Mech. Div. 99 (4): 853–866.
Lopez, J., S. Oller, E. Oñate, and J. Lubliner. 1999. “A homogeneous constitutive model for masonry.” Int. J. Numer. Methods Eng. 46 (10): 1651–1671. https://doi.org/10.1002/(SICI)1097-0207(19991210)46:10%3C1651::AID-NME718%3E3.0.CO;2-2.
Lourenço, P. B. 1996. “Computational strategies for masonry structures.” Ph.D. dissertation, Dept. of Civil Engineering, Delft Univ.
Lourenço, P. B., G. Milani, A. Tralli, and A. Zucchini. 2007. “Analysis of masonry structures: Review of and recent trends in homogenization techniques.” Can. J. Civ. Eng. 34 (11): 1443–1457. https://doi.org/10.1139/L07-097.
Lubliner, J., J. Oliver, S. Oller, and E. Oñate. 1989. “A plastic-damage model for concrete.” Int. J. Solids Struct. 25 (3): 299–326. https://doi.org/10.1016/0020-7683(89)90050-4.
Marques, R., and P. B. Lourenço. 2014. “Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis.” Eng. Struct. 64 (Apr): 52–67. https://doi.org/10.1016/j.engstruct.2014.01.014.
Martínez, X. 2008. “Micro-mechanical simulation of composite materials using the serial/parallel mixing theory.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya.
Mazars, J., and G. Pijaudier-Cabot. 1989. “Continuum damage theory-application to concrete.” J. Eng. Mech. 115 (2): 345–365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345).
Meli, R. 1990. “Diseño sísmico de edificios de muros de mampostería. la práctica actual y el comportamiento observado.” Revista de Ingeniería Sísmica 40: 7–28. https://doi.org/10.18867/ris.40.326.
Mouroux, P., and B. Le Brun. 2006. “Risk-Ue project: An advanced approach to earthquake risk scenarios with application to different European towns.” In Assessing and Managing Earthquake Risk, 479–508. Dordrecht: Springer.
Oliver, J., M. Cervera, S. Oller, and J. Lubliner. 1990. “Isotropic damage models and smeared crack analysis of concrete.” In Vol. 2 of Proc., 2nd Int. Conf. on Computer Aided Analysis and Design of Concrete Structures, 945–958. Swansea, UK: Pineridge Press.
Oller, S. 1998. “Un modelo de daño continuo para materiales friccionales.” Ph.D. thesis, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya.
Oller, S. 2016. Numerical simulation of mechanical behavior of composite materials. 1st ed. Barcelona, Spain: Springer.
Oller, S., E. Car, and J. Lubliner. 2003. “Definition of a general implicit orthotropic yield criterion.” Comput. Methods Appl. Mech. Eng. 192 (7): 895–912. https://doi.org/10.1016/S0045-7825(02)00605-9.
Paredes, J. A. 2013. “Modelización numérica del comportamiento constitutivo del daño local y global y su correlacion con la evolución de las recuencias naturales en estructuras de hormigón reforzado.” Ph.D. dissertation, Escola Tècnica Superior D’Enginyers de Camins, Canals I Ports, Universitat Politècnica de Catalunya.
Pelà, L. 2009. “Continuum damage model for nonlinear analysis of masonry structures.” Ph.D. thesis, Dipartimento di Ingegneria, Università degli studi di Ferrara.
Quinteros, R. D., S. Oller, and L. G. Nallim. 2012. “Nonlinear homogenization techniques to solve masonry structures problems.” Compos. Struct. 94 (2): 724–730. https://doi.org/10.1016/j.compstruct.2011.09.006.
Rastellini, F., S. Oller, O. Salomón, and E. Oñate. 2008. “Composite materials non-linear modelling for long fibre-reinforced laminates: Continuum basis, computational aspects and validations.” Comput. Struct. 86 (9): 879–896. https://doi.org/10.1016/j.compstruc.2007.04.009.
Rots, J. G. 1997. Structural masonry: An experimental/numerical basis for practical design rules. Rotterdam, Netherlands: A.A. Balkema.
Schenk, O., K. Gärtner, G. Karypis, S. Röllin, and M. Hagemann. 2010. “PARDISO 6.0 solver project (May 2018).” Accessed August 31, 2018. http://www.pardiso-project.org.
Simo, J., and T. Hughes. 1998. Computational inelasticity. New York: Springer.
Simo, J. C., and J. W. Ju. 1987. “Stress and strain based continuum damage models, parts I and II.” Int. J. Solids Struct. 23 (7): 841–869.
Tao, X., and D. V. Phillips. 2005. “A simplified isotropic damage model for concrete under bi-axial stress states.” Cem. Concr. Compos. 27 (6): 716–726. https://doi.org/10.1016/j.cemconcomp.2004.09.017.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 12December 2018

History

Received: Oct 12, 2017
Accepted: May 16, 2018
Published online: Sep 18, 2018
Published in print: Dec 1, 2018
Discussion open until: Feb 18, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Escola Tècnica Superior d’Enginyers de Camins, canals I Ports de Barcelona, Technical Univ. of Catalonia, 08034 Barcelona, Spain (corresponding author). ORCID: https://orcid.org/0000-0001-6755-0187. Email: [email protected]
Sergio Oller [email protected]
Professor, Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Escola Tècnica Superior d’Enginyers de Camins, canals I Ports de Barcelona, Technical Univ. of Catalonia, 08034 Barcelona, Spain. Email: [email protected]
Xavier Martinez [email protected]
Professor, Departamento de Ciencia e Ingeniería Náutica, Facultad de Náutica de Barcelona, Technical Univ. of Catalonia, Pla de Palau 18, 08003 Barcelona, Spain. Email: [email protected]
Alex Barbat [email protected]
Professor, Departamento de Resistencia de Materiales y Estructuras en la Ingeniería, Escola Tècnica Superior d’Enginyers de Camins, canals I Ports de Barcelona, Technical Univ. of Catalonia, 08034 Barcelona, Spain. Email: [email protected]
Cesar Dávalos
Professor, I.I.T. Departamento de Ingeniería Civil y Ambiental, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450 norte, 32310 Ciudad Juárez, México.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share