Technical Papers
Apr 15, 2020

Effect of Biomass and Operating Condition on Biodegradation Capacity of a Mix of Pharmaceuticals (Carbamazepine, Ibuprofen, and Ciprofloxacin) in a Membrane Bioreactor

Publication: Journal of Environmental Engineering
Volume 146, Issue 6

Abstract

There is no existing applicable law that regulates compounds of emerging concern (CECs), so they remain a global concern because they are easily taken up by organisms. Because of the current need, different processes have been developed capable of removing CECs. A membrane bioreactor (MBR) system and a hybrid moving bed biofilm reactor–membrane bioreactor (MBBR–MBR) system with a 35% filling ratio were tested on real urban wastewater under 6 and 10 h of hydraulic retention time to remove pharmaceutical compounds. The mixed-liquor suspended solids changed between 5,200 and 5,700  mg/L and the temperature varied between 12.6°C and 28.1°C simulating real conditions. The plant received a shock with the mix of pharmaceutical compounds (carbamazepine, ibuprofen, and ciprofloxacin) used to study its behavior. The removal of ibuprofen, carbamazepine, and ciprofloxacin was above 83.7%, 48.6%, and 10.6%, respectively, regardless of the process and the operative variables; these removal rates increased when the temperature increased.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The research was supported by the Emasagra Company.

References

Al Qarni, H., P. Collier, J. O’Keeffe, and J. Akunna. 2016. “Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia.” Environ. Sci. Pollut. Res. Int. 23 (13): 13003–13014. https://doi.org/10.1007/s11356-016-6389-7.
APHA (American Water Works Association). 2012. Standard methods for examination of water and wastewater. Washington, DC: APHA.
Arya, V., L. Philip, and S. Murty Bhallamudi. 2016. “Performance of suspended and attached growth bioreactors for the removal of cationic and anionic pharmaceuticals.” Chem. Eng. J. 284 (Jan): 1295–1307. https://doi.org/10.1016/j.cej.2015.09.070.
Bernhard, M., J. Müller, and T. P. Knepper. 2006. “Biodegradation of persistent polar pollutants in wastewater: Comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment.” Water Res. 40 (18): 3419–3428. https://doi.org/10.1016/j.watres.2006.07.011.
Butler, C. S., and J. P. Boltz. 2014. “Biofilm processes and control in water and wastewater treatment.” In Comprehensive water quality and purification, edited by S. Ahuja, 90–107. Amsterdam, Netherlands: Elsevier.
Calero-Díaz, G., A. Monteoliva-García, J. C. Leyva-Díaz, C. López-López, J. Martín-Pascual, J. C. Torres, and J. M. Poyatos. 2017. “Impact of ciprofloxacin, carbamazepine and ibuprofen on a membrane bioreactor system: Kinetic study and biodegradation capacity.” J. Chem. Technol. Biotechnol. 92 (12): 2944–2951. https://doi.org/10.1002/jctb.5316.
Camacho-Muñoz, D., J. Martín, J. L. Santos, I. Aparicio, and E. Alonso. 2009. “An affordable method for the simultaneous determination of the most studied pharmaceutical compounds as wastewater and surface water pollutants.” J. Sep. Sci. 32 (18): 3064–3073. https://doi.org/10.1002/jssc.200900128.
Cecconet, D., D. Molognoni, A. Callegari, and A. G. Capodaglio. 2017. “Biological combination processes for efficient removal of pharmaceutically active compounds from wastewater: A review and future perspectives.” J. Environ. Chem. Eng. 5 (4): 3590–3603. https://doi.org/10.1016/j.jece.2017.07.020.
Clara, M., B. Strenn, O. Gans, E. Martinez, N. Kreuzingera, and H. Kroiss. 2005. “Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants.” Water Res. 39 (19): 4797–4807. https://doi.org/10.1016/j.watres.2005.09.015.
Cleuvers, M. 2003. “Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects.” Toxicol. Lett. 142 (3): 185–194. https://doi.org/10.1016/S0378-4274(03)00068-7.
Dialynas, E., and E. Diamadopoulos. 2012. “The effect of biomass adsorption on the removal of selected pharmaceutical compounds in an immersed membrane bioreactor system.” J. Chem. Technol. Biotechnol. 87 (2): 232–237. https://doi.org/10.1002/jctb.2703.
Escolà Casas, M., R. K. Chhetri, G. Ooi, K. M. S. Hansen, K. Litty, M. Christensson, C. Kragelund, H. R. Andersen, and K. Bester. 2015. “Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors (MBBR).” Water Res. 83 (Oct): 293–302. https://doi.org/10.1016/j.watres.2015.06.042.
Galus, M., J. Jeyaranjaan, E. Smith, H. Li, C. Metcalfe, and J. Y. Wilson. 2013. “Chronic effects of exposure to a pharmaceutical mixture and municipal wastewater in zebrafish.” Aquat. Toxicol. 132–133 (May): 212–222. https://doi.org/10.1016/j.aquatox.2012.12.016.
García-Gómez, C., P. Drogui, B. Seyhi, P. Gortáres-Moroyoqui, G. Buelna, M. I. Estrada-Alvgarado, and L. H. Álvarez. 2016. “Combined membrane bioreactor and electrochemical oxidation using Ti/PbO2 anode for the removal of carbamazepine.” J. Taiwan Inst. Chem. E. 64 (Jul): 211–219. https://doi.org/10.1016/j.jtice.2016.04.024.
Grandclément, C., I. Seyssiecq, A. Piram, W.-W. Chung, G. Vanot, N. Tiliacos, N. Roche, and P. Doumenq. 2017. “From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review.” Water Res. 111 (Mar): 297–317. https://doi.org/10.1016/j.watres.2017.01.005.
Gros, M., M. Petrovic, and D. Barceló. 2007. “Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (northeast Spain).” Environ. Toxicol. Chem. 26 (8): 1553–1562. https://doi.org/10.1897/06-495R.1.
Hamza, R. A., O. T. Iorhemen, and J. H. Tay. 2016. “Occurrence, impacts and removal of emerging substances of concern from wastewater.” Environ. Technol. Innov. 5 (Apr): 161–175. https://doi.org/10.1016/j.eti.2016.02.003.
He, K., S. Echigo, and S. Itoh. 2016. “Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products.” Sci. Total Environ. 565 (Sep): 672–681. https://doi.org/10.1016/j.scitotenv.2016.04.148.
Ibáñez, M., E. Gracia-Lor, L. Bijlsma, E. Morales, E. Pastor, and F. Hernández. 2013. “Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone.” J. Hazard. Mater. 260 (Sep): 389–398. https://doi.org/10.1016/j.jhazmat.2013.05.023.
Katsoyiannis, I. A., S. Canonica, and U. von Gunten. 2011. “Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2.” Water Res. 45 (13): 3811–3822. https://doi.org/10.1016/j.watres.2011.04.038.
Lee, W., S. Kang, and H. Shin. 2003. “Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors.” J. Membr. Sci. 216 (1–2): 217–227. https://doi.org/10.1016/S0376-7388(03)00073-5.
Liu, C., P. Li, C. Tang, and G. V. Korshin. 2016. “Ozonation effects on emerging micropollutants and effluent organic matter in wastewater: Characterization using changes of three-dimensional HP-SEC and EEM fluorescence data.” Environ. Sci. Pollut. Res. 23 (20): 20567–20579. https://doi.org/10.1007/s11356-016-7287-8.
López-López, C., J. Martín-Pascual, A. González-Martínez, K. Calderón, J. González-López, E. Hontoria, and J. M. Poyatos. 2012. “Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment.” J. Environ. Sci. Health Part A 47 (12): 1759–1767. https://doi.org/10.1080/10934529.2012.689223.
Luo, Y., W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Kang, S. Xia, Z. Zhang, and W. E. Price. 2014a. “Removal and fate of micropollutants in a sponge-based moving bed bioreactor.” Bioresour. Technol. 159 (May): 311–319. https://doi.org/10.1016/j.biortech.2014.02.107.
Luo, Y., W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang. 2014b. “A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.” Sci. Total Environ. 473–474 (Mar): 619–641. https://doi.org/10.1016/j.scitotenv.2013.12.065.
Luo, Y., Q. Jiang, H. H. Ngo, L. D. Nghiem, F. I. Hai, W. E. Prices, J. Wang, and W. Guo. 2015. “Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor–membrane bioreactor system.” Bioresour. Technol. 191 (Sep): 355–359. https://doi.org/10.1016/j.biortech.2015.05.073.
Martín, J., J. L. Santos, I. Aparicio, and E. Alonso. 2015. “Pharmaceutically active compounds in sludge stabilization treatments: Anaerobic and aerobic digestion, wastewater stabilization ponds and composting.” Sci. Total Environ. 503 (Jan): 97–104. https://doi.org/10.1016/j.scitotenv.2014.05.089.
Martín-Pascual, J., C. López-López, A. Cerdá, J. González-López, E. Hontoria, and J. M. Poyatos. 2012. “Comparative kinetic study of carrier type in a moving bed system applied to organic matter removal in urban wastewater treatment.” Water Air Soil Pollut. 223 (4): 1699–1712. https://doi.org/10.1007/s11270-011-0976-5.
Martín-Pascual, J., P. Reboleiro-Rivas, C. López-López, J. González-López, and J. M. Poyatos. 2014. “Influence of hydraulic retention time on heterotrophic biomass in a wastewater moving bed membrane bioreactor treatment plant.” Int. J. Environ. Sci. Technol. 11 (5): 1449–1458. https://doi.org/10.1007/s13762-013-0329-6.
Martín-Pascual, J., P. Reboleiro-Rivas, C. López-López, J. C. Leyva-Díaz, M. Jóver, M. M. Muñío, J. González-López, and J. M. Poyatos. 2015. “Effect of the filling ratio, MLSS, hydraulic retention time, and temperature on the behavior of the hybrid biomass in a hybrid moving bed membrane bioreactor plant to treat urban wastewater.” J. Environ. Eng. 141 (7): 04015007. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000939.
Monteoliva-García, A., J. Martín-Pascual, M. M. Muñío, and J. M. Poyatos. 2019. “Removal of a pharmaceutical mix from urban wastewater coupling membrane bioreactor with advanced oxidation processes.” J. Environ. Eng. 145 (9): 04019055. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001571.
Park, J., N. Yamashita, C. Park, T. Shimono, D. M. Takeuchi, and H. Tanaka. 2017. “Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes.” Chemosphere 179 (Jul): 347–358. https://doi.org/10.1016/j.chemosphere.2017.03.135.
Radjenovic, J., M. Matosic, I. Mijatovic, M. Petrovic, and D. Barceló. 2008. “Membrane bioreactor (MBR) as an advanced wastewater treatment technology.” In The handbook of environmental chemistry, 37–101. Berlin: Springer.
Radjenovic, J., M. Petrovic, and D. Barceló. 2009. “Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.” Water Res. 43 (3): 831–841. https://doi.org/10.1016/j.watres.2008.11.043.
Reboleiro-Rivas, P., J. Martín-Pascual, B. Juárez-Jiménez, J. M. Poyatos, E. Hontoria, B. Rodelas, and J. González-López. 2013. “Enzymatic activities in a moving bed membrane bioreactor for real urban wastewater treatment: Effect of operational conditions.” Ecol. Eng. 61 (Dec): 23–33. https://doi.org/10.1016/j.ecoleng.2013.09.031.
Rivera-Utrilla, J., M. Sánchez-Polo, M. A. Ferro-García, G. Prados-Joya, and R. Ocampo-Pérez. 2013. “Pharmaceuticals as emerging contaminants and their removal from water. A review.” Chemosphere 93 (7): 1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059.
Rodríguez-Sánchez, A., J. C. Leyva-Díaz, J. González-López, and J. M. Poyatos. 2018. “Membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor for the treatment of variable salinity wastewater: Influence of biomass concentration and hydraulic retention time.” Chem. Eng. J. 336 (Mar): 102–111. https://doi.org/10.1016/j.cej.2017.10.118.
Rosal, R., A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera, and A. R. Fernández-Alba. 2010. “Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation.” Water Res. 44 (2): 578–588. https://doi.org/10.1016/j.watres.2009.07.004.
Sipma, J., B. Osuna, N. Collado, H. Monclús, G. Ferrero, J. Comas, and I. Rodriguez-Roda. 2010. “Comparison of removal of pharmaceuticals in MBR and activated sludge systems.” Desalination 250 (2): 653–659. https://doi.org/10.1016/j.desal.2009.06.073.
Stephenson, T., S. Judd, B. Jefferson, and K. Brindle. 2000. Membrane bioreactors for wastewater treatment. London: IWA Publishing.
Sun, J., J. Rong, L. Dai, B. Liu, and W. Zhu. 2011. “Control of membrane fouling during hyperhaline municipal wastewater treatment using a pilot-scale anoxic/aerobic-membrane bioreactor system.” Environ. Sci. 23 (10): 1619–1625. https://doi.org/10.1016/S1001-0742(10)60632-8.
Tambosi, J. L., R. F. de Sena, M. Favier, W. Gebhardt, H. J. José, H. F. Schröder, and R. F. P. M. Moreira. 2010. “Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes.” Desalination 261 (1–2): 148–156. https://doi.org/10.1016/j.desal.2010.05.014.
WWAP (United Nations World Water Assessment Programme). 2017. The United Nations world water development report: Wastewater. Paris: UNESCO.
Yigit, N. O., I. Harman, G. Civelekoglu, H. Koseoglu, N. Cicek, and M. Kitis. 2008. “Membrane fouling in a pilot-scale submerged membrane bioreactor operated under various conditions.” Desalination 231 (1–3): 124–132. https://doi.org/10.1016/j.desal.2007.11.041.
Zaviska, F., P. Drogui, A. Grasmick, A. Azais, and M. Héran. 2013. “Nanofiltration membrane bioreactor for removing pharmaceutical compounds.” J. Membr. Sci. 429 (Feb): 121–129. https://doi.org/10.1016/j.memsci.2012.11.022.
Zwiener, C., and F. H. Frimmel. 2000. “Oxidative treatment of pharmaceuticals in water.” Water Res. 34 (6): 1881–1885. https://doi.org/10.1016/S0043-1354(99)00338-3.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 6June 2020

History

Received: Aug 7, 2019
Accepted: Jan 6, 2020
Published online: Apr 15, 2020
Published in print: Jun 1, 2020
Discussion open until: Sep 15, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Jaime Martín-Pascual, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering and Institute of Water Research, Univ. of Granada, Granada 18071, Spain. Email: [email protected]
Cristina López-López, Ph.D. [email protected]
Researcher, Institute of Water Research, Univ. of Granada, Granada 18071, Spain. Email: [email protected]
Massimiliano Fenice, Ph.D. [email protected]
Professor, Dept. of Ecological and Biological Sciences, Univ. of Tuscia, 01100 Viterbo, Italy. Email: [email protected]
Gustavo Calero-Díaz, Ph.D. [email protected]
Researcher, Dept. of I+D+I of HiDRALiA, HiDRALiA, Granada 18009, Spain. Email: [email protected]
Juan Carlos Torres, Ph.D. [email protected]
Engineer, Dept. of I+D+I of HiDRALiA, HiDRALiA, Granada 18009, Spain. Email: [email protected]
Assistant Professor, Dept. of Civil Engineering and Institute of Water Research, Univ. of Granada, Granada 18071, Spain (corresponding author). ORCID: https://orcid.org/0000-0003-3337-9654. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share