Technical Papers
May 13, 2020

Solid-Phase Fe(II)-Mediated Autotrophic Denitrification for Nitrate Removal from Wastewater with a Low Carbon-to-Nitrogen Ratio

Publication: Journal of Environmental Engineering
Volume 146, Issue 7

Abstract

In this study, three solid-phase iron sources—FeS, FeCO3, and sponge iron—were used to investigate the autotrophic denitrification efficiency in low-carbon-to-nitrogen (C/N) wastewater. Among these iron sources, FeS obtained the best efficiency, with a nitrate removal of 96% at 120 h under C/N=1 and NO3-N=40  mg·L1. Then, batch experiments with FeS as an electron donor were conducted to evaluate the effect of different influent C/N ratios and NO3-N concentrations. According to the results of the experiments, the nitrate removal efficiency of the mixotrophic system was greater than that of the pure autotrophic system under low-C/N ratios, and the TN (total nitrogen) removal efficiency was also enhanced. In the mixotrophic system, the nitrate removal reached 98% in 48 h under a C/N ratio of 1, and NO3-N was in the range of 20  mg·L1 to 40  mg·L1. Additionally, some accumulation of ammonia was observed in the nitrogen conversion process. According to microbial analysis, the synergistic action of heterotrophic and autotrophic denitrifiers improved nitrate removal.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was supported by Science and Technology Support Program of Jiangsu Province (BE2016357) and a project founded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

References

Belzile, N., Y.-W. Chen, M.-F. Cai, and Y. Li. 2004. “A review on pyrrhotite oxidation.” J. Geochem. Explor. 84 (2): 65–76. https://doi.org/10.1016/j.gexplo.2004.03.003.
Buchholz-Cleven, B. E. E., B. Rattunde, and K. L. Straub. 1997. “Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization.” Syst. Appl. Microbiol. 20 (2): 301–309. https://doi.org/10.1016/S0723-2020(97)80077-X.
Chakraborty, A., and F. Picardal. 2013. “Neutrophilic, nitrate-dependent, Fe(II) oxidation by a Dechloromonas species.” World J. Microbiol. Biotechnol. 29 (4): 617–623. https://doi.org/10.1007/s11274-012-1217-9.
Chen, M., W. Wang, Y. Feng, X. Zhu, H. Zhou, Z. Tan, and X. Li. 2014. “Impact resistance of different factors on ammonia removal by heterotrophic nitrification—Aerobic denitrification bacterium Aeromonas sp. HN-02.” Bioresour. Technol. 167 (Sep): 456–461. https://doi.org/10.1016/j.biortech.2014.06.001.
Chiriţă, P., and J. D. Rimstidt. 2014. “Pyrrhotite dissolution in acidic media.” Appl. Geochem. 41 (Feb): 1–10. https://doi.org/10.1016/j.apgeochem.2013.11.013.
Chiu, Y. C., and M. S. Chung. 2003. “Determination of optimal COD/nitrate ratio for biological denitrification.” Int. Biodeterior. Biodegrad. 51 (1): 43–49. https://doi.org/10.1016/S0964-8305(02)00074-4.
Darbi, A., and T. Viraraghavan. 2003. “A kinetic model for autotrophic denitrification using sulphur: Limestone reactors.” Water Qual. Res. J. 38 (1): 183–192. https://doi.org/10.2166/wqrj.2003.012.
Dubinina, G. A., and A. Y. Sorokina. 2014. “Neutrophilic lithotrophic iron-oxidizing prokaryotes and their role in the biogeochemical processes of the iron cycle.” Microbiology 83 (1): 1–14. https://doi.org/10.1134/S0026261714020052.
Etchebehere, C., and J. Tiedje. 2005. “Presence of two different active NirS nitrite reductase genes in a denitrifying Thauera sp. from a high-nitrate-removal-rate reactor.” Appl. Environ. Microbiol. 71 (9): 5642–5645. https://doi.org/10.1128/AEM.71.9.5642-5645.2005.
Hang, Q., H. Wang, Z. Chu, Z. Hou, Y. Zhou, and C. Li. 2017. “Nitrate-rich agricultural runoff treatment by Vallisneria-sulfur based mixotrophic denitrification process.” Sci. Total Environ. 587–588 (Jun): 108–117. https://doi.org/10.1016/j.scitotenv.2017.02.069.
Haugen, K. S., M. J. Semmens, and P. J. Novak. 2002. “A novel in situ technology for the treatment of nitrate contaminated groundwater.” Water Res. 36 (14): 3497–3506. https://doi.org/10.1016/S0043-1354(02)00043-X.
He, Q., C. Feng, N. Chen, D. Zhang, T. Hou, J. Dai, C. Hao, and B. Mao. 2019. “Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification.” Chemosphere 215 (Jan): 142–152. https://doi.org/10.1016/j.chemosphere.2018.10.026.
Huang, S., Z. Zheng, Q. Wei, I. Han, and P. R. Jaffé. 2019. “Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions.” Bioresour. Technol. 294 (Dec): 122176. https://doi.org/10.1016/j.biortech.2019.122176.
Janzen, M. P., R. V. Nicholson, and J. M. Scharer. 2000. “Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution.” Geochim. Cosmochim. Acta 64 (9): 1511–1522. https://doi.org/10.1016/S0016-7037(99)00421-4.
Kiskira, K., S. Papirio, E. D. van Hullebusch, and G. Esposito. 2017. “Fe(II)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters.” Int. Biodeterior. Biodegrad. 119 (Apr): 631–648. https://doi.org/10.1016/j.ibiod.2016.09.020.
Koenig, A., and L. H. Liu. 2001. “Kinetic model of autotrophic denitrification in sulphur packed-bed reactors.” Water Res. 35 (8): 1969–1978. https://doi.org/10.1016/S0043-1354(00)00483-8.
Korom, S. F. 1992. “Natural denitrification in the saturated zone: A review.” Water Resour. Res. 28 (6): 1657–1668. https://doi.org/10.1029/92WR00252.
Li, B., X. Pan, D. Zhang, D.-J. Lee, F. A. Al-Misned, and M. G. Mortuza. 2015. “Anaerobic nitrate reduction with oxidation of Fe(II) by Citrobacter Freundii strain PXL1—A potential candidate for simultaneous removal of As and nitrate from groundwater.” Ecol. Eng. 77 (Apr): 196–201. https://doi.org/10.1016/j.ecoleng.2015.01.027.
Li, B. H., C. N. Deng, D. Y. Zhang, X. L. Pan, F. A. Al-misned, and M. G. Mortuza. 2016a. “Bioremediation of nitrate- and arsenic-contaminated groundwater using nitrate-dependent Fe(II) oxidizing Clostridium sp. strain pxl2.” Geomicrobiol. J. 33 (3–4): 185–193. https://doi.org/10.1080/01490451.2015.1052117.
Li, J., B. Wu, Q. Li, Y. Zou, Z. Cheng, X. Sun, and B. Xi. 2019. “Ex situ simultaneous nitrification-denitrification and in situ denitrification process for the treatment of landfill leachates.” Waste Manage. 88 (Apr): 301–308. https://doi.org/10.1016/j.wasman.2019.03.057.
Li, R., C. Feng, W. Hu, B. Xi, N. Chen, B. Zhao, Y. Liu, C. Hao, and J. Pu. 2016b. “Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.” Water Res. 89 (Feb): 171–179. https://doi.org/10.1016/j.watres.2015.11.044.
Li, R., L. Morrison, G. Collins, A. Li, and X. Zhan. 2016c. “Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction.” Water Res. 96 (Jun): 32–41. https://doi.org/10.1016/j.watres.2016.03.034.
Liu, B., Y. Mao, L. Bergaust, L. R. Bakken, and A. Frostegård. 2013. “Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes.” Environ. Microbiol. 15 (10): 2816–2828. https://doi.org/10.1111/1462-2920.12142.
Liu, B., F. Zhang, X. Feng, Y. Liu, X. Yan, X. Zhang, L. Wang, and L. Zhao. 2006. “Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison.” FEMS Microbiol. Ecol. 55 (2): 274–286. https://doi.org/10.1111/j.1574-6941.2005.00033.x.
Liu, H., W. Jiang, D. Wan, and J. Qu. 2009. “Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water.” J. Hazard. Mater. 169 (1): 23–28. https://doi.org/10.1016/j.jhazmat.2009.03.053.
Liu, L. H., and A. Koenig. 2002. “Use of limestone for pH control in autotrophic denitrification: Batch experiments.” Process. Biochem. 37 (8): 885–893. https://doi.org/10.1016/S0032-9592(01)00302-8.
Liu, T., X. Li, W. Zhang, M. Hu, and F. Li. 2014. “Fe(III) oxides accelerate microbial nitrate reduction and electricity generation by Klebsiella pneumoniae L17.” J. Colloid Interface Sci. 423 (Jun): 25–32. https://doi.org/10.1016/j.jcis.2014.02.026.
Luo, X., J. Su, P. Shao, H. Liu, and X. Luo. 2018. “Efficient autotrophic denitrification performance through integrating the bio-oxidation of Fe(II) and Mn(II).” Chem. Eng. J. 348 (Sep): 669–677. https://doi.org/10.1016/j.cej.2018.05.021.
Ma, J., H. Wu, Y. Wang, G. Qiu, B. Fu, C. Wu, and C. Wei. 2019. “Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification.” Bioresour. Technol. 289 (Oct): 121616. https://doi.org/10.1016/j.biortech.2019.121616.
Mekonnen, M. M., and A. Y. Hoekstra. 2015. “Global gray water footprint and water pollution levels related to anthropogenic nitrogen loads to fresh water.” Environ. Sci. Technol. 49 (21): 12860–12868. https://doi.org/10.1021/acs.est.5b03191.
Mishra, D., and J. Farrell. 2005. “Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy.” Environ. Sci. Technol. 39 (2): 645–650. https://doi.org/10.1021/es049259y.
Nielsen, J. L., and P. H. Nielsen. 1998. “Microbial nitrate-dependent oxidation of ferrous iron in activated sludge.” Environ. Sci. Technol. 32 (22): 3556–3561. https://doi.org/10.1021/es9803299.
Park, J. Y., and Y. J. Yoo. 2009. “Biological nitrate removal in industrial wastewater treatment: Which electron donor we can choose.” Appl. Microbiol. Biotechnol. 82 (3): 415–429. https://doi.org/10.1007/s00253-008-1799-1.
Peng, T., C. Feng, W. Hu, N. Chen, Q. He, S. Dong, Y. Xu, Y. Gao, and M. Li. 2018. “Treatment of nitrate-contaminated groundwater by heterotrophic denitrification coupled with electro-autotrophic denitrifying packed bed reactor.” Biochem. Eng. J. 134 (Jun): 12–21. https://doi.org/10.1016/j.bej.2018.02.016.
Peng, X., F. Guo, F. Ju, and T. Zhang. 2014. “Shifts in the microbial community, nitrifiers and denitrifiers in the biofilm in a full-scale rotating biological contactor.” Environ. Sci. Technol. 48 (14): 8044–8052. https://doi.org/10.1021/es5017087.
Rahman, M., M. R. Grace, K. L. Roberts, A. J. Kessler, and P. L. M. Cook. 2019a. “Effect of temperature and drying-rewetting of sediments on the partitioning between denitrification and DNRA in constructed urban stormwater wetlands.” Ecol. Eng. 140 (Dec): 105586. https://doi.org/10.1016/j.ecoleng.2019.105586.
Rahman, M. M., K. L. Roberts, M. R. Grace, A. J. Kessler, and P. L. M. Cook. 2019b. “Role of organic carbon, nitrate and ferrous iron on the partitioning between denitrification and DNRA in constructed stormwater urban wetlands.” Sci. Total Environ. 666 (May): 608–617. https://doi.org/10.1016/j.scitotenv.2019.02.225.
Ritter, K., M. S. Odziemkowski, R. Simpgraga, R. W. Gillham, and D. E. Irish. 2003. “An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron.” J. Contam. Hydrol. 65 (1): 121–136. https://doi.org/10.1016/S0169-7722(02)00234-6.
Roalkvam, I., K. Drønen, R. Stokke, F. L. Daae, H. Dahle, and I. H. Steen. 2015. “Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria.” Front. Microbiol. 6 (Sep): 987. https://doi.org/10.3389/fmicb.2015.00987.
Robertson, E. K., K. L. Roberts, L. D. W. Burdorf, P. Cook, and B. Thamdrup. 2016. “Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary.” Limnol. Oceanogr. 61 (1): 365–381. https://doi.org/10.1002/lno.10220.
Sahinkaya, E., N. Dursun, A. Kilic, S. Demirel, S. Uyanik, and O. Cinar. 2011. “Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production.” Water Res. 45 (20): 6661–6667. https://doi.org/10.1016/j.watres.2011.09.056.
Straub, K. L., M. Benz, B. Schink, and F. Widdel. 1996. “Anaerobic, nitrate-dependent microbial oxidation of ferrous iron.” Appl. Environ. Microbiol. 62 (4): 1458–1460. https://doi.org/10.1128/AEM.62.4.1458-1460.1996.
Straub, K. L., and B. E. Buchholz-Cleven. 1998. “Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments.” Appl. Environ. Microbiol. 64 (12): 4846–4856. https://doi.org/10.1128/AEM.64.12.4846-4856.1998.
Su, J., F. C. Cheng, T. Huang, F. Ma, J. S. Lu, and S. C. Shao. 2016a. “Characterization of coupling autotrophic denitrification with iron cycle bacterium Enterobacter sp. CC76 and its application of groundwater.” J. Taiwan Inst. Chem. Eng. 66 (Sep): 106–114. https://doi.org/10.1016/j.jtice.2016.05.046.
Su, J., S., Cheng Shao, T., Lin Huang, F. Ma, S., Fei Yang, Z., Ming Zhou, and S., Chen Zheng. 2015. “Anaerobic nitrate-dependent iron(II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15.” J. Environ. Chem. Eng. 3 (3): 2187–2193. https://doi.org/10.1016/j.jece.2015.07.030.
Su, J., F. X. X. Luo, L. Wei, F. Ma, S. C. Zheng, and S. C. Shao. 2016b. “Performance and microbial communities of Mn(II)-based autotrophic denitrification in a moving bed biofilm reactor (MBBR).” Bioresour. Technol. 211 (Jul): 743–750. https://doi.org/10.1016/j.biortech.2016.03.1/01.
Suzuki, T., M. Moribe, Y. Oyama, and M. Niinae. 2012. “Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies.” Chem. Eng. J. 183 (Feb): 271–277. https://doi.org/10.1016/j.cej.2011.12.074.
Tian, T., and H.-Q. Yu. 2019. “Denitrification with non-organic electron donor for treating low C/N ratio wastewaters.” Bioresour. Technol. 299 (Mar): 122686. https://doi.org/10.1016/j.biortech.2019.122686.
Tian, T., K. Zhou, L. Xuan, J.-X. Zhang, Y.-S. Li, D.-F. Liu, and H.-Q. Yu. 2020. “Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge.” Water Res. 170 (Mar): 115300. https://doi.org/10.1016/j.watres.2019.115300.
Wan, D., Q. Li, Y. Liu, S. Xiao, and H. Wang. 2019. “Simultaneous reduction of perchlorate and nitrate in a combined heterotrophic-sulfur-autotrophic system: Secondary pollution control, pH balance and microbial community analysis.” Water Res. 165 (Nov): 115004. https://doi.org/10.1016/j.watres.2019.115004.
Wan, W., D. He, and Z. Xue. 2017. “Removal of nitrogen and phosphorus by heterotrophic nitrification-aerobic denitrification of a denitrifying phosphorus-accumulating bacterium Enterobacter cloacae HW-15.” Ecol. Eng. 99 (Feb): 199–208. https://doi.org/10.1016/j.ecoleng.2016.11.030.
Wang, R., C. Yang, M. Zhang, S.-Y. Xu, C.-L. Dai, L.-Y. Liang, H.-P. Zhao, and P. Zheng. 2017. “Chemoautotrophic denitrification based on ferrous iron oxidation: Reactor performance and sludge characteristics.” Chem. Eng. J. 313 (Apr): 693–701. https://doi.org/10.1016/j.cej.2016.12.052.
Wang, R., P. Zheng, M. Zhang, H. P. Zhao, J. Y. Ji, X. X. Zhou, and W. Li. 2015. “Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification.” Bioresour. Technol. 197 (Dec): 410–415. https://doi.org/10.1016/j.biortech.2015.08.135.
Wang, S., Y. Pi, Y. Song, Y. Jiang, L. Zhou, W. Liu, and G. Zhu. 2020. “Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones.” Water Res. 173 (Apr): 115539. https://doi.org/10.1016/j.watres.2020.115539.
Wang, W., D. Wei, F. Li, Y. Zhang, and R. Li. 2019. “Sulfur-siderite autotrophic denitrification system for simultaneous nitrate and phosphate removal: From feasibility to pilot experiments.” Water Res. 160 (Sep): 52–59. https://doi.org/10.1016/j.watres.2019.05.054.
Wang, Z., Y. Jiang, M. K. Awasthi, J. Wang, X. Yang, A. Amjad, Q. Wang, A. H. Lahori, and Z. Zhang. 2018. “Nitrate removal by combined heterotrophic and autotrophic denitrification processes: Impact of coexistent ions.” Bioresour. Technol. 250 (Feb): 838–845. https://doi.org/10.1016/j.biortech.2017.12.009.
Weber, K. A., L. A. Achenbach, and J. D. Coates. 2006. “Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction.” Nat. Rev. Microbiol. 4 (10): 752–764. https://doi.org/10.1038/nrmicro1490.
Weber, K. A., D. B. Hedrick, A. D. Peacock, J. C. Thrash, D. C. White, L. A. Achenbach, and J. D. Coates. 2009. “Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002.” Appl. Microbiol. Biotechnol. 83 (3): 555–565. https://doi.org/10.1007/s00253-009-1934-7.
Weber, K. A., F. W. Picardal, and E. E. Roden. 2001. “Microbially catalyzed nitrate-dependent oxidation of biogenic solid-phase Fe(II) compounds.” Environ. Sci. Technol. 35 (8): 1644–1650. https://doi.org/10.1021/es0016598.
Wei, Y., J. Dai, H. R. Mackey, and G.-H. Chen. 2017. “The feasibility study of autotrophic denitrification with iron sludge produced for sulfide control.” Water Res. 122 (Oct): 226–233. https://doi.org/10.1016/j.watres.2017.05.073.
Wen, S., K. Hu, Y. Chen, and Y. Hu. 2019. “The effects of Fe2+ on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification.” J. Hazard. Mater. 373 (Jul): 359–366. https://doi.org/10.1016/j.jhazmat.2019.03.059.
Xie, L., J. Chen, R. Wang, and Q. Zhou. 2012. “Effect of carbon source and COD/NO3N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment.” J. Biosci. Bioeng. 113 (6): 759–764. https://doi.org/10.1016/j.jbiosc.2012.01.007.
Xing, W., D. Li, J. Li, Q. Hu, and S. Deng. 2016. “Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.” Bioresour. Technol. 211 (Jul): 240–247. https://doi.org/10.1016/j.biortech.2016.03.044.
Xu, G., J. Peng, C. Feng, F. Fang, S. Chen, Y. Xu, and X. Wang. 2015. “Evaluation of simultaneous autotrophic and heterotrophic denitrification processes and bacterial community structure analysis.” Appl. Microbiol. Biotechnol. 99 (15): 6527–6536. https://doi.org/10.1007/s00253-015-6532-2.
Yang, Y., T. Chen, L. Morrison, S. Gerrity, G. Collins, E. Porca, R. Li, and X. Zhan. 2017. “Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents.” Chem. Eng. J. 328 (Nov): 511–518. https://doi.org/10.1016/j.cej.2017.07.061.
Yang, Y., T. Chen, X. Zhang, C. Qing, J. Wang, Z. Yue, H. Liu, and Z. Yang. 2018. “Simultaneous removal of nitrate and phosphate from wastewater by siderite-based autotrophic denitrification.” Chemosphere 199 (May): 130–137. https://doi.org/10.1016/j.chemosphere.2018.02.014.
Yao, S., J. Ni, Q. Chen, and A. G. L. Borthwick. 2013. “Enrichment and characterization of a bacteria consortium capable of heterotrophic nitrification and aerobic denitrification at low temperature.” Bioresour. Technol. 127 (Jan): 151–157. https://doi.org/10.1016/j.biortech.2012.09.098.
Zhang, M., P. Zheng, W. Li, R. Wang, S. Ding, and G. Abbas. 2015. “Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: A novel prospective technology for autotrophic denitrification.” Bioresour. Technol. 179 (Mar): 543–548. https://doi.org/10.1016/j.biortech.2014.12.036.
Zhang, M., P. Zheng, R. Wang, W. Li, H. Lu, and J. Zhang. 2014. “Nitrate-dependent anaerobic ferrous oxidation (NAFO) by denitrifying bacteria: A perspective autotrophic nitrogen pollution control technology.” Chemosphere 117 (Dec): 604–609. https://doi.org/10.1016/j.chemosphere.2014.09.029.
Zhang, R.-C., X.-J. Xu, C. Chen, D.-F. Xing, B. Shao, W.-Z. Liu, A.-J. Wang, D.-J. Lee, and N.-Q. Ren. 2018. “Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification.” Water Res. 143 (Oct): 355–366. https://doi.org/10.1016/j.watres.2018.06.053.
Zhang, Y., D. Wei, L. Morrison, Z. Ge, X. Zhan, and R. Li. 2019. “Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control.” Sci. Total Environ. 662 (Apr): 287–296. https://doi.org/10.1016/j.scitotenv.2019.01.230.
Zhu, G., J. Song, W. Dong, J. Lu, Y. Wang, W. Jiang, and P. Guo. 2018. “Removal of hexavalent chromium from water by modified sponge iron particles and insights into mechanism.” Environ. Sci. Pollut. Res. 25 (26): 26173–26181. https://doi.org/10.1007/s11356-018-2410-7.
Zhu, T.-T., H.-Y. Cheng, L.-H. Yang, S.-G. Su, H.-C. Wang, S.-S. Wang, and A.-J. Wang. 2019. “Coupled sulfur and iron(II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal.” Environ. Sci. Technol. 53 (3): 1545–1554. https://doi.org/10.1021/acs.est.8b06865.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 7July 2020

History

Received: Nov 19, 2019
Accepted: Feb 24, 2020
Published online: May 13, 2020
Published in print: Jul 1, 2020
Discussion open until: Oct 13, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Li Wang
Postgraduate Student, College of Environment, Hohai Univ., Xikang Rd. 1, Nanjing 210098, China.
Lianfang Zhao [email protected]
Associate Professor, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of MOE, College of Environment, Hohai Univ., Xikang Rd. 1, Nanjing 210098, China (corresponding author). Email: [email protected]
Li He
Postgraduate Student, College of Environment, Hohai Univ., Xikang Rd. 1, Nanjing 210098, China.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share