Abstract

The growing demand for organic products in the market promotes their use in various fields. One such products is biochar (BC). It was found that for climate change mitigation, biochar production from lignocellulosic biomass has more potential rather than biomass combustion for energy generation. Among the innovative environmental applications, biochar has potential as an adsorbent for retaining contaminants in environmental engineering and agrotechnical systems. Artificial modification of biochar can improve its adsorption capacity; however, indirect or natural change of biochar composition (e.g., contaminated biomass) based on syngenetic elements provides prospects for new applications of biochar as well as decreases the modification costs. The types of feedstock were lignin and wood of birch and pine trees growing in the area of aerogenic contamination and in the soil contaminated with potentially toxic elements. The temperatures of pyrolysis were 450°C and 700°C. The residence times of pyrolysis were 1, 2, and 4 h. The aim of this article is to evaluate the influence of the methods of modifying biochar syngenetically on its adsorptive properties. In the course of the study, it was found that the feedstock chemical composition mainly determined the composition of the biochar produced (R=0.4340.906). It was found that the cation exchange capacity (CEC) of biochar had correlation with Pb, Cr, Ni, and Cd concentrations in biochar.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research was funded by a grant (No. S-MIP-17-83) from the Research Council of Lithuania.

References

Baltrėnaitė, E. 2007. “Sunkiųjų metalų pernašos iš dirvožemio į medį tyrimai ir įvertinimas” [Investigation and evaluation of the transfer of heavy metals from the soil to the tree]. Ph.D. dissertation, Dept. of Environmental Protection, Vilnius Gediminas Technical Univ.
Baltrėnaitė, E., P. Baltrėnas, A. Bhatnagar, T. Vilppo, M. Selenius, A. Koistinen, M. Dahl, and O. P. Penttinen. 2017. “A multicomponent approach to using waste-derived biochar in biofiltration: A case study based on dissimilar types of waste.” Int. Biodeterior. Biodegrad. 119 (Apr): 565–576. https://doi.org/10.1016/j.ibiod.2016.10.056.
Baltrėnaitė, E., P. Baltrėnas, and A. Lietuvninkas. 2016. Tvarus medžio vaidmuo aplinkos apsaugos technologijose. Vilnius, Lithuania: Technika.
Baltrėnaitė, E., A. Lietuvninkas, P. Baltrėnas, B. R. Singh, N. Moskvitina, and O. Vaishlya. 2015. “The influence of some particular biotic and abiotic factors on distribution of metal concentrations in the soil–pine system.” In Plants, pollutants and remediation, edited by M. Öztürk, M. Ashraf, A. Aksoy, M. Ahmad, and K. Hakeem, 191–211. Dordrecht, Netherlands: Springer.
Baltrėnas, P., E. Baltrėnaitė, and E. Spudulis. 2015. “Biochar from pine and birch morphology and pore structure change by treatment in biofilter.” Water Air Soil Pollut. 226 (3): 69. https://doi.org/10.1007/s11270-015-2295-8.
Bedia, J., M. Peñas-Garzón, A. Gómez-Avilés, J. Rodriguez, and C. Belver. 2018. “A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water.” C—J. Carbon Res. 4 (4): 63. https://doi.org/10.3390/c4040063.
Beesley, L., and M. Marmiroli. 2011. “The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar.” Environ. Pollut. 159 (2): 474–480. https://doi.org/10.1016/j.envpol.2010.10.016.
Cava Barrocal, D. 2015. Cork waste for metal removal from aqueous solution. Prague, Czechia: Czech Univ. of Life Sciences.
CEN (European Committee for Standardization). 2005. Characterization of waste: Sampling of waste materials: Framework for the preparation and application of a sampling plan. EN 14899. Brussels, Belgium: CEN.
Centrone, A., L. Brambilla, T. Renouard, L. Gherghel, C. Mathis, K. Müllen, and G. Zerbi. 2005. “Structure of new carbonaceous materials: The role of vibrational spectroscopy.” Carbon 43 (8): 1593–1609. https://doi.org/10.1016/j.carbon.2005.01.040.
Chemerys, V., and E. Baltrėnaitė. 2018. “Influence of intrinsic properties of lignocellulosic feedstock on adsorptive properties of biochar.” J. Environ. Eng. 144 (9): 04018075. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001420.
Chia, C. H., A. Downie, and P. Munroe. 2015. “Characteristics of biochar: Physical and structural properties.” In Biochar for environmental management: Science and technology and implementation, 89–109. London: Routledge.
Clewer, A. G., and D. H. Scarisbrick. 2001. Practical statistics and experimental design for plant and crop science. New York: Wiley.
Dai, Z., J. Meng, N. Muhammad, X. Liu, H. Wang, Y. He, P. C. Brookes, and J. Xu. 2013. “The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks.” J. Soils Sediments 13 (6): 989–1000. https://doi.org/10.1007/s11368-013-0698-y.
Davis, W. M., C. L. Erickson, C. T. Johnston, J. J. Delfino, and J. E. Porter. 1999. “Quantitative fourier transform infrared spectroscopic investigation humic substance functional group composition.” Chemosphere 38 (12): 2913–2928. https://doi.org/10.1016/S0045-6535(98)00486-X.
Deacon, G. B., and R. J. Phillips. 1980. “Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination.” Coord. Chem. Rev. 33 (3): 227–250. https://doi.org/10.1016/S0010-8545(00)80455-5.
Downie, A., A. Crosky, and P. Munroe. 2009. “Physical properties of biochar.” In Biochar for environmental management: Science and technology, edited by J. Lehmann and S. Joseph, 13–32. London: Earthscan.
EBC (European Biochar Certificate). 2018. “Guidelines for a sustainable production of biochar.” Accessed August 30, 2018. http://www.european-biochar.org/biochar/media/doc/ebc-guidelines.pdf.
Enders, A., K. Hanley, T. Whitman, S. Joseph, and J. Lehmann. 2012. “Characterization of biochars to evaluate recalcitrance and agronomic performance.” Bioresour. Technol. 114 (Mar): 644–653. https://doi.org/10.1016/j.biortech.2012.03.022.
Essandoh, M., B. Kunwar, C. U. Pittman Jr., D. Mohan, and T. Mlsna. 2015. “Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar” Chem. Eng. J. 265 (Apr): 219–227. https://doi.org/10.1016/j.cej.2014.12.006.
Gusiatin, Z. M., R. Kurkowski, S. Brym, and D. Wiśniewski. 2016. “Properties of biochars from conventional and alternative feedstocks and their suitability for metal immobilization in industrial soil.” Environ. Sci. Pollut. Res. 23 (21): 21249–21261. https://doi.org/10.1007/s11356-016-7335-4.
Haas, T. J., M. R. Nimlos, and B. S. Donohoe. 2009. “Real-time and postreaction microscopic structural analysis of biomass undergoing pyrolysis.” Energy Fuels 23 (7): 3810–3817. https://doi.org/10.1021/ef900201b.
Hafshejani, L. D., S. B. Nasab, R. M. Gholami, M. Moradzadeh, Z. Izadpanah, S. B. Hafshejani, and A. Bhatnagar. 2015. “Removal of zinc and lead from aqueous solution by nanostructured cedar leaf ash as biosorbent.” J. Mol. Liq. 211 (Nov): 448–456. https://doi.org/10.1016/j.molliq.2015.07.044.
Hossain, M. K., V. Strezov, K. Y. Chan, A. Ziolkowski, and P. F. Nelson. 2011. “Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar.” J. Environ. Manage. 92 (1): 223–228. https://doi.org/10.1016/j.jenvman.2010.09.008.
Igalavithana, A. D., et al. 2017. “Advances and future directions of biochar characterization methods and applications.” Crit. Rev. Environ. Sci. Technol. 47 (23): 2275–2330. https://doi.org/10.1080/10643389.2017.1421844.
ISO. 1997. Soil quality: Determination of the specific electrical conductivity. ISO 11265. Berlin: Deutsches Institut fuer Normung eV.
ISO. 2005. Soil quality: Determination of pH. ISO 10390. Geneva: ISO.
Jarvis, M. W., T. J. Haas, B. S. Donohoe, J. W. Daily, K. R. Gaston, W. J. Frederick, and M. R. Nimlos. 2011. “Elucidation of biomass pyrolysis products using a laminar entrained flow reactor and char particle imaging.” Energy Fuels 25 (1): 324–336. https://doi.org/10.1021/ef100832d.
Jin, J., Y. Li, J. Zhang, S. Wu, Y. Cao, P. Liang, J. Zhang, M. H. Wong, M. Wang, S. Shan, and P. Christie. 2016. “Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.” J. Hazard. Mater. 320 (Dec): 417–426. https://doi.org/10.1016/j.jhazmat.2016.08.050.
Kameyama, K., T. Miyamoto, Y. Iwata, and T. Shiono. 2016. “Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar.” Soil Sci. Plant Nutr. 62 (2): 180–184. https://doi.org/10.1080/00380768.2015.1136553.
Keiluweit, M., P. S. Nico, M. G. Johnson, and M. Kleber. 2010. “Dynamic molecular structure of plant biomass-derived black carbon (biochar).” Environ. Sci. Technol. 44 (4): 1247–1253. https://doi.org/10.1021/es9031419.
Knudsen, J. N., P. A. Jensen, and K. Dam-Johansen. 2004. “Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass.” Energy Fuels 18 (5): 1385–1399. https://doi.org/10.1021/ef049944q.
Kołtowski, M., B. Charmas, J. Skubiszewska-Zieba, and P. Oleszczuk. 2017. “Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity.” Ecotoxicol. Environ. Saf. 136 (Nov): 119–125. https://doi.org/10.1016/j.ecoenv.2016.10.033.
Komkienė, J., and E. Baltrėnaitė. 2016. “Biochar as adsorbent for removal of heavy metal ions [cadmium(II), copper(II), lead(II), zinc(II)] from aqueous phase.” Int. J. Environ. Sci. Technol. 13 (2): 471–482. https://doi.org/10.1007/s13762-015-0873-3.
Komnitsas, K., D. Zaharaki, I. Pyliotis, D. Vamvuka, and G. Bartzas. 2015. “Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals.” Waste Biomass Valorization 6 (5): 805–816. https://doi.org/10.1007/s12649-015-9364-5.
Kookana, R. S., A. K. Sarmah, L. Van Zwieten, E. Krull, and B. Singh. 2011. “Biochar application to soil: Agronomic and environmental benefits and unintended consequences.” In Vol. 112 of Advances in agronomy, 103–143. Cambridge, MA: Academic.
Krimm, S. 1983. “Vibrational analysis of conformation in peptides, polypeptides, and proteins.” Biopolymers 22 (1): 217–225. https://doi.org/10.1002/bip.360220130.
Kwapinski, W., C. M. Byrne, E. Kryachko, P. Wolfram, C. Adley, J. J. Leahy, and M. H. Hayes. 2010. “Biochar from biomass and waste.” Waste Biomass Valorization 1 (2): 177–189. https://doi.org/10.1007/s12649-010-9024-8.
Lee, M. E., J. H. Park, and J. W. Chung. 2019. “Comparison of the lead and copper adsorption capacities of plant source materials and their biochars.” J. Environ. Manage. 236 (Apr): 118–124. https://doi.org/10.1016/j.jenvman.2019.01.100.
Lehmann, J., and S. Joseph. 2015. Biochar for environmental management: Science, technology and implementation. London: Routledge.
Lehmann, J., M. C. Rillig, J. Thies, C. A. Masiello, W. C. Hockaday, and D. Crowley. 2011. “Biochar effects on soil biota: A review.” Soil Biol. Biochem. 43 (9): 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
Liu, Z., B. Dugan, C. A. Masiello, and H. M. Gonnermann. 2017. “Biochar particle size, shape, and porosity act together to influence soil water properties.” PLoS One 12 (6): e0179079. https://doi.org/10.1371/journal.pone.0179079.
Lu, H., W. Zhang, S. Wang, L. Zhuang, Y. Yang, and R. Qiu. 2013. “Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures.” J. Anal. Appl. Pyrolysis 102 (Jul): 137–143. https://doi.org/10.1016/j.jaap.2013.03.004.
Lua, A. C., T. Yang, and J. Guo. 2004. “Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells.” J. Anal. Appl. Pyrolysis 72 (2): 279–287. https://doi.org/10.1016/j.jaap.2004.08.001.
Mancinelli, E., E. Baltrėnaitė, P. Baltrėnas, D. Paliulis, and G. Passerini. 2016. “Trace metals in biochars from biodegradable by-products of industrial processes.” Water Air Soil Pollut. 227 (6): 198. https://doi.org/10.1007/s11270-016-2892-1.
Margesin, R., and F. Schinner. 2005. Vol. 5 of Manual for soil analysis-monitoring and assessing soil bioremediation. New York: Springer.
Markert, B. 1996. Instrumental element and multi-element analysis of plant samples. Chichester, UK: Wiley.
Melo, L. C., A. R. Coscione, C. A. Abreu, A. P. Puga, and O. A. Camargo. 2013. “Influence of pyrolysis temperature on cadmium and zinc sorption capacity of sugar cane straw–derived biochar.” BioResources 8 (4): 4992–5004. https://doi.org/10.15376/biores.8.4.4992-5004.
Mohamed, B. A., N. Ellis, C. S. Kim, and X. Bi. 2017. “The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil.” Environ. Pollut. 230 (Nov): 329–338. https://doi.org/10.1016/j.envpol.2017.06.075.
Mukome, F. N., X. Zhang, L. C. Silva, J. Six, and S. J. Parikh. 2013. “Use of chemical and physical characteristics to investigate trends in biochar feedstocks.” J. Agric. Food Chem. 61 (9): 2196–2204. https://doi.org/10.1021/jf3049142.
Nguyen, B. T., and J. Lehmann. 2009. “Black carbon decomposition under varying water regimes.” Org. Geochem. 40 (8): 846–853. https://doi.org/10.1016/j.orggeochem.2009.05.004.
Novak, J. M., I. Lima, B. Xing, J. W. Gaskin, C. Steiner, K. C. Das, and H. Schomberg. 2009. “Characterization of designer biochar produced at different temperatures and their effects on a loamy sand.” Ann. Environ. Sci. 3: 195–206.
Ok, Y. S., S. M. Uchimiya, S. X. Chang, and N. Bolan. 2015. Biochar: Production, characterization, and applications. Boca Raton, FL: CRC Press.
Pundytė, N., E. Baltrėnaitė, P. Pereira, and D. Paliulis. 2011. “Anthropogenic effects on heavy metals and macronutrients accumulation in soil and wood of Pinus sylvestris L.” J. Environ. Eng. Landscape Manage. 19 (1): 34–43. https://doi.org/10.3846/16486897.2011.557473.
Raudonius, S. 2017. “Application of statistics in plant and crop research: Important issues.” Zemdirbyste-Agric. 104 (4): 377–382. https://doi.org/10.13080/z-a.2017.104.048.
Regmi, P., J. L. G. Moscoso, S. Kumar, X. Cao, J. Mao, and G. Schafran. 2012. “Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.” J. Environ. Manage. 109 (Oct): 61–69. https://doi.org/10.1016/j.jenvman.2012.04.047.
Rehrah, D., M. R. Reddy, J. M. Novak, R. R. Bansode, K. A. Schimmel, J. Yu, D. W. Watts, and M. Ahmedna. 2014. “Production and characterization of biochars from agricultural by-products for use in soil quality enhancement.” J. Anal. Appl. Pyrolysis 108 (Jul): 301–309. https://doi.org/10.1016/j.jaap.2014.03.008.
Russo, M. V., G. Goretti, and A. Liberti. 1993. “Rapid determination of chlorinated pesticides using CN-bonded cartridges followed by GC-ECD.” Chromatographia 35 (5–6): 290–294. https://doi.org/10.1007/BF02277512.
Sajjadi, S.-A., A. Meknati, E. C. Lima, G. L. Dotto, D. I. Mendoza-Castillo, I. Anastopoulos, F. Alakhras, E. I. Unuabonah, P. Singh, and A. Hosseini-Bandegharaei. 2019. “A novel route for preparation of chemically activated carbon from pistachio wood for highly efficient Pb(II) sorption.” J. Environ. Manage. 236: 34–44. https://doi.org/10.1016/j.jenvman.2019.01.087.
Saleh, M. E., A. H. Mahmoud, and M. Rashad. 2012. “Peanut biochar as a stable adsorbent for removing NH4-N from wastewater: A preliminary study.” Adv. Environ. Biol. 6 (7): 2170–2177.
Singh, B., M. Camps-Arbestain, and J. Lehmann. 2017. Biochar: A guide to analytical methods. Clayton, Australia: CSIRO Publishing.
St-Jean, G. 2003. “Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser.” Rapid Commun. Mass Spectrom. 17 (5): 419–428.
Tangsir, S., L. D. Hafshejani, A. Lähde, M. Maljanen, A. Hooshmand, A. A. Naseri, and A. Bhatnagar. 2016. “Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method.” Chem. Eng. J. 288 (Mar): 198–206. https://doi.org/10.1016/j.cej.2015.11.097.
Titiladunayo, I. F., A. G. McDonald, and O. P. Fapetu. 2012. “Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process.” Waste Biomass Valorization 3 (3): 311–318. https://doi.org/10.1007/s12649-012-9118-6.
Vaitkutė, D., E. Baltrėnaitė, C. A. Booth, and M. A. Fullen. 2010. “Does sewage sludge amendment to soil enhance the development of Silver birch and Scots pine.” Hung. Geog. Bull. 59 (4): 393–410.
Wesenbeeck, S. V., W. Prins, F. Ronsse, and M. J. Antal Jr. 2014. “Sewage sludge carbonization for biochar applications: Fate of heavy metals.” Energy Fuels 28 (8): 5318–5326. https://doi.org/10.1021/ef500875c.
Xie, T., K. R. Reddy, C. Wang, E. Yargicoglu, and K. Spokas. 2015. “Characteristics and applications of biochar for environmental remediation: A review.” Crit. Rev. Environ. Sci. Technol. 45 (9): 939–969. https://doi.org/10.1080/10643389.2014.924180.
Yan, W., T. C. Acharjee, C. J. Coronella, and V. R. Vasquez. 2009. “Thermal pretreatment of lignocellulosic biomass.” Environ. Prog. Sustainable Energy 28 (3): 435–440. https://doi.org/10.1002/ep.10385.
Yao, Y., B. Gao, J. Chen, M. Zhang, M. Inyang, Y. Li, A. Alva, and L. Yang. 2013. “Engineered carbon (biochar) prepared by direct pyrolysis of Mg accumulated tomato tissues: Characterization and phosphate removal potential.” Bioresour. Technol. 138 (Jun): 8–13. https://doi.org/10.1016/j.biortech.2013.03.057.
Yuan, J. H., R. K. Xu, and H. Zhang. 2011. “The forms of alkalis in the biochar produced from crop residues at different temperatures.” Bioresour. Technol. 102 (3): 3488–3497.
Zeng, K., D. Gauthier, D. P. Minh, E. Weiss-Hortala, A. Nzihou, and G. Flamant. 2017. “Characterization of solar fuels obtained from beech wood solar pyrolysis.” Fuel 188 (Jan): 285–293. https://doi.org/10.1016/j.fuel.2016.10.036.
Zeng, K., D. P. Minh, D. Gauthier, E. Weiss-Hortala, A. Nzihou, and G. Flamant. 2015. “The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.” Bioresour. Technol. 182 (Apr): 114–119. https://doi.org/10.1016/j.biortech.2015.01.112.
Zhang, H., K. Lin, H. Wang, and J. Gan. 2010. “Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene.” Environ. Pollut. 158 (9): 2821–2825. https://doi.org/10.1016/j.envpol.2010.06.025.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 8August 2020

History

Received: Sep 17, 2019
Accepted: Feb 7, 2020
Published online: May 21, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 21, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Edita Baltrėnaitė-Gedienė, Ph.D. [email protected]
Professor, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Sauletekio al. 11, Vilnius LT-10223, Lithuania. Email: [email protected]
Associate Professor, Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Sauletekio al. 11, Vilnius LT-10223, Lithuania (corresponding author). ORCID: https://orcid.org/0000-0001-9397-9622. Email: [email protected]
Mantas Pranskevičius, Ph.D. [email protected]
Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Sauletekio al. 11, Vilnius LT-10223, Lithuania. Email: [email protected]
Jelena Titova, Ph.D. [email protected]
Research Institute of Environmental Protection, Vilnius Gediminas Technical Univ., Sauletekio al. 11, Vilnius LT-10223, Lithuania. Email: [email protected]
Amit Bhatnagar, Ph.D. [email protected]
Professor, Dept. of Environmental and Biological Sciences, Univ. of Eastern Finland, Kuopio FI-70211, Finland. Email: [email protected]
Emmanuel Abu-Danso, Ph.D. [email protected]
Dept. of Environmental and Biological Sciences, Univ. of Eastern Finland, Kuopio FI-70211, Finland. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share