Technical Papers
May 20, 2020

Insight into the Chromium-Enriched Industrial Wastewater Irrigation Practice on Lablab purpureus

Publication: Journal of Environmental Engineering
Volume 146, Issue 8

Abstract

To explore the bioaccumulation of the emerging contaminants in the freshwater bodies and food crops, and the possible implications, this study investigated the chromium-enriched industrial wastewater irrigation on Lablab purpureus with respect to the physical growth, photosynthetic pigments, proline content, and antioxidant defense responses. Chromium enrichment inhibited the elongation of roots and shoots by 68% and 76% respectively, as a function of chromium concentration. The total chlorophyll, chlorophyll-a, chlorophyll-b, and total carotenoids were severely retarded by 81%, 84%, 76%, and 63%, respectively, and excessive accumulation of proline was detected at 2.80 μmol/g fresh weight. The activities of ascorbate peroxidase, guaiacol peroxidase, and catalase were significantly altered, with a strong stimulation at the chromium concentration of 0.30 mM, predicting chromium-induced toxicity of the food crop. The findings provide insight into the interference of heavy metal–contaminated wastewater irrigation practice and its alarming implications for the sustainability of food safety, the dynamic equilibrium of ecosystems, and the water–food nexus.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors acknowledge the financial support provided by Universiti Sains Malaysia under the Research University Individual (RUI) Grant Scheme entitled “Smart Greenhouse Hydroponic System to Battle Food Insecurity: Application Towards Wastewater Irrigation Practice.”

References

Adhikari, A., S. Adhikari, S. Ghosh, I. Azahar, A. K. Shaw, D. Roy, S. Roy, S. Saha, and Z. Hossain. 2020. “Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (VI) stress.” Environ. Exp. Bot. 169 (Jan): 103873–103884. https://doi.org/10.1016/j.envexpbot.2019.103873.
Aebi, H. 1984. “Catalase in vitro.” In Vol. 105 of Methods in enzymology, 121–126. New York: Academic Press.
Ahmad, M. A., and M. Gupta. 2013. “Exposure of Brassica juncea (L) to arsenic species in hydroponic medium: Comparative analysis in accumulation and biochemical and transcriptional alterations.” Environ. Sci. Pollut. Res. 20 (11): 8141–8150. https://doi.org/10.1007/s11356-013-1632-y.
APHA (American Public Health Association). 1995. Standard methods for the examination of water and wastewater, edited by A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, 19th ed. Washington, DC: APHA.
Bates, L. S., R. P. Wladren, and L. D. Tear. 1973. “Rapid determination of free proline for water-stress studies.” Plant Soil 39 (1): 205–207. https://doi.org/10.1007/BF00018060.
Boonyapookana, B., E. S. Upatham, M. Kruatrachue, P. Pokethitiyook, and S. Singhakaew. 2002. “Phytoaccumulation and phytotoxicity of cadmium and chromium in duckweed Wolffia globose.” Int. J. Phytorem. 4 (2): 87–100. https://doi.org/10.1080/15226510208500075.
Bradford, M. M. 1976. “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle protein-dye binding.” Anal. Biochem. 72 (1–2): 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.
Chidambaram, A., P. Sundaramoorthy, A. Murugan, S. K. Sanesh, and L. Baskaran. 2009. “Chromium induced cytotoxicity in blackgram (Vigna mungo L.).” J. Environ. Health Sci. Eng. 6 (1): 17–22.
Chow, Y. N., L. K. Lee, N. A. Zakaria, and K. Y. Foo. 2018a. “Phytotoxic effects of trivalent chromium-enriched water irrigation in Vigna unguiculata seedling.” J. Cleaner Prod. 202 (Nov): 101–108. https://doi.org/10.1016/j.jclepro.2018.07.144.
Chow, Y. N., L. K. Lee, N. A. Zakaria, and K. Y. Foo. 2018b. “Wastewater reuse for agriculture irrigation—A sustainable solution for a better tomorrow?” In A better world. Volume 3: Ensure access to water and sanitation for all, edited by N. Sean, and C. Ben, 117–119. Leicester, UK: Tudor Rose.
Ding, H., G. Wang, L. Lou, and J. Lv. 2016. “Physiological responses and tolerance of kenaf (Hibiscus cannabinus L.) exposed to chromium.” Ecotoxicol. Environ. Saf. 133 (Nov): 509–518. https://doi.org/10.1016/j.ecoenv.2016.08.007.
Dorta-Santos, M., M. Tejedor, C. Jiménez, J. M. Hernández-Moreno, M. P. Palacios-Díaz, and F. J. Díaz. 2015. “Evaluating the sustainability of subsurface drip irrigation using recycled wastewater for a bioenergy crop on abandoned arid agricultural land.” Ecol. Eng. 79 (Jun): 60–68. https://doi.org/10.1016/j.ecoleng.2015.03.008.
Dube, B. K., P. Sinha, and C. Chatterjee. 2009. “Assessment of disturbances in growth and physiology of carrot caused by chromium stress.” J. Plant Nutr. 32 (3): 479–488. https://doi.org/10.1080/01904160802679925.
Everse, J. M., C. Johnson, and M. A. Marini. 1994. “Peroxidative activities of haemoglobin derivatives.” In Methods in enzymology, edited by J. Everse, K. D. Vandegriff, and R. M. Winslow, 547–561. London: Academic Press.
Franić, M., and V. Galić. 2019. “As, Cd, Cr, Cu, Hg: Physiological implications and toxicity in plants.” In Plant metallomics and functional omics, 209–251. Cham, Switzerland: Springer.
Ganesh, K. S., L. Baskaran, S. Rajasekaran, K. Sumathi, A. L. A. Chidambaram, and P. Sundaramoorthy. 2008. “Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants.” Colloids Surf. B 63 (2): 159–163. https://doi.org/10.1016/j.colsurfb.2007.11.016.
Gill, R. A., L. Zang, B. Ali, M. A. Farooq, P. Cui, S. Yang, S. Ali, and W. Zhou. 2015. “Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L.” Chemosphere 120 (Feb): 154–164. https://doi.org/10.1016/j.chemosphere.2014.06.029.
Habiba, U., S. Ali, M. Rizwan, M. Ibrahim, A. Hussain, M. R. Shahid, S. A. Alamri, M. A. Alyemeni, and P. Ahmad. 2019. “Alleviative role of exogenously applied mannitol in maize cultivars differing in chromium stress tolerance.” Environ. Sci. Pollut. Res. 26 (5): 5111–5121. https://doi.org/10.1007/s11356-018-3970-2.
Hayat, S., Q. M. N. Hayat, A. S. Alyemeni, J. Pichtel Wani, and A. Ahmad. 2012. “Role of proline under changing environments. A review.” Plant Signaling Behav. 7 (11): 1456–1466. https://doi.org/10.4161/psb.21949.
Hoque, M. A., M. N. Banu, E. Okuma, K. Amako, Y. Akamura, Y. Shimoishi, and Y. Murata. 2007. “Exogenous proline and glycinebetaine increase NaCl-induced ascorbate–glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension-cultured cells.” J. Plant Physiol. 164 (11): 1457–1468. https://doi.org/10.1016/j.jplph.2006.10.004.
Inyinbor, A. A., O. S. Bello, A. P. Oluyori, H. E. Inyinbor, and A. E. Fadiji. 2019. “Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects.” Food Control 98 (Apr): 489–500. https://doi.org/10.1016/j.foodcont.2018.12.008.
Jiang, Y., and B. Huang. 2001. “Effects of calcium on antioxidant activities and water relations associated with heat tolerance in cool season grasses.” J. Exp. Bot. 52 (355): 341–349. https://doi.org/10.1093/jexbot/52.355.341.
Kaur, G., and B. J. B. P. Asthir. 2015. “Proline: A key player in plant abiotic stress tolerance.” Biol. Plant. 59 (4): 609–619. https://doi.org/10.1007/s10535-015-0549-3.
Khan, Z. I., K. Ahmad, S. Rehman, S. Siddique, H. Bashir, A. Zafar, M. Sohail, S. A. Ali, E. Cazzato, and G. De Mastro. 2017. “Health risk assessment of heavy metals in wheat using different water qualities: Implication for human health.” Environ. Sci. Pollut. Res. 24 (1): 947–955. https://doi.org/10.1007/s11356-016-7865-9.
Li, L., K. Zhang, R. A. Gill, F. Islam, M. A. Farooq, J. Wang, and W. Zhou. 2018. “Ecotoxicological and interactive effects of copper and chromium on physiochemical, ultrastructural, and molecular profiling in Brassica napus L.” Biomed Res. Int. 2018: 9248123. https://doi.org/10.1155/2018/9248123.
Lichtenhaler, H. K., and A. R. Wellburn. 1983. “Determination of total carotenoid and chlorophyll a and b of leaf extract in different solvent.” Biochem. Soc. Trans. 11 (5): 591–592. https://doi.org/10.1042/bst0110591.
Lukina, A. O., C. Boutin, O. Rowland, and D. J. Carpenter. 2016. “Evaluating trivalent chromium toxicity on wild terrestrial and wetland plants.” Chemosphere 162 (Nov): 355–364. https://doi.org/10.1016/j.chemosphere.2016.07.055.
Mahmud, A. J., M. Hasanuzzaman, K. Nahar, A. Rahman, M. S. Hossain, and M. Fujita. 2017. “Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L.” Ecotoxicol. Environ. Saf. 144 (Oct): 216–226. https://doi.org/10.1016/j.ecoenv.2017.06.010.
Mohanty, M., and H. K. Patra. 2013. “Effect of ionic and chelate assisted hexavalent chromium on mung bean seedlings (Vigna radiata L. wilczek. var k-851) during seedling growth.” J. Stress Physiol. Biochem. 9 (2): 233–241.
Munzuroglu, O., and H. Geckil. 2002. “Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in Triticum aestivum and Cucumis sativus.” Arch. Environ. Contam. Toxicol. 43 (2): 203–213. https://doi.org/10.1007/s00244-002-1116-4.
Muthu, M., K. Chandrasekharapuram Ramakrishnan, M. Santhanam, M. Rangarajan, and M. Kumar. 2019. “Heavy metal removal and leaching from pervious concrete filter: Influence of operating water head and reduced graphene oxide addition.” J. Environ. Eng. 145: 04019049. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001551.
Nakano, Y., and K. Asada. 1981. “Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts.” Plant Cell Physiol. 22 (5): 867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232.
Nath, K., D. Singh, S. Shyam, and Y. K. Sharma. 2008. “Effect of chromium and tannery effluent toxicity on metabolism and growth in cowpea (Vigna sinensis L. Saviex Hassk) seedling.” Res. Environ. Life Sci. 1 (3): 91–94.
Nayek, S., S. Gupta, and R. N. Saha. 2010. “Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater.” J. Hazard. Mater. 178 (1–3): 588–595. https://doi.org/10.1016/j.jhazmat.2010.01.126.
Parwin, R., and P. K. Kaul. 2019. “Phytoremediation of kitchen wastewater using Eichhornia crassipes.” J. Environ. Eng. 145 (6): 04019023. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001520.
Pati, S., A. Ghadei, A. Arzoo, S. K. Nayak, A. Mohapatra, and K. B. Satapathy. 2014. “Physiological responses induced by chromium+6 toxicity to Cucumis sativus L. and Macrotyloma uniflorium Lam.” IOSR J. Environ. Sci. Toxicol. Food Technol. 8 (12): 58–63. https://doi.org/10.9790/2402-081215863.
Rai, R. K., M. K. Srivastava, A. K. Khare, R. Kishor, and A. K. Shrivastava. 2006. “Oxidative stress response and glutathione linked enzymes in relation to growth of sugarcane plants exposed to hexavalent chromium.” Sugar Tech. 8 (2–3): 116–123. https://doi.org/10.1007/BF02943644.
Shahid, M., S. Shamshad, M. Rafiq, S. Khalid, I. Bibi, N. K. Niazi, C. Dumat, and M. I. Rashid. 2017. “Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review.” Chemosphere 178 (Jul): 513–533. https://doi.org/10.1016/j.chemosphere.2017.03.074.
Tiwari, K. K., N. K. Singh, and U. N. Rai. 2013. “Chromium phytotoxicity in radish (Raphanus sativus): Effects on metabolism and nutrient uptake.” Bull. Environ. Contam. Toxicol. 91 (3): 339–344. https://doi.org/10.1007/s00128-013-1047-y.
Tiwari, S., A. Patel, and S. M. Prasad. 2018. “Kinetin alleviates chromium toxicity on growth and PS II photochemistry in Nostoc muscorum by regulating antioxidant system.” Ecotoxicol. Environ. Saf. 161 (Oct): 296–304. https://doi.org/10.1016/j.ecoenv.2018.05.052.
Tripathi, A., D. K. Tripathi, D. K. Chauhan, and N. Kumar. 2016. “Chromium (VI)-induced phytotoxicity in river catchment agriculture: Evidence from physiological, biochemical and anatomical alterations in Cucumis sativus (L.) used as model species.” Chem. Ecol. 32 (1): 12–33. https://doi.org/10.1080/02757540.2015.1115841.
UdDin, I., A. Bano, and S. Masood. 2015. “Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern, antioxidation activity and root exudation.” Ecotoxicol. Environ. Saf. 113 (Mar): 271–278. https://doi.org/10.1016/j.ecoenv.2014.12.014.
Vajpayee, P., R. D. Tripathi, U. N. Rai, M. B. Ali, and S. N. Singh. 2000. “Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L.” Chemosphere 41 (7): 1075–1082. https://doi.org/10.1016/S0045-6535(99)00426-9.
Wang, L. P., and Y. J. Chen. 2018. “Sequential precipitation of iron, copper, and zinc from wastewater for metal recovery.” J. Environ. Eng. 145 (1): 04018130. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001480.
WHO (World Health Organization). 2006. “Guidelines for the safe use of wastewater, excreta and greywater.” In Vol. 2 of Wastewater use in agriculture, 219. Geneva: WHO.
Yu, X. Z., Y. J. Lin, W. J. Fan, and M. R. Lu. 2017. “The role of exogenous proline in amelioration of lipid peroxidation in rice seedlings exposed to Cr (VI).” Int. Biodeter. Biodegr. 123 (Sep): 106–112. https://doi.org/10.1016/j.ibiod.2017.06.010.
Zaheer, I. E., S. Ali, M. Rizwan, Z. Abbas, S. A. H. Bukhari, L. Wijaya, M. N. Alyemeni, and P. Ahmad. 2019. “Zinc-lysine prevents chromium-induced morphological, photosynthetic, and oxidative alterations in spinach irrigated with tannery wastewater.” Environ. Sci. Pollut. Res. 26 (28): 28951–28961. https://doi.org/10.1007/s11356-019-06084-z.
Zhang, X., Q. Lei, X. Wang, J. Liang, C. Chen, H. Luo, H. Mou, Q. Deng, T. Zhang, and J. Jiang. 2019. “Removal of Cr (III) using humic acid–modified attapulgite.” J. Environ. Eng. 145 (6): 04019028. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001541.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 8August 2020

History

Received: Aug 31, 2019
Accepted: Jan 29, 2020
Published online: May 20, 2020
Published in print: Aug 1, 2020
Discussion open until: Oct 20, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, River Engineering and Urban Drainage Research Centre, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal, Penang 14300, Malaysia. Email: [email protected]
Senior Lecturer, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang 11800, Malaysia. Email: [email protected]
N. A. Zakaria [email protected]
Director, River Engineering and Urban Drainage Research Centre, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal, Penang 14300, Malaysia. Email: [email protected]
Deputy Director, River Engineering and Urban Drainage Research Centre, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, Nibong Tebal, Penang 14300, Malaysia (corresponding author). ORCID: https://orcid.org/0000-0002-8196-7250. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share