Technical Papers
Oct 23, 2019

Optimization of Temperature and Inoculum Size for Phycoremediation of Paddy-Soaked Rice Mill Wastewater

Publication: Journal of Environmental Engineering
Volume 146, Issue 1

Abstract

Phycoremediation encompasses microalgae as a sustainable treatment system by integrating the wastewater treatment with bioenergy recovery. However, transforming this technology to real time from lab scale is limited due to temperature and cell volume (inoculum size). Thus, the present study aims to investigate the influence of inoculum size (10%–30% v/v) and temperature condition (25°C–35°C) for the growth of five microalgal species in paddy-soaked wastewater (PSWW), using response surface methodology (RSM). The optimal conditions for better biomass production and wastewater treatment were found to be at 25°C and 30% inoculum size. Among five selected microalgae, Chlorella pyrenoidosa exhibited maximum dry biomass content (831  mg/L) with greater (>90%) removal on ammonical nitrogen (NH3-N) and phosphates (PO4-P) at a rate of 0.025 and 0.006  mgP/mg of dry biomass, respectively, with significant p value (p<0.05). Similar results were obtained for Chlorella vulgaris and Scenedesmus obliquus (an indigenous sp.) with more than 80% removal efficiency. However, at higher temperatures, Chlorella pyrenoidosa exhibited better results when other strains failed to maintain biomass production and removal on NH3-N and PO4-P. This study demonstrated that phycoremediation is a viable option upon selecting appropriate strains and conditions imminent for scale-up applications.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge the financial support provided by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India under the grant YSS/2015/000527. Also, the authors would like to thank Dr. Srinivasan R., Research Associate, Metabolic Engineering group, International Centre for Genetic Engineering and Biotechnology, New Delhi, for support in the sequencing process of indigenous species.

References

Abinandan, S., R. Bhattacharya, and S. Shanthakumar. 2015. “Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for nutrient removal in rice mill effluent (paddy soaked water).” Int. J. Phytorem. 17 (4): 377–381. https://doi.org/10.1080/15226514.2014.910167.
Abinandan, S., and S. Shanthakumar. 2015. “Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review.” Renewable Sustainable Energy Rev. 52 (Dec): 123–132. https://doi.org/10.1016/j.rser.2015.07.086.
Abou-Shanab, R. A. I., I. A. Matter, S. N. Kim, Y. K. Oh, J. Choi, and B. H. Jeon. 2011. “Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake.” Biomass Bioenergy 35 (7): 3079–3085. https://doi.org/10.1016/j.biombioe.2011.04.021.
Amala, K., and N. Ramanathan. 2013. “Chlorophyll production from Spirulina platensis (single cell protein, SCP); cultivation with sodium chloride in rice mill waste water.” Int. J. Chem. Tech. Res. 5 (3): 1284–1288.
APHA (American Public Health Association). 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC: American Water Works Association, Water Environment Federation.
Aslan, S., and I. K. Kapdan. 2006. “Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae.” Ecol. Eng. 28 (1): 64–70. https://doi.org/10.1016/j.ecoleng.2006.04.003.
Becker, E. W. 1994. Microalgae: Biotechnology and microbiology. Cambridge, UK: Cambridge University Press.
Behera, M., P. S. Jana, T. T. More, and M. M. Ghangrekar. 2010. “Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH.” Bioelectrochemistry 79 (2): 228–233. https://doi.org/10.1016/j.bioelechem.2010.06.002.
Bello, M., P. Ranganathan, and F. Brennan. 2017. “Dynamic modelling of microalgae cultivation process in high rate algal wastewater pond.” Algal Res. 24 (Jun): 457–466. https://doi.org/10.1016/j.algal.2016.10.016.
BIS (Bureau of Indian Standards). 2012. The national standards body of India. New Delhi, India: BIS.
Bohutskyi, P., D. C. Kligerman, N. Byers, L. K. Nasr, C. Cua, S. Chow, C. Su, Y. Tang, M. J. Betenbaugh, and E. J. Bouwer. 2016. “Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater.” Algal Res. 19 (Nov): 278–290. https://doi.org/10.1016/j.algal.2016.09.010.
Cai, T., S. Y. Park, and Y. Li. 2013. “Nutrient recovery from wastewater streams by microalgae: Status and prospects.” Renewable Sustainable Energy Rev. 19 (Mar): 360–369. https://doi.org/10.1016/j.rser.2012.11.030.
CCAP (Culture Collection of Algae and Protozoa). 2018. “Cuture collection of algae and protozoa.” Accessed June 28, 2018. https://www.ccap.ac.uk/advanced-search.php?environment=Freshwater&mode=attr.
Chinnasamy, S., A. Bhatnagar, R. W. Hunt, and K. C. Das. 2010. “Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications.” Bioresour. Technol. 101 (9): 3097–3105. https://doi.org/10.1016/j.biortech.2009.12.026.
Chiu, S. Y., C. Y. Kao, T. Y. Chen, Y. Bin Chang, C. M. Kuo, and C. S. Lin. 2015. “Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource.” Bioresour. Technol. 184 (May): 179–189. https://doi.org/10.1016/j.biortech.2014.11.080.
Choudhary, M., S. Majumder, and S. Neogi. 2014. “Studies on the treatment of rice mill effluent by electrocoagulation.” Sep. Sci. Technol. 50 (4): 505–511. https://doi.org/10.1080/01496395.2014.956225.
Ciferri, O. 1983. “Spirulina, the edible microorganism.” Microbiol. Rev. 47 (4): 551–578.
Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. Del Borghi. 2009. “Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production.” Chem. Eng. Process. Process Intensif. 48 (6): 1146–1151. https://doi.org/10.1016/j.cep.2009.03.006.
Coutteau, P. 1996. “Microalgae.” In Manual on the production and use of live food for aquaculture, Food and Agriculture Oraganization of the united nations: FAO fisheries technical paper, edited by P. Lavens and P. Sorgeloos, 295. Rome: Food and Agriculture Organization of the United Nations.
CPCB (Central Pollution Control Board New Delhi). 2017. “General standards for discharge of environmental pollutants part-a: Effluents.” Accessed November 20, 2018. http://cpcb.nic.in/industry-effluent-standards/.
da Fontoura, J. T., G. Sebastião, M. Farenzena, and M. Gutterres. 2017. “Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp.” Process Saf. Environ. Prot. 111: 355–362. https://doi.org/10.1016/j.psep.2017.07.024.
Droop, M. R. 1968. “Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri.” J. Mar. Biol. Assoc. U. K. 48 (3): 689–733. https://doi.org/10.1017/S0025315400019238.
Duong, V. T., F. Ahmed, S. R. Thomas-Hall, S. Quigley, E. Nowak, and P. M. Schenk. 2015. “High protein- and high lipid-producing microalgae from Northern Australia as potential feedstock for animal feed and biodiesel.” Front. Bioeng. Biotechnol. 3 (53): 1–7. https://doi.org/10.3389/fbioe.2015.00053.
Fawley, M., and K. Fawley. 2004. “A simple and rapid technique for the isolation of DNA from microalgae.” J. Phycol. 40 (1): 223–225. https://doi.org/10.1111/j.0022-3646.2004.03-081.x.
Fazal, T., A. Mushtaq, F. Rehman, A. Ullah Khan, N. Rashid, W. Farooq, M. S. U. Rehman, and J. Xu. 2018. “Bioremediation of textile wastewater and successive biodiesel production using microalgae.” Renewable Sustainable Energy Rev. 82 (Feb): 3107–3126. https://doi.org/10.1016/j.rser.2017.10.029.
Girard, J., M. Roy, M. Ben, J. Gagnon, N. Faucheux, M. Heitz, R. Tremblay, and J. Deschênes. 2014. “Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production.” Algal Res. 5 (Jul): 241–248. https://doi.org/10.1016/j.algal.2014.03.002.
Gutiérrez, R., I. Ferrer, A. González-Molina, H. Salvadó, J. García, and E. Uggetti. 2016. “Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.” Water Res. 106 (Dec): 539–549. https://doi.org/10.1016/j.watres.2016.10.039.
Hallenbeck, P. C., M. Grogger, M. Mraz, and D. Veverka. 2015. “The use of design of experiments and response surface methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.” Bioresour. Technol. 184 (May): 161–168. https://doi.org/10.1016/j.biortech.2014.09.022.
Hecky, R. E., P. Campbell, and L. L. Hendzel. 1993. “The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans.” Limnol. Oceanogr. 38 (4): 709–724. https://doi.org/10.4319/lo.1993.38.4.0709.
Hongyang, S., Z. Yalei, Z. Chunmin, Z. Xuefei, and L. Jinpeng. 2011. “Cultivation of Chlorella pyrenoidosa in soybean processing wastewater.” Bioresour. Technol. 102 (21): 9884–9890. https://doi.org/10.1016/j.biortech.2011.08.016.
Hosikian, A., S. Lim, R. Halim, and M. K. Danquah. 2010. “Chlorophyll extraction from microalgae: A review on the process engineering aspects.” Int. J. Chem. Eng. 2010: 1–11. https://doi.org/10.1155/2010/391632.
Kale, S. J., S. K. Jha, G. K. Jha, and D. V. K. Samuel. 2013. “Evaluation and modelling of water absorption characteristics of paddy.” J. Agric. Eng. 50 (3): 29–38.
Kale, S. J., S. K. Jha, G. K. Jha, J. P. Sinha, and S. B. Lal. 2015. “Soaking induced changes in chemical composition, glycemic index and starch characteristics of basmati rice.” Rice Sci. 22 (5): 227–236. https://doi.org/10.1016/j.rsci.2015.09.002.
Konopka, A., and T. D. Brock. 1978. “Effect of temperature on blue-green algae (cyanobacteria) in Lake Mendota.” Appl. Environ. Microbiol. 36 (4): 572–576.
Kothari, R., V. V. Pathak, V. Kumar, and D. P. Singh. 2012. “Experimental study for growth potential of unicellular alga Chlorella pyrenoidosa on dairy waste water: An integrated approach for treatment and biofuel production.” Bioresour. Technol. 116 (Jul): 466–470. https://doi.org/10.1016/j.biortech.2012.03.121.
Kotteswari, M., S. Murugesan, and R. R. Kumar. 2012. “Phycoremediation of dairy effluent by using the microalgae Nostoc sp.” Int. J. Environ. Res. Dev. 2 (1): 35–43.
Krzemińska, I., B. Pawlik-Skowrońska, M. Trzcińska, and J. Tys. 2014. “Influence of photoperiods on the growth rate and biomass productivity of green microalgae.” Bioprocess Biosyst. Eng. 37 (4): 735–741. https://doi.org/10.1007/s00449-013-1044-x.
Kumar, A., S. Ergas, X. Yuan, A. Sahu, Q. Zhang, J. Dewulf, F. X. Malcata, and H. van Langenhove. 2010. “Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions.” Trends. Biotechnol. 28 (7): 371–380. https://doi.org/10.1016/j.tibtech.2010.04.004.
Kumar, A., R. Priyadarshinee, A. Roy, D. Dasgupta, and T. Mandal. 2016a. “Current techniques in rice mill effluent treatment: Emerging opportunities for waste reuse and waste-to-energy conversion.” Chemosphere 164 (Dec): 404–412. https://doi.org/10.1016/j.chemosphere.2016.08.118.
Kumar, A., S. Singha, B. Sengupta, D. Dasgupta, S. Datta, and T. Mandal. 2016b. “Intensive insight into the enhanced utilization of rice husk ash: Abatement of rice mill wastewater and recovery of silica as a value added product.” Ecol. Eng. 91 (Jun): 270–281. https://doi.org/10.1016/j.ecoleng.2016.02.034.
Lamberts, L., S. V. Gomand, V. Derycke, and J. A. Delcour. 2009. “Presence of amylose crystallites in parboiled rice.” J. Agric. Food Chem. 57 (8): 3210–3216. https://doi.org/10.1021/jf803385m.
Lammers, P. J., et al. 2017. “Review of the cultivation program within the National Alliance for advanced biofuels and bioproducts.” Algal Res. 22 (Mar): 166–186. https://doi.org/10.1016/j.algal.2016.11.021.
Levasseur, M., P. A. Thomson, and P. J. Harrison. 1993. “Physiological acclimation of marine phytoplankton to different nitrogen sources.” J. Phycol. 29 (5): 587–595. https://doi.org/10.1111/j.0022-3646.1993.00587.x.
Li, C., H. Yang, X. Xia, Y. Li, L. Chen, M. Zhang, L. Zhang, and W. Wang. 2013. “High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.” Bioresour. Technol. 127 (Jan): 248–255. https://doi.org/10.1016/j.biortech.2012.08.074.
Li, L., J. Cui, Q. Liu, Y. Ding, and J. Liu. 2015. “Screening and phylogenetic analysis of lipid-rich microalgae.” Algal Res. 11 (Sep): 381–386. https://doi.org/10.1016/j.algal.2015.02.028.
Lim, S. L., W. L. Chu, and S. M. Phang. 2010. “Use of Chlorella vulgaris for bioremediation of textile wastewater.” Bioresour. Technol. 101 (19): 7314–7322. https://doi.org/10.1016/j.biortech.2010.04.092.
Manogari, R., D. Daniel, and A. Krastanov. 2008. “Biodegradation of rice mill effluent by immobilized Pseudomonas sp. cells.” Ecol. Eng. Environ. Prot. 1: 30–35.
Mata, T. M., A. C. Melo, M. Simões, and N. S. Caetano. 2012. “Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus.” Bioresour. Technol. 107 (Mar): 151–158. https://doi.org/10.1016/j.biortech.2011.12.109.
Mir, S. A., S. John, and D. Bosco. 2013. “Effect of soaking temperature on physical and functional properties of parboiled rice cultivars grown in temperate region of india.” Food Nutr. Sci. 4 (3): 282–288. https://doi.org/10.4236/fns.2013.43038.
Mishra, A., K. Medhi, N. Maheshwari, S. Srivastava, and I. S. Thakur. 2018. “Biofuel production and phycoremediation by Chlorella sp. ISTLA1 isolated from landfill site.” Bioresour. Technol. 253 (Apr): 121–129. https://doi.org/10.1016/j.biortech.2017.12.012.
Mospi. 2016. “Statistical year book India 2016.” Ministry of Statistics and Program Implementation, Government of India. Accessed May 16, 2018. http://www.mospi.gov.in/statistical-year-book-india/2016/177.
Mukherjee, B., M. Majumdar, A. Gangopadhyay, S. Chakraborty, and D. Chaterjee. 2015a. “Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia stratiotes).” Int. J. Phytorem. 17 (7): 651–656.
Mukherjee, C., R. Chowdhury, and K. Ray. 2015b. “Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria—A step to phosphorus security in agriculture.” Front. Microbiol. 6: 1421. https://doi.org/10.3389/fmicb.2015.01421.
Nielsen, S. L. 2006. “Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: Comparisons between unicells and colonial growth forms.” J. Plankton Res. 28 (5): 489–498. https://doi.org/10.1093/plankt/fbi134.
Olguín, E. J., S. Galicia, G. Mercado, and T. Pérez. 2003. “Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions.” J. Appl. Phycol. 15 (2–3): 249–257. https://doi.org/10.1023/A:1023856702544.
Park, J. B. K., R. J. Craggs, and A. N. Shilton. 2011. “Wastewater treatment high rate algal ponds for biofuel production.” Bioresour. Technol. 102 (1): 35–42. https://doi.org/10.1016/j.biortech.2010.06.158.
Pathak, V. V., D. P. Singh, R. Kothari, and A. K. Chopra. 2014. “Phycoremediation of textile wastewater by unicellular microalga Chlorella pyrenoidosa.” Cell. Mol. Biol. 60 (5): 35–40.
Pearson, M. 1990. Toxic blue green algae. 1st ed. London: National Rivers Authority.
Posadas, E., S. Bochon, M. Coca, M. C. García-González, P. A. García-Encina, and R. Muñoz. 2014. “Microalgae-based agro-industrial wastewater treatment: A preliminary screening of biodegradability.” J. Appl. Phycol. 26 (6): 2335–2345. https://doi.org/10.1007/s10811-014-0263-0.
Prajapati, S. K., P. Kaushik, A. Malik, and V. K. Vijay. 2013. “Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges.” Biotechnol. Adv. 31 (8): 1408–1425. https://doi.org/10.1016/j.biotechadv.2013.06.005.
Rajesh, G., M. Bandyopadhyay, and D. Das. 1999. “Some studies on UASB bioreactors for the stabilization of low strength industrial effluents.” Bioprocess Eng. 21 (2): 113–116. https://doi.org/10.1007/s004490050649.
Ramalingam, N., and S. Anthoni Raj. 1996. “Studies on the soak water characteristics in various paddy parboiling methods.” Bioresour. Technol. 55 (3): 259–261.
Rao, P., R. Ranjith Kumar, B. Raghavan, V. Subramanian, and V. Sivasubramanian. 2011. “Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility.” Water SA 37 (1): 7–14.
Rathnayake, H. M. A. P., A. K. Kulatunga, and T. M. R. Dissanayake. 2010. “Enhancing sustainability of local rice mills by cleaner production and industrial ecologinal principles.” In Proc., Int. Conf. on Sustainable Built Environment (ICSBE-2010), 310–316. Moratuwa, Sri Lanka: Univ. of Moratuwa.
Redfield, A. C. 1934. “On the proportions of organic derivatives in sea water and their relation to the composition of plankton.” In James Johnstones memorial, 176–192. Liverpool: The University Press.
Riaño, B., B. Molinuevo, and M. C. García-González. 2011. “Treatment of fish processing wastewater with microalgae-containing microbiota.” Bioresour. Technol. 102 (23): 10829–10833. https://doi.org/10.1016/j.biortech.2011.09.02(2).
Roy, P., T. Orikasa, H. Okadome, N. Nakamura, and T. Shiina. 2011. “Processing conditions, rice properties, health and environment.” Int. J. Environ. Res. Public. Health. 8 (6): 1957–1976. https://doi.org/10.3390/ijerph8061957.
Samson, R., and A. Leduy. 1985. “Multistage continuous cultivation of blue-green alga spirulina maxima in the flat tank photobioreactors with recycle.” Can. J. Chem. Eng. 63 (1): 105–112. https://doi.org/10.1002/cjce.5450630117.
Senanayake, N., S. K. De Datta, R. E. L. Naylor, and W. J. Thompson. 1991. “Lowland rice apical development: Stages and cultivar differences detected by electron microscopy.” Agron. J. 83 (6): 1013–1023. https://doi.org/10.2134/agronj1991.00021962008300060017x.
Slade, A. H., G. J. S. Thorn, and M. A. Dennis. 2011. “The relationship between BOD: N ratio and wastewater treatability in a nitrogen-fixing wastewater treatment system.” Water Sci. Technol. 63 (4): 627–632. https://doi.org/10.2166/wst.2011.215.
Soletto, D., L. Binaghi, L. Ferrari, A. Lodi, J. C. M. Carvalho, M. Zilli, and A. Converti. 2008. “Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of spirulina platensis in helical photobioreactor.” Biochem. Eng. J. 39 (2): 369–375. https://doi.org/10.1016/j.bej.2007.10.007.
Solovchenko, A., et al. 2014. “Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence.” Algal Res. 6 (Part B): 234–241. https://doi.org/10.1016/j.algal.2014.01.002.
Sonnenberg, R., A. W. Nolte, and D. Tautz. 2007. “An evaluation of LSU RDNA D1-D2 sequences for their use in species identification.” Front. Zool. 4 (1): 6. https://doi.org/10.1186/1742-9994-4-6.
Stanier, R. Y., R. Kunisawa, M. Mandel, and G. Cohen-Bazire. 1971. “Purification and properties of unicellular blue-green algae (order chroococcales).” Bacteriological Rev. 35 (2): 171–205.
Statista. 2011. “Leading countries based on production of milled rice in 2016/2017.” Accessed May 16, 2018. https://www.statista.com/statistics/255945/top-countries-of-destination-for-us-rice-exports-2011/.
Sundaramoorthy, B., K. Thiagarajan, S. Mohan, S. Mohan, P. Rajendra Rao, S. Ramamoorthy, and R. Chandrasekaran. 2016. “Biomass characterisation and phylogenetic analysis of microalgae isolated from estuaries: Role in phycoremediation of tannery effluent.” Algal Res. 14 (Mar): 92–99. https://doi.org/10.1016/j.algal.2015.12.016.
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. “MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0.” Mol. Biol. Evol. 24 (8): 1596–1599. https://doi.org/10.1093/molbev/msm092.
Tarlan, E., F. B. Dilek, and U. Yetis. 2002. “Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater.” Bioresour. Technol. 84 (1): 1–5. https://doi.org/10.1016/S0960-8524(02)00029-9.
Thirugnanasambandham, K., V. Sivakumar, and J. Prakash Maran. 2013. “Application of chitosan as an adsorbent to treat rice mill wastewater-Mechanism, modelling and optimization.” Carbohydr. Polym. 97 (2): 451–457. https://doi.org/10.1016/j.carbpol.2013.05.012.
Travieso, L., D. O. Hall, K. K. Rao, F. Benítez, E. Sánchez, and R. Borja. 2001. “A helical tubular photobioreactor producing Spirulina in a semicontinuous mode.” Int. Biodeterior. Biodegrad. 47 (3): 151–155. https://doi.org/10.1016/S0964-8305(01)00043-9.
Umamaheswari, J., and S. Shanthakumar. 2016. “Efficacy of microalgae for industrial wastewater treatment: A review on operating conditions, treatment efficiency and biomass productivity.” Rev. Environ. Sci. Biotechnol. 15 (2): 265–284. https://doi.org/10.1007/s11157-016-9397-7.
Valderrama, L. T., C. M. Del Campo, C. M. Rodriguez, L. E. De-Bashan, and Y. Bashan. 2002. “Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscula.” Water Res. 36 (17): 4185–4192. https://doi.org/10.1016/S0043-1354(02)00143-4.
Vedaraman, N., K. V. Sandhya, N. R. B. Charukesh, B. Venkatakrishnan, K. Haribabu, M. R. Sridharan, and R. Nagarajan. 2017. “Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates.” Chem. Eng. Process. Process Intensif. 114 (Apr): 46–54. https://doi.org/10.1016/j.cep.2017.01.008.
Vining, S., and G. G. Kowalski. 2011. Statistical methods for engineers. 3rd ed. Edited by M. Juiet, M. Taylor, D. Seibert, S. Walsh, and C. Ronquillo, 02210. Boston: Cengage Learning.
Wang, H., H. Xiong, Z. Hui, and X. Zeng. 2012. “Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids.” Bioresour. Technol. 104 (Jan): 215–220. https://doi.org/10.1016/j.biortech.2011.11.020.
Wang, M., W. C. Kuo-Dahab, S. Dolan, and C. Park. 2014. “Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment.” Bioresour. Technol. 154 (Feb): 131–137. https://doi.org/10.1016/j.biortech.2013.12.047.
Wilkie, A. C., S. J. Edmundson, and J. G. Duncan. 2011. “Indigenous algae for local bioresource production: Phycoprospecting.” Energy Sustainability Dev. 15 (4): 365–371. https://doi.org/10.1016/j.esd.2011.07.010.
Wimberly, J. E. 1983. Technical Handbook for the paddy rice postharvest industry in developing countries. Laguna, Philippines: International Rice Research Institute.
Xin, L., H. Hong-ying, and Z. Yu-ping. 2011. “Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature.” Bioresour. Technol. 102 (3): 3098–3102. https://doi.org/10.1016/j.biortech.2010.10.055.
Xu, Y., I. M. Ibrahim, and P. J. Harvey. 2016. “The influence of photoperiod and light intensity on the growth and photosynthesis of Dunaliella salina (chlorophyta) CCAP 19/30.” Plant. Physiol. Biochem. 106 (Sep): 305–315. https://doi.org/10.1016/j.plaphy.2016.05.021.
Yang, C. F., Z. Y. Ding, and K. C. Zhang. 2008. “Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation.” World. J. Microbiol. Biotechnol. 24 (12): 2919–2925. https://doi.org/10.1007/s11274-008-9833-0.
Zhai, J., X. Li, W. Li, M. H. Rahaman, Y. Zhao, B. Wei, and H. Wei. 2017. “Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater.” Ecol. Eng. 108 (Nov): 83–92. https://doi.org/10.1016/j.ecoleng.2017.07.023.
Zhang, B., and S. Chen. 2015. “Optimization of culture conditions for Chlorella sorokiniana using swine manure wastewater.” J. Renewable Sustaintable Energy Rev., 7 (3): 033129. https://doi.org/10.1063/1.4923326.
Zhu, X., J. Wang, Y. Lu, Q. Chen, and Z. Yang. 2015. “Grazer-induced morphological defense in Scenedesmus obliquus is affected by competition against Microcystis aeruginosa.” Sci. Rep. 5: 12743. https://doi.org/10.1038/srep12743.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 1January 2020

History

Received: Jan 8, 2019
Accepted: May 6, 2019
Published online: Oct 23, 2019
Published in print: Jan 1, 2020
Discussion open until: Mar 23, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India. ORCID: https://orcid.org/0000-0003-0989-1594. Email: [email protected]
Subramaniam Shanthakumar, Ph.D., M.ASCE https://orcid.org/0000-0003-1910-2536 [email protected]
Professor, Dept. of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India (corresponding author). ORCID: https://orcid.org/0000-0003-1910-2536. Email: [email protected]; [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share