TECHNICAL PAPERS
Nov 21, 2009

Flexural-Torsional Buckling of Cantilever Strip Beam-Columns with Linearly Varying Depth

Publication: Journal of Engineering Mechanics
Volume 136, Issue 6

Abstract

In this paper, one investigates the elastic flexural-torsional buckling of linearly tapered cantilever strip beam-columns acted by axial and transversal point loads applied at the tip. For prismatic and wedge-shaped members, the governing differential equation is integrated in closed form by means of confluent hypergeometric functions. For general tapered members (0<(hmaxhmin)/hmax<1) , the solution to the boundary value problem is obtained in the form of a Frobenius’ series, which is shown to converge in the interior of the domain and at the boundary if and only if 0<(hmaxhmin)/hmax<1/2 . Therefore, for 1/2⩽(hmaxhmin)/hmax<1 the Frobenius’ series solution cannot be used to establish the characteristic equation for the cantilever beam-columns; the problem is then solved numerically by means of a collocation procedure. Some of the analytical solutions (buckling loads) were compared with the results of shell finite-element analyses and an excellent agreement was found in all cases, thus validating the mathematical model and confirming the correctness of the analytical results. The paper closes with a discussion on the convexity of the stability domain (in the load parameter space) and the accuracy of approximations based on Dunkerley-type theorems.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The second writer gratefully acknowledges the financial support of FCT (Portuguese Foundation for Science and Technology) through the Doctoral Grant No. UNSPECIFIEDSFRH/BD/39115/2007.

References

Andrade, A., and Camotim, D. (2005). “Lateral-torsional buckling of singly symmetric tapered beams: Theory and applications.” J. Eng. Mech., 131(6), 586–597.
Andrade, A., Camotim, D., and Dinis, P. B. (2007). “Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA.” Comput. Struct., 85(17–18), 1343–1359.
Andrade, A., Providência, P., and Camotim, D. (2006). “Lateral-torsional buckling analysis of web-tapered I-beams using finite element and spline collocation methods.” Proc., Book of Abstracts of the 3rd European Conf. on Computational Mechanics—Solids, Structures and Coupled Problems in Engineering (CD-ROM), C. A. Mota Soares, et al., eds., Dordrecht, The Netherlands.
Ascher, U. (1980). “Solving boundary-value problems with a spline-collocation code.” J. Comput. Phys., 34(3), 401–413.
Ascher, U., Christiansen, J., and Russell, R. D. (1979a). “A collocation solver for mixed order systems of boundary value problems.” Math. Comput., 33(146), 659–679.
Ascher, U., Christiansen, J., and Russell, R. D. (1979b). “COLSYS—A collocation code for boundary-value problems.” Codes for boundary-value problems in ordinary differential equations, B. Childs, et al., eds., Springer, Berlin, 164–185.
Ascher, U., Christiansen, J., and Russell, R. D. (1981). “Collocation software for boundary-value ODEs.” ACM Trans. Math. Softw., 7(2), 209–222.
Ascher, U., Mattheij, R. M., and Russell, R. D. (1995). Numerical solution of boundary value problems for ordinary differential equations, SIAM, Philadelphia.
Auzinger, W., Karner, E., Koch, O., and Weinmüller, E. (2006). “Collocation methods for the solution of eigenvalue problems for singular ordinary differential equations.” Opuscula Mathematica, 26(2), 229–241.
Babuska, I., and Oden, J. T. (2004). “Verification and validation in computational engineering and science: Basic concepts.” Comput. Methods Appl. Mech. Eng., 193(36–38), 4057–4066.
Bader, G., and Ascher, U. (1987). “A new basis implementation for a mixed order boundary value ODE solver.” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 8(4), 483–500.
Billington, D. P. (1985). The tower and the bridge: The new art of structural engineering, Princeton University Press, Princeton, N.J.
Bramley, S., Dieci, L., and Russell, R. D. (1991). “Numerical solution of eigenvalue problems for linear boundary value ODEs.” J. Comput. Phys., 94(2), 382–402.
Buchholz, H. (1953). Die konfluente hypergeometrische Funktion, Springer, Berlin (in German).
Challamel, N. (2007). “Lateral-torsional buckling of beams under combined loading—A reappraisal of the Papkovitch-Schaefer theorem.” Int. J. Struct. Stab. Dyn., 7(1), 55–79.
Challamel, N., Andrade, A., and Camotim, D. (2007). “An analytical study on the lateral-torsional buckling of linearly tapered cantilever strip beams.” Int. J. Struct. Stab. Dyn., 7(3), 441–456.
Challamel, N., and Wang, C. M. (2010). “Exact lateral-torsional buckling solutions for cantilevered beams subjected to intermediate and end transverse loads.” Thin-Walled Struct., 48(1), 71–76.
Coddington, E. A., and Carlson, R. (1997). Linear ordinary differential equations, SIAM, Philadelphia.
Commissariat à l’Energie Atomique (CEA). (2007). CAST3M—finite element code, Saclay, France.
DiMaggio, F., Gomza, A., Thomas, W. E., and Salvadori, M. G. (1952). “Lateral buckling of beams in bending and compression.” J. Aeronaut. Sci., 19, 574–576.
Dinnik, A. (1913). “On bending of columns of variable cross-section.” Izvestiya Donskogo Instituta, 1, 390–404 (in Russian).
Dinnik A. (1929). “Design of columns of varying cross section.” Trans. ASME, 51, 105–114.
Dinnik A. (1932). “Design of columns of varying cross section.” Trans. ASME, 54, 165–171.
Elishakoff, I. (2000). “A selective review of direct, semi-inverse and inverse eigenvalue problems for structures described by differential equations with variable coefficients.” Arch. Comput. Methods Eng., 7(4), 451–526.
Elishakoff, I. (2005). Eigenvalues of inhomogeneous structures—Unusual closed-form solutions, CRC, Boca Raton, Fla.
Euler, L. (1744). “Additamentum I. De curvis elasticis.” Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, Marcum-Michaelem Bousquet & Socios, Lausanne & Geneva, 245–310 (in Latin).
Euler, L. (1759). “Sur la force des colonnes.” Mémoires de l’Académie Royale des Sciences et Belles Lettres, 13, 252–282 (in French).
Federhofer, K. (1931). “Neue beiträge zur berechnung der kipplasten gerader stäbe.” Sitzungsberichte der Akademie der Wissenschaften in Wien, 140, 237–270 (in German).
Frobenius, G. (1873). “Ueber die integration der linearen differentialgleichungen durch reihen.” Journal für die Reine und Angewandte Mathematik, 76, 214–235 (in German).
Gatewood, B. E. (1955). “Buckling loads for beams of variable cross section under combined loads.” J. Aeronaut. Sci., 22(4), 281–282.
Hodges, D. H., Ho, J. C., and Yu, W. (2008). “The effect of taper on section constants for in-plane deformation of an isotropic strip.” J. Mech. Mater. Struct., 3(3), 425–440.
Hodges, D. H., and Peters, D. A. (2001). “Lateral-torsional buckling of cantilevered elastically coupled composite strip- and I-beams.” Int. J. Solids Struct., 38(9), 1585–1603.
Ince, E. L. (1956). Ordinary differential equations, Dover, New York.
Keller, H. B. (1984). Numerical solution of two point boundary value problems, SIAM, Philadelphia.
Lanczos, C. (1970). The variational principles of mechanics, University of Toronto Press, Toronto.
Lee, L. H. N. (1959). “On the lateral buckling of a tapered narrow rectangular beam.” J. Appl. Mech., 26, 457–458.
Martin, H. C. (1951). “Elastic instability of deep cantilever struts under combined axial and shear loads at the free end.” Proc., 1st U.S. National Congress of Applied Mechanics (Chicago), 395–402.
Michell, A. G. M. (1899). “Elastic stability of long beams under transverse forces.” Philos. Mag., 48, 198–309.
Mikhlin, S. G. (1970). Mathematical physics, an advanced course, North-Holland, Amsterdam, The Netherlands.
Milisavljević, B. M. (1988). “Lateral buckling of a cantilever beam with imperfections.” Acta Mech., 74(1–4), 123–137.
Milisavljević, B. M. (1995). “On lateral buckling of a slender cantilever beam.” Int. J. Solids Struct., 32(16), 2377–2391.
Papkovitch, P. F. (1934). “Ein allgemeiner Satz über die Stabilität Elastischer Systeme unter Gleichzeitiger Wirkung von mehrren Belastung.” Proc., 4th Int. Congress of Applied Mechanics (Cambridge), Cambridge University Press, Cambridge, U.K., 231–232 (in German).
Prandtl, L. (1899). “Kipperscheinungen.” Dissertation der Universität München, Ludwig Prandtl Gesammelte Abhandlungen, Erster Teil, 10–74, Springer, Berlin 1961 (in German).
Raj, A., and Sujith, R. I. (2005). “Closed-form solutions for the free longitudinal vibration of inhomogeneous rods.” J. Sound Vib., 283(3–5), 1015–1030.
Reissner, E., Reissner, J. E., and Wan, F. Y. M. (1987). “On lateral buckling of end-loaded cantilevers including the effect of warping stiffness.” Comput. Mech., 2(2), 137–147.
Schaefer, H. (1934). “Angenäherte berechnung des kleinsten eigenwertes zusammengesetzter systeme.” Z. Angew. Math. Mech., 14, 367–368 (in German).
Slater, L. J. (1960). Confluent hypergeometric functions, Cambridge University Press, Cambridge, U.K.
Slater, L. J. (1970). “Confluent hypergeometric functions.” Handbook of mathematical functions with formulas, graphs and mathematical tables, M. Abramowitz and I. Stegun, eds., National Bureau of Standards, Applied Mathematics Series, 55, 503–535, Washington, D.C.
Tarnai, T. (1995). “The Southwell and the Dunkerley theorems.” Summation theorems in structural stability (CISM course no. 354), T. Tarnai, ed., Springer, Wien, Austria, 141–185.
Tarnai, T. (1999). “Summation theorems concerning critical loads of bifurcation.” Structural stability in engineering practice, L. Kollár, ed., E & FN Spon, London, 23–58.
Timoshenko, S. P., and Gere, J. M. (1961). Theory of elastic stability, 2nd Ed., McGraw-Hill, New York.
Timoshenko, S. P., and Goodier, J. N. (1970). Theory of elasticity, 2nd Ed., McGraw-Hill, New York.
Trahair, N. S. (1993). Flexural-torsional buckling of structures, E & FN Spon, London.
Trefftz, E. (1930). “Über die ableitung der stabilitätskriterien des elastischen gleichgewichts aus der elastizitätstheorie endlicher deformationen.” Proc., 3rd Int. Congress of Applied Mechanics (Stockholm), Vol. 3, A. C. W. Oseen, and W. Weibull, eds., AB. Sveriges Kitografiska Tryckerier, Stockholm, Sweden, 44–50 (in German).
Trefftz, E. (1933). “Zur theorie der stabilität des elastischen gleichgewichts.” Z. Angew. Math. Mech., 13(2), 160–165 (in German).
Truesdell C. (1960). “The rational mechanics of flexible or elastic bodies, 1638–1788.” Leonhardi Euleri opera omnia, Orell Füssli, Zurich, Switzerland.
Wagner, H. (1936). Torsion and buckling of open sections, NACA technical memorandum 807, translator, S. Reiss, Danzig.
Wang, C. M., Wang, C. Y., and Reddy, J. N. (2005). Exact solutions for buckling of structural members, CRC, Boca Raton, Fla.
Yuan, S. (1991). “ODE conversion techniques and their applications in computational mechanics.” Acta Mech. Sin., 7(3), 283–288.

Information & Authors

Information

Published In

Go to Journal of Engineering Mechanics
Journal of Engineering Mechanics
Volume 136Issue 6June 2010
Pages: 787 - 800

History

Received: Sep 18, 2009
Accepted: Nov 16, 2009
Published online: Nov 21, 2009
Published in print: Jun 2010

Permissions

Request permissions for this article.

Authors

Affiliations

Noël Challamel, M.ASCE [email protected]
Associate Professor, Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Université Européenne de Bretagne, INSA de Rennes, 20, avenue des Buttes de Coësmes, Rennes cedex 35043, France (corresponding author). E-mail: [email protected]
Anísio Andrade [email protected]
Assistant, Dept. of Civil Engineering, INESC Coimbra, Univ. of Coimbra, Coimbra 3030-788, Portugal. E-mail: [email protected]
Dinar Camotim, M.ASCE [email protected]
Professor, Dept. of Civil Engineering and Architecture, ICIST/IST, Technical Univ. of Lisbon, Lisbon 1049-001, Portugal. E-mail: [email protected]
Branko M. Milisavlevich [email protected]
Professor, Advanced Engineering School, Skolska 1, P.O. Box 318, Novi Sad 21101, Serbia. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share