Technical Papers
Dec 8, 2020

Behavior of Natural Fine Soil Particle Dispersions in Nonaqueous-Phase Liquids

Publication: Journal of Environmental Engineering
Volume 147, Issue 2

Abstract

Understanding and quantifying particle–fluid interaction (PFI) is of fundamental importance for such geoenvironmental issues as polluted soil behavior, transport of organic contaminants in porous media, and the behavior of slurries in contact with nonaqueous-phase liquids (NAPLs). NAPLs have a very low dielectric permittivity in comparison with water, and therefore significant changes in soil properties can be expected as a consequence of PFI. This study evaluates interactions between soil particles and NAPLs using the rheology measurement of loess silt, zeolite, and bentonite particle concentrated dispersions. The dispersing liquids were kerosene, two paraffin oils with different viscosities, and deionized water (DIW) as a reference liquid. The results show the influence of the volumetric content of particles on the undrained shear strength of dispersions. The effects of suspending fluid viscosity and the magnitude of PFI were analyzed in a novel way by comparing the volume of particles for which the dispersion presents an undrained shear stress of 1 Pa determined for two different fluids. These results highlight the importance of PFI in the macroscopic properties of soils, hydraulic conductivity, and liquid limit.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data from this study are available from the authors upon request. This includes worksheets with the raw data of shear stress versus shear rate data, shear stress versus volumetric content of solids and hydraulic conductivity, and liquid limit data for all tested specimens, used to create the figures and tables of this article.

Acknowledgments

This research was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Grant Nos. 11220150100298CO and PUE-49765) and the Secretaría de Ciencia y Técnica—Universidad Nacional de Córdoba SECyT-UNC (Grant No. 30720150100665CB). The authors thank the anonymous reviewers for their very useful comments and suggestions that helped to improve this article.

References

Abend, S., and G. Lagaly. 2000. “Sol-gel transitions of sodium montmorillonite dispersions.” Appl. Clay Sci. 16 (3–4): 201–227. https://doi.org/10.1016/S0169-1317(99)00040-X.
Abousnina, R. M., A. Manalo, J. Shiau, and W. Lokuge. 2015. “Effects of light crude oil contamination on the physical and mechanical properties of fine sand.” Soil Sediment Contam. 24 (8): 833–845. https://doi.org/10.1080/15320383.2015.1058338.
Ahn, H., and H. Y. Jo. 2009. “Influence of exchangeable cations on hydraulic conductivity of compacted bentonite.” Appl. Clay Sci. 44 (1–2): 144–150. https://doi.org/10.1016/j.clay.2008.12.018.
Amorós, J. L., V. Beltrán, V. Sanz, and J. C. Jarque. 2010. “Electrokinetic and rheological properties of highly concentrated kaolin dispersions: Influence of particle volume fraction and dispersant concentration.” Appl. Clay Sci. 49 (1–2): 33–43. https://doi.org/10.1016/j.clay.2010.03.020.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM D854. West Conshohocken, PA: ASTM.
ASTM. 2015. Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. ASTM D5856. West Conshohocken, PA: ASTM.
ASTM. 2017a. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487. West Conshohocken, PA: ASTM.
ASTM. 2017b. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318. West Conshohocken, PA: ASTM.
ASTM. 2017c. Standard test method for particle-size analysis of soils (withdrawn 2016). ASTM D422-63. West Conshohocken, PA: ASTM.
ASTM. 2018. Standard test methods for rheological properties of non-Newtonian materials by rotational viscometer. ASTM D2196. West Conshohocken, PA: ASTM.
Balseiro-Romero, M., C. Monterroso, and J. J. Casares. 2018. “Environmental fate of petroleum hydrocarbons in soil: Review of multiphase transport, mass transfer, and natural attenuation processes.” Pedosphere 28 (6): 833–847. https://doi.org/10.1016/S1002-0160(18)60046-3.
BSI (British Standards Institution). 1990. British standard methods of tests for soil for engineering purposes, part 2. BS 1377-2. London: BSI.
Estabragh, A. R., I. Beytolahpour, M. Moradi, and A. A. Javadi. 2014. “Consolidation behavior of two fine-grained soils contaminated by glycerol and ethanol.” Eng. Geol. 178 (21): 102–108. https://doi.org/10.1016/j.enggeo.2014.05.017.
Fernandez, F., and R. M. Quigley. 1985. “Hydraulic conductivity of natural clays permeated with simple liquid hydrocarbons.” Can. Geotech. J. 22 (2): 205–214. https://doi.org/10.1139/t85-028.
Francisca, F. M., and M. A. Montoro. 2015. “Influence of particle size distribution and wettability on the displacement of LNAPL in saturated sandy soils.” J. Environ. Eng. 141 (6): 04014091. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000915.
Francisca, F. M., V. A. Rinaldi, and J. C. Santamarina. 2003. “Instability of hydrocarbon films over mineral surfaces: Microscale experimental studies.” J. Environ. Eng. 129 (12): 1120–1128. https://doi.org/10.1061/(ASCE)0733-9372(2003)129:12(1120).
Harr, M. 1987. Reliability-based design in civil engineering. New York: Dover.
Heller, H., and R. Keren. 2001. “Rheology of Na-rich montmorillonite suspensions as affected by electrolyte concentration and shear rate.” Clays Clay Miner. 49 (4): 286–291. https://doi.org/10.1346/CCMN.2001.0490402.
Holtz, R. D., W. D. Kovacs, and T. C. Sheahan. 2011. An introduction to geotechnical engineering. New York: Prentice Hall.
Janek, M., and G. Lagaly. 2001. “Proton saturation and rheological properties of smectite dispersions.” Appl. Clay Sci. 19 (1–6): 121–130. https://doi.org/10.1016/S0169-1317(01)00051-5.
Jang, J., and J. C. Santamarina. 2016. “Fines classification based on sensitivity to pore-fluid chemistry.” J. Geotech. Geoenviron. Eng. 142 (4): 06015018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001420.
Jarsjö, J., G. Destouni, and B. Yaron. 1997. “On the relation between viscosity and hydraulic conductivity for volatile organic liquid mixtures in soils.” J. Contam. Hydrol. 25 (1–2): 113–127. https://doi.org/10.1016/S0169-7722(96)00036-8.
Katti, D. R., Z. R. Patwary, and K. S. Katti. 2016. “Modelling clay–fluid interactions in montmorillonite clays.” Environ. Geotech. 4 (5): 322–338. https://doi.org/10.1680/jenge.14.00027.
Kelessidis, V. C., and R. Maglione. 2006. “Modeling rheological behavior of bentonite suspensions as Casson and Robertson–Stiff fluids using Newtonian and true shear rates in Couette viscometry.” Powder Technol. 168 (3): 134–147. https://doi.org/10.1016/j.powtec.2006.07.011.
Kermani, M., and T. Ebadi. 2012. “The effect of oil contamination on the geotechnical properties of fine-grained soils.” Soil Sediment Contam. 21 (5): 655–671. https://doi.org/10.1080/15320383.2012.672486.
Khamehchiyan, M., A. H. Charkhabi, and M. Tajik. 2007. “Effects of crude oil contamination on geotechnical properties of clayey and sandy soils.” Eng. Geol. 89 (3–4): 220–229. https://doi.org/10.1016/j.enggeo.2006.10.009.
Komine, H. 2004. “Simplified evaluation on hydraulic conductivities of sand–bentonite mixture backfill.” Appl. Clay Sci. 26 (1–4): 13–19. https://doi.org/10.1016/j.clay.2003.09.006.
Krieger, I. M. 1972. “Rheology of monodisperse lattices.” Adv. Colloid Interface Sci. 3 (2): 111–136. https://doi.org/10.1016/0001-8686(72)80001-0.
Lee, J. M., C. D. Shackelford, C. H. Benson, H. Y. Jo, and T. B. Edil. 2005. “Correlating index properties and hydraulic conductivity of geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 131 (11): 1319–1329. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1319).
Lyklema, J. 2005. Vol. 4 of Fundamentals of interface and colloid science: Particulate colloids. Amsterdam, Netherlands: Elsevier.
Mercer, J. W., and R. M. Cohen. 1990. “A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation.” J. Contam. Hydrol. 6 (2): 107–163. https://doi.org/10.1016/0169-7722(90)90043-G.
Mitchell, J. K., and K. Soga. 2005. Fundamentals of soil behavior. 3rd ed. Hoboken, NJ: Wiley.
Montoro, M. A., and F. M. Francisca. 2010. “Soil permeability controlled by particle–fluid interaction.” Geotech. Geol. Eng. 28 (6): 851–864. https://doi.org/10.1007/s10706-010-9348-y.
Montoro, M. A., and F. M. Francisca. 2019. “Effect of ion type and concentration on rheological properties of natural sodium bentonite dispersions.” Appl. Clay Sci. 178 (Sep): 105132. https://doi.org/10.1016/j.clay.2019.105132.
Musso, T. B., F. M. Francisca, G. Pettinari, and K. E. Roehl. 2016. “Suitability of a cretaceous natural Na-bentonite as construction material for landfill liners.” Environ. Eng. Manage. J. 15 (11): 2519–2528. https://doi.org/10.30638/eemj.2016.276.
Newell, C. J., S. D. Acree, R. R. Ross, and S. G. Huling. 1995. Light nonaqueous phase liquids. EPA/540/S-95/500. Washington, DC: EPA.
Olgun, M., and M. Yildiz. 2010. “Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil.” Appl. Clay Sci. 48 (4): 615–621. https://doi.org/10.1016/j.clay.2010.03.015.
Palomino, A., and J. C. Santamarina. 2005. “Fabric map for kaolinite: Effects of pH and ionic concentration on behavior.” Clays Clay Min. 53 (3): 211–223. https://doi.org/10.1346/CCMN.2005.0530302.
Phoon, K. K. 2008. Reliability-based design in geotechnical engineering: Computations and applications. Boca Raton, FL: CRC Press.
Puri, V. K. 2000. “Geotechnical aspects of oil-contaminated sands.” Soil Sediment Contam. 9 (4): 359–374. https://doi.org/10.1080/10588330091134301.
Santamarina, J. C., et al. 2019. “Soil properties: Physics inspired, data driven.” In Geotechnical fundamentals for addressing new world challenges, 67–91. Cham, Switzerland: Springer.
Santamarina, J. C., K. A. Klein, Y. H. Wang, and E. Prencke. 2002. “Specific surface: Determination and relevance.” Can. Geotech. J. 39 (1): 233–241. https://doi.org/10.1139/t01-077.
Seed, H. B., R. J. Woodward, and R. Lundgren. 1964. “Fundamental aspects of the Atterberg limits.” J. Soil Mech. Found. Div. 90 (4): 75–105.
Singh, S. K., K. Srivastava, and S. Y. John. 2008. “Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons.” Soil Sediment Contam. 17 (3): 290–300. https://doi.org/10.1080/15320380802007028.
Smiles, D. E. 2008. “Effects of solutes on clay–water interactions: Some comments.” Appl. Clay Sci. 42 (1–2): 158–162. https://doi.org/10.1016/j.clay.2008.01.006.
Tadros, T. F. 2010. Rheology of dispersions: Principles and applications. Weinheim, Germany: Wiley-VCH Verlag.
Turian, R. M., T. W. Ma, F. L. G. Hsu, and D. J. Sung. 1997. “Characterization, settling, and rheology of concentrated fine particulate mineral slurries.” Powder Technol. 93 (3): 219–233. https://doi.org/10.1016/S0032-5910(97)03274-9.
Vardanega, P. J., and S. K. Haigh. 2014. “The undrained strength–liquidity index relationship.” Can, Geotech. J. 51 (9): 1073–1086. https://doi.org/10.1139/cgj-2013-0169.
Zhang, Z. F., A. L. Ward, and J. M. Keller. 2011. “Determining the porosity and saturated hydraulic conductivity of binary mixtures.” Vadose Zone J. 10 (1): 313–321. https://doi.org/10.2136/vzj2009.0138.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 147Issue 2February 2021

History

Received: Mar 22, 2020
Accepted: Oct 2, 2020
Published online: Dec 8, 2020
Published in print: Feb 1, 2021
Discussion open until: May 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Construcciones Civiles, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, Ciudad Universitaria, X5016 CGA, Córdoba, Argentina; Independent Researcher, Instituto de Estudios Avanzados en Ingeniería y Tecnología, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Córdoba, X5016 CGA, Córdoba, Argentina (corresponding author). ORCID: https://orcid.org/0000-0002-6965-9036. Email: [email protected]
Marcos A. Montoro, D.Sc. [email protected]
Adjunct Professor, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, X5016 CGA, Córdoba, Argentina; Assistant Researcher, Instituto de Estudios Avanzados en Ingeniería y Tecnología, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Córdoba, X5016 CGA, Córdoba, Argentina. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share