Technical Papers
Mar 21, 2018

Comparison of Strength Criteria Based on the Measurements on Concrete

Publication: Journal of Engineering Mechanics
Volume 144, Issue 6

Abstract

To evaluate an arbitrary multiaxial stress state, the concept of the equivalent stress can be used. Because of its simplicity and clarity, this concept is now widely used in the component design. Many strength criteria based on the equivalent stress concept have been formulated during the last two centuries. Currently, a large number of strength criteria are available. The choice of an appropriate criterion for a particular material is the main challenge in applications. The alternative is the formulation of generalized criteria that contain classical strength hypotheses and are suitable for different materials. The generalized criteria of specific studies are selected in this work to describe experimental data for concrete. The generalized strength criteria contain several material parameters. The application of these criteria requires experimental results under multiaxial stress states in addition to tension, compression, and torsion test data. As an example, experimental data for concrete under plane stress loading are the focus of this study. These data are approximated with the help of the chosen criteria. The recommendations for the application of the generalized criteria are provided.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was initiated and supported from the State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, P. R. China, Project No. SV 2016-KF-11. The authors thank Prof. Tie-iun Wang and Prof. Yue-ming Li for their kind cooperation.

References

Altenbach, H. (2001). “A generalized limit criterion with application to strength, yielding, and damage of isotropic materials.” Handbook of materials behaviour models, Academic Press, New York, 175–186.
Altenbach, H. (2011). “Mechanics of advanced materials for lightweight structures.” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci., 225(11), 2481–2496.
Altenbach, H., Altenbach, J., and Zolochevsky, A. (1995). Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik, Deutscher Verlag für Grundstoffindustrie, Stuttgart, Germany (in German).
Altenbach, H., Bolchoun, A., and Kolupaev, V. A. (2014). “Phenomenological yield and failure criteria.” Plasticity of pressure-sensitive materials, H. Altenbach and A. Öchsner, eds., Springer, Berlin, 49–152.
Altenbach, H., and Kolupaev, V. A. (2014). “Classical and non-classical failure criteria.” Failure and damage analysis of advanced materials, H. Altenbach and T. Sadowski, eds., Vol. 560, Springer, Heidelberg, Germany, 1–66.
Backhaus, G. (1983). Deformationsgesetze, Akademie-Verlag, Berlin (in German).
Bangash, M. Y. H. (2001). Manual of numerical methods in concrete: Modelling and applications validated by experimental and site-monitoring data, Thomas Telford, London.
Bigoni, D., and Piccolroaz, A. (2003). “A new yield function for geomaterials.” Constitutive modeling and analysis of boundary value problems in geotechnical engineering, C. Viggiani, ed., Hevelius Edizioni, Benevento, Italy, 266–281.
Bigoni, D., and Piccolroaz, A. (2004). “Yield criteria for quasibrittle and frictional materials.” Int. J. Solids Struct., 41(11), 2855–2878.
Bolchoun, A., Kolupaev, V. A., and Altenbach, H. (2011). “Konvexe und nichtkonvexe Fließflächen [Convex and non-convex flow surfaces].” Forschung im Ingenieurwesen, 75(2), 73–92 (in German).
Brencich, A., and Gambarotta, L. (2001). “Isotropic damage model with different tensile-compressive response for brittle materials.” Int. J. Solids Struct., 38(34), 5865–5892.
Burzyński, W. (2009). “Study on material effort hypotheses.” Ph.D. thesis, Academy of Technical Sciences, Lwów, 1–192.
Capurso, M. (1967). “Yield conditions for incompressible isotropic and orthotropic materials with different yield stress in tension and compression.” Meccanica, 2(2), 118–125.
Chen, W.-F. (2007). Plasticity in reinforced concrete, J. Ross Publishing, Ft. Lauderdale, FL.
Chen, W. F., and Zhang, H. (1991). Structural plasticity—Theory, problems, and CAE software, Springer, New York.
Christensen, R. M. (2013). The theory of materials failure, Oxford University Press, Oxford, U.K.
Cowan, H. J. (1953). “The strength of plain, reinforced and prestressed concrete under the action of combined stresses, with particular reference to the combined bending and torsion of rectangular sections.” Mag. Concr. Res., 5(14), 75–86.
Davidenkov, N. N. (1947). “Za i protiv edinoj teorii prochnosti [In favour and against a uniform theory of strength].” Vestnik inzhenerov i tekhnikov, 4, 121–129 (in Russian).
Filin, A. P. (1975). Prikladnaja mekhanika tverdogo deformiruemogo tela [Applied mechanics of solid deformable bodies], Vol. 1. Nauka, Moscow.
Folino, P., and Etse, G. (2011). “Validation of performance-dependent failure criterion for concretes.” ACI Mater. J., 108(3), 261–269.
François, M. (2008). “A new yield criterion for the concrete materials.” Comptes Rendus Mécanique, 336(5), 417–421.
Fromm, H. (1931). “Grenzen des elastischen Verhaltens beanspruchter Stoffe.” Statik und Dynamik elastischer Körper nebst Anwendungsgebieten. II. Teil. Zum Gebrauch für Ingenieure, Physiker und Mathematiker, F. Auerbach and W. Hort, eds., Vol. 4, Barth-Verlag, Leipzig, Germany, 359–435 (in German).
Geniev, G. A., Kissjuk, V. N., and Tjupin, G. A. (1974). Teorija plastichnosti betona i zhelezhobetona [Plasticity theory for concrete and reinforced concrete], Strojizdat, Moscow (in Russian).
Gerstle, K. H., Aschl, H., Bellotti, R., Betracchi, P., Kotsovos, M. D., and Ko, H.-Y. (1980). “Behavior of concrete under multiaxial stress states.” J. Eng. Mech. Div., 106(6), 1383–1403.
Gol’denblat, I. I., and Kopnov, V. A. (1968). Kriterii prochnosti i plastichnosti konstrukzionnych materialov [Yield and strength criteria for structural materials], Mashinostroenie, Moscow (in Russian).
Guo, Z. (2014). Principles of reinforced concrete, Butterworth-Heinemann, Oxford, U.K.
Hammoud, R., Boukhili, R., and Yahia, A. (2013). “Unified formulation for a triaxial elastoplastic constitutive law for concrete.” Materials, 6(9), 4226–4248.
Häussler-Combe, U. (2015). Computational methods for reinforced concrete structures, Wiley, Berlin.
Haythornthwaite, R. M. (1961). “Range of yield condition in ideal plasticity.” Proc. J. Eng. Mech. Div., 87, 117–133.
Hinchberger, S. D. (2009). “Simple single-surface failure criterion for concrete.” J. Eng. Mech., 729–732.
Hsieh, S. S., Ting, E. C., and Chen, W. F. (1982). “A plastic-fracture model for concrete.” Int. J. Solids Struct., 18(3), 181–197.
Ishlinsky, A. Y. (1940). “Gipoteza prochnosti formoizmenenija [Hypothesis of strength of shape change].” Uchebnye Zapiski Moskovskogo Universiteta, 46, 104–114 (in Russian).
Kolupaev, V. A. (2017). “Generalized strength criteria as functions of the stress angle.” J. Eng. Mech., 04017095.
Kolupaev, V. A., and Altenbach, H. (2010). “Einige Überlegungen zur Unified Strength Theory von Mao-Hong Yu [Considerations on the unified strength theory due to Mao-Hong Yu].” Forschung im Ingenieurwesen, 74(3), 135–166 (in German).
Kolupaev, V. A., Becker, W., Massow, H., and Dierkes, D. (2014). “Auslegung von Probekörpern aus Hartschaum zur Ermittlung der biaxialen Zugfestigkeit [Design of test specimens from hard foams for the investigation of biaxial tensile strength].” Forschung im Ingenieurwesen, 78(3–4), 69–86 (in German).
Kolupaev, V. A., Yu, M.-H., and Altenbach, H. (2013a). “Visualisation of the unified strength theory.” Arch. Appl. Mech., 83(7), 1061–1085.
Kolupaev, V. A., Yu, M.-H., and Altenbach, H. (2013b). “Yield criteria of hexagonal symmetry in the π -plane.” Acta Mech., 224(7), 1527–1540.
Kolupaev, V. A., Yu, M.-H., and Altenbach, H. (2016). “Fitting of the strength hypotheses.” Acta Mech., 227(6), 1533–1556.
Korsun, V., Niedoriezov, A., and Makarenko, S. (2014). “Sopostavitel’nij analiz kriteriev prochnosti dlja betonov [Comparative analysis of the strength criteria for concrete].” Modern Ind. Civ. Constr., 10(1), 65–78 (in Russian).
Kotsovos, M. D., and Newman, J. B. (1977). “Behavior of concrete under multiaxial stress.” J. Am. Concr. Inst., 74(9), 443–446.
Lade, P. V. (1982). “Three-parameter failure criterion for concrete.” J. Eng. Mech. Div., 108(5), 850–863.
Lee, S.-K., Song, Y.-C., and Han, S.-H. (2004). “Biaxial behavior of plain concrete of nuclear containment building.” Nucl. Eng. Des., 227(2), 143–153.
Link, J. (1976). “Eine Formulierung des zweiaxialen Verformungs- und Bruchverhaltens von Beton und deren Anwendung auf die wirklichkeitsnahe Berechnung von Stahlbetonplatten.” Deutscher Ausschuss für Stahlbeton, 270, 1–119 (in German).
Lorentz, E., and Kazymyrenko, K. (2014). “Application of a nonlocal damage law to model concrete fracture.” Computational modelling of concrete structures, N. Bićanić, H. Mang, G. Meschke, and R. de Borst, eds., Vol. 1, CRC Press, Boca Raton, FL, 209–217.
Lubliner, J., Oliver, J., Oller, S., and Onate, E. (1989). “A plastic-damage model for concrete.” Int. J. Solids Struct., 25(3), 299–326.
Mohr, O. (1914). Abhandlungen aus dem Gebiete der technischen Mechanik, Wilhelm & Sohn, Berlin (in German).
Mortara, G. (2010). “A yield criterion for isotropic and cross-anisotropic cohesive-frictional materials.” Int. J. Numer. Anal. Methods Geomech., 34(9), 953–977.
Muthukumar, G., and Manoj, K. (2014). “Failure criteria of concrete—A review.” Comput. Concr., 14(5), 503–526.
Nayak, G. C., and Zienkiewicz, O. C. (1972). “Convenient form of stress invariants for plasticity.” J. Struct. Div., 98, 949–953.
Newman, K., and Newman, J. B. (1971). “Failure theories and design criteria for plain concrete.” Structure, solid mechanics and engineering design, M. Te’eni, ed., Vol. 2, Wiley-Interscience, London, 963–995.
Nielsen, M. P., and Hoang, L. C. (2010). Limit analysis and concrete plasticity, CRC Press, Boca Raton, FL.
Novozhilov, V. V. (1951a). “O svjazi mezhdu naprjazhenijami i deformazijami v nelinejno-uprugoj srede [On the connection between stresses and strains in a nonlinear-elastic continuum].” Prikladnaja Matematika i Mekhanika, 15(2), 183–194 (in Russian).
Novozhilov, V. V. (1951b). “O prinzipakh obrabotki rezultatov staticheskikh ispytanij izotropnykh materialov [On the principles of the statical analysis of the experimental results for isotropic materials].” Prikladnaja Matematika i Mekhanika, 15(6), 709–722 (in Russian).
Ottosen, N. S. (1977). “A failure criterion for concrete.” J. Eng. Mech. Div., 103(4), 527–535.
Ottosen, N. S., and Ristinmaa, M. (2005). The mechanics of constitutive modeling, Elsevier Science, London.
Papanikolaou, V. K., and Kappos, A. J. (2007). “Confinement-sensitive plasticity constitutive model for concrete in triaxial compression.” Int. J. Solids Struct., 44(21), 7021–7048.
Paul, B. (1968). “Macroscopic plastic flow and brittle fracture.” Fracture: An advanced treatise, H. Liebowitz, ed., Vol. 2, Academic Press, New York, 313–496.
Pełczyński, T. (1951). “Wpływ stanu napięcia na przejście materiału w stan plastyczny [The effect of the stress state on the transition of the material to a state of plasticity].” Przeglad Mechaniczny, 7, 204–208 (in Polish).
Pisarenko, G. S., and Lebedev, A. A. (1976). Deformirovanie i prochnost’ materialov pri slozhnom naprjazhennom sostojanii [Deformation and strength of materials under complex stress state], Naukowa Dumka, Kiev, Ukraine (in Russian).
Pivonka, P., Lackner, R., and Mang, H. A. (2003). “Shapes of loading surfaces of concrete models and their influence on the peak load and failure mode in structural analyses.” Int. J. Eng. Sci., 41(13), 1649–1665.
Podgórski, J. (1984). “Limit state condition and the dissipation function for isotropic materials.” Arch. Mech., 36(3), 323–342.
Podgórski, J. (1985). “General failure criterion for isotropic media.” J. Eng. Mech., 188–201.
Poynting, J. H. (1909). “On pressure perpendicular to the shear planes in finite pure shears, and on the lengthening of loaded wires when twisted.” Proc. R. Soc. London Ser. A, 82(557), 546–559.
Poynting, J. H. (1912). “On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel.” Proc. R. Soc. London Ser. A, 86(590), 534–561.
Poynting, J. H., and Thomson, J. J. (1927). A text-book of physics, properties of matter, Charles Griffin & Co., London.
Puzrin, A. M. (2012). Constitutive modelling in geomechanics: Introduction, Springer, Heidelberg, Germany.
Rankine, W. J. M. (1876). Manual of applied mechanics, Griffin, London.
Reimann, H. (1965). “Kritische Spannungszustande des Betons bei mehrachsiger ruhender Kurzzeitbelastung.” Deutscher Ausschuss für Stahlbeton, 175, 35–63 (in German).
Ren, X. D., Yang, W. Z., Zhou, Y., and Li, J. (2008). “Behavior of high-performance concrete under uniaxial and biaxial loading.” ACI Mater. J., 105(6), 548–557.
Sähn, S., Göldner, H., Nickel, J., and Fischer, K. (1993). Bruch- und Beurteilungskriterien in der Festigkeitslehre, Fachbuchverlag, Leipzig, Germany (in German).
Sayir, M. (1970). “Zur Fließbedingung der Plastizitätstheorie.” Ingenieur-Archiv, 39(6), 414–432 (in German).
Schmidt, R. (1932). “Über den Zusammenhang von Spannungen und Formänderungen im Verfestigungsgebiet.” Ingenieur-Archiv, 3(3), 215–235 (in German).
Swift, H. W. (1946). Plastic strain in an isotropic strain hardening material, Vol. 162, Engineering: For Innovators in Technology, Manufacturing and Management, Knowle, London, 381–384.
Tasuji, M. E. (1976). “The behavior of plan concrete subject to biaxial stress.”, Cornell Univ., New York.
Tasuji, M. E., Nilson, A. H., and Slate, F. O. (1979). “Biaxial stress-strain relationships for concrete.” Mag. Concr. Res., 31(109), 217–224.
Tasuji, M. E., Slate, F. O., and Nilson, A. H. (1978). “Stress-strain response and fracture of concrete in biaxial loading.” ACI J. Proc., 75(7), 306–312.
Timoshenko, S. P. (1953). History of strength of materials: With a brief account of the history of theory of elasticity and theory of structure, McGraw-Hill, New York.
Tresca, H. (1868). “Mémoire sur l’ecoulement des corps solides.” Mémoires Pres. par Div. Savants, 18, 733–799 (in French).
van Mier, J. G. M., and de Borst, R. (1986). “2-D representation of 3-D limit surfaces.” J. Eng. Mech., 1255–1258.
von Mises, R. (1913). “Mechanik des festen Körpers im plastischen deformablen Zustand.” Nachrichten der Königlichen Gesellschaft der Wissenschaften Göttingen Mathematisch-physikalische Klasse, 589–592 (in German).
Wastiels, J. (1979). “Behaviour of concrete under multiaxial stresses—A review.” Cem. Concr. Res., 9(1), 35–44.
Yagn, Y. I. (1933). Soprotivlenie materialov: teorja i zadachnik [Strength of materials: Theory and problems], Kubuch, Leningrad, Russia (in Russian).
Yu, M.-H. (2004). Unified strength theory and its applications, Springer, Berlin.
Yu, M.-H. (2017). “Unified strength theory (UST).” Rock mechanics and engineering, X.-T. Feng, ed., Vol. 1, CRC Press, Leiden, Netherlands, 425–452.
Yu, M.-H. (2018). Unified strength theory and its applications, 2nd Ed., Springer, Singapore.
Yu, M.-H., and Li, J.-C. (2012). Computational plasticity, Springer, Heidelberg, Germany.
Yu, M.-H., Mao, G.-W., Qiang, H.-F., and Zhang, Y.-Q. (2006). Generalized plasticity, Springer, Berlin.
Zhang, J., Zhang, Z. X., and Huang, C. P. (2011). “Representation based classification of strength theories of concrete.” Adv. Mater. Res., 168, 74–77.
Życzkowski, M. (1981). Combined loadings in the theory of plasticity, PWN-Polish Scientific, Warsaw, Poland.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 144Issue 6June 2018

History

Received: Aug 16, 2016
Accepted: Sep 6, 2017
Published online: Mar 21, 2018
Published in print: Jun 1, 2018
Discussion open until: Aug 21, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

V. A. Kolupaev [email protected]
Research Assistant, Dept. of Plastics, Fraunhofer Institute for Structural Durability and System Reliability (LBF), Schloßgartenstr. 6, D-64289 Darmstadt, Germany (corresponding author). E-mail: [email protected]
Professor, State Key Laboratory for Strength and Vibration of Mechanical Studies, Xi’an Jiaotong Univ., No. 28, Xianning West Rd., Xi’an 710049, P.R. China. E-mail: [email protected]
H. Altenbach [email protected]
Professor, Institut für Mechanik (IFME), Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany. E-mail: [email protected]
A. Bolchoun [email protected]
Research Assistant, Dept. of Structural Durability, Fraunhofer Institute for Structural Durability and System Reliability (LBF), Bartningstr. 47, D-64289 Darmstadt, Germany. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share