Technical Papers
Oct 23, 2019

Microbial Fuel Cell-Membrane Bioreactor Integrated System for Wastewater Treatment and Bioelectricity Production: Overview

Publication: Journal of Environmental Engineering
Volume 146, Issue 1

Abstract

Economic development and the related increase in global energy demands have created pressure on the supply of energy resources. To promote sustainable development, a safe and renewable energy is required. For this, wastewater contributes significantly in creating a safe environment and renewable energy. Currently, in developing countries, with the scarcities of energy, an attractive wastewater treatment technology like membrane bioreactors (MBR), which produces high-quality recyclable treated water and energy, has been proposed. However, fouling of the membrane is the main drawback of the MBR process, as it leads to a decline in the permeate flux or increase in the transmembrane pressure (TMP) with processing time, resulting in higher operating costs for membrane cleaning and eventually decreases the lifespan of membranes. This situation invites researchers to develop integrated MBR technology intended for wastewater treatment alternatives under several scenarios. A related review shows that integration of a microfuel cell (MFC) with MBR as post-treatment in wastewater treatment technologies makes it possible to accomplish good quality and extract abundant energy obtained in wastewater and future trends like MFC-MBR. An MFC-MBR (microbial fuel cell–membrane bioreactor) integrated system makes it possible to achieve better effluent and harvest the energy contained in wastewater simultaneously with different factors like reactor integration, electricity generation, and membrane fouling, and it also highlights the probable challenge and future development of MFC-MBR integrated systems in the large scale.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This work was supported by National Natural Science Foundation of China (51978148 and 51828801) and National Science and Technology Major Project of China (2017ZX07202004). Hai-Liang Song would like to acknowledge the Qing Lan Project of Jiangsu Province.

References

Ahmed, F. N., and C. Q. Lan. 2012. “Treatment of landfill leachate using membrane bioreactors: A review.” Desalination 287 (8): 41–54. https://doi.org/10.1016/j.desal.2011.12.012.
Akamatsu, K., W. Lu, T. Sugawara, and S. I. Nakao. 2010. “Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field.” Water Res. 44 (3): 825–830. https://doi.org/10.1016/j.watres.2009.10.026.
Ballesteros, F., T. H. Vuong, M. F. Secondes, and P. D. Tuan. 2016. “Removal efficiencies of constructed wetland and efficacy of plant on treating benzene.” Sustainable Environ. Res. 26 (2): 93–96. https://doi.org/10.1016/j.serj.2015.10.002.
Chen, G. P., L. Y. Bin, B. Tang, and S. S. Huang. 2019. “Rapid reformation of larger aerobic granular sludge in an internal-circulation membrane bioreactor after long-term operation: Effect of short-time aeration.” Bioresour. Technol. 273 (Feb): 462–467. https://doi.org/10.1016/j.biortech.2018.11.029.
Chen, J. P., C. Z. Yang, and J. H. Zhou. 2007a. “The effect of pulsed direct current field on the membrane flux of a new style of membrane.” Bioreactor Chem. Eng. Technol. 30 (9): 1262–1265. https://doi.org/10.1002/ceat.200600266.
Chen, J. P., C. Z. Yang, J. H. Zhou, and X. Y. Wang. 2007b. “Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor.” Chem. Eng. J. 128 (2–3): 177–180. https://doi.org/10.1016/j.cej.2006.10.010.
Cheng, J., X. P. Zhu, J. R. Ni, and A. Borthwick. 2010. “Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.” Bioresour. Technol. 101 (8): 2729–2734. https://doi.org/10.1016/j.biortech.2009.12.017.
Deng, L. J., W. S. Guo, H. H. Ngo, H. W. Zhang, J. Wang, J. X. Li, S. Q. Xia, and Y. Wu. 2016. “Biofouling and control approaches in membrane bioreactors.” Bioresour. Technol. 221 (Dec): 656–665. https://doi.org/10.1016/j.biortech.2016.09.105.
Dhar, B. R., Y. Gao, H. Yeo, and H. S. Lee. 2013. “Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.” Bioresour. Technol. 148 (11): 208–214. https://doi.org/10.1016/j.biortech.2013.08.138.
Ensano, B. M., L. Borea, V. Naddeo, V. Belgiorno, M. D. De Luna, and F. Ballesteros, Jr. 2016. “Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling Control: A review.” Environ. Sci. Pollut. Res. 2017 (22): 1–10. https://doi.org/10.3389/fenvs.2016.00057.
Franks, A. E., and K. P. Nevin. 2010. “Microbial fuel cells, a current review.” Energies 3 (5): 899–919. https://doi.org/10.3390/en3050899.
Gao, C., L. Liu, and F. Yang. 2017. “Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment.” Bioresour. Technol. 238 (Aug): 472–483. https://doi.org/10.1016/j.biortech.2017.04.086.
Ge, Z., Q. Ping, and Z. He. 2013. “Hollow-fiber membrane bioelectrochemical reactor for domestic wastewater treatment.” J. Chem. Technol. Biotechnol. 88 (8): 1584–1590. https://doi.org/10.1002/jctb.4009.
Huang, L., X. Li, Y. Ren, and X. Wang. 2017a. “Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell.” RSC Adv. 7 (34): 20824–20832. https://doi.org/10.1039/C7RA01014A.
Huang, Z., A. Gong, D. Hou, L. Hu, and Z. J. Ren. 2017b. “A conductive wood membrane anode improves effluent quality of microbial fuel cells.” Environ. Sci. Water Res. Technol. 3 (5): 940–946. https://doi.org/10.1039/C7EW00130D.
Janicek, A., Y. Fan, and H. Liu. 2014. “Design of microbial fuel cells for practical application: A review and analysis of scale-up studies.” Biofuels 5 (1): 79–92. https://doi.org/10.4155/bfs.13.69.
Jian, S., W. Li, Y. Li, Y. Hu, and Y. Zhang. 2013. “Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.” Bioresour. Technol. 142 (4): 407–414. https://doi.org/10.1016/j.biortech.2013.05.039.
Kim, J., K. Kim, H. Ye, E. Lee, C. Shin, P. L. McCarty, and J. Bae. 2011. “Anaerobic fluidized bed membrane bioreactor for wastewater treatment.” Environ. Sci. Technol. 45 (2): 576–581. https://doi.org/10.1021/es1027103.
Kim, K. Y., W. Yang, Y. Ye, N. Labarge, and B. E. Logan. 2016. “Performance of anaerobic fluidized membrane bioreactors using effluents of microbial fuel cells treating domestic wastewater.” Bioresour. Technol. 208 (May): 58–63. https://doi.org/10.1016/j.biortech.2016.02.067.
Kumar, R., A. K. Sarmah, and L. P. Padhye. 2019. “Fate of pharmaceuticals and personal care products in a wastewater treatment plant with parallel secondary wastewater treatment train.” J. Environ. Manage. 233 (Mar): 649–659. https://doi.org/10.1016/j.jenvman.2018.12.062.
Kumar, R., L. Singh, and A. W. Zularisam. 2016. “Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications.” Renewable Sustainable Energy Rev. 56 (Apr): 1322–1336. https://doi.org/10.1016/j.rser.2015.12.029.
Li, H., W. Zuo, Y. Tian, J. Zhang, S. Di, L. Li, and X. Y. Su. 2016. “Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.” Environ. Sci. Pollut. Res. 24 (6): 1–12. https://doi.org/10.1007/s11356-016-6084-8.
Li, J., Z. Ge, and Z. He. 2014a. “Advancing membrane bioelectrochemical reactor (MBER) with hollow-fiber membranes installed in the cathode compartment.” J. Chem. Technol. Biotechnol. 89 (9): 1330–1336. https://doi.org/10.1002/jctb.4206.
Li, J., and Z. He. 2015. “Optimizing the performance of a membrane bio-electrochemical reactor using an anion exchange membrane for wastewater treatment.” Environ. Sci. Water Res. Technol. 1 (3): 355–362. https://doi.org/10.1039/C5EW00001G.
Li, Y., L. Liu, J. Liu, F. Yang, and N. Ren. 2014b. “PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (Alizarin Red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system.” Desalination 349 (15): 94–101. https://doi.org/10.1016/j.desal.2014.06.027.
Li, Y., L. Liu, F. Yang, and N. Ren. 2015. “Performance of carbon fiber cathode membrane with C–Mn–Fe–O catalyst in MBR–MFC for wastewater treatment.” J. Membr. Sci. 484 (15): 27–34. https://doi.org/10.1016/j.memsci.2015.03.006.
Liu, J., L. Liu, B. Gao, and F. Yang. 2013. “Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation.” J. Membr. Sci. 430 (1): 196–202. https://doi.org/10.1016/j.memsci.2012.11.046.
Liu, W. F., and S. A. Cheng. 2014. “Review: Microbial fuel cells for energy production from wastewaters: The way toward practical application.” J. Zhejiang Universityence A. 15 (11): 841–861. https://doi.org/10.1631/jzus.A1400277.
Liu, X. W., Y. P. Wang, Y. X. Huang, X. F. Sun, G. P. Sheng, and R. J. Zeng. 2011. “Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: Taking a sequencing batch reactor as an example.” Biotechnol. Bioeng. 108 (6): 1260–1267. https://doi.org/10.1002/bit.23056.
Logan, B. E., M. J. Wallack, K. Y. Kim, W. He, Y. Feng, and P. E. Saikaly. 2015. “Assessment of microbial fuel cell configurations and power densities.” Environ. Sci. Technol. Lett. 2 (8): 206–214. https://doi.org/10.1021/acs.estlett.5b00180.
Ma, D., B. Gao, D. Hou, Y. Wang, Q. Yue, and Q. Li. 2013. “Evaluation of a submerged membrane bioreactor (SMBR) coupled with chlorine disinfection for municipal wastewater treatment and reuse.” Desalination 313 (7): 134–139. https://doi.org/10.1016/j.desal.2012.12.016.
Malaeb, L., K. P. Katuri, B. E. Logan, H. Maab, S. P. Nunes, and P. E. Saikaly. 2013. “A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.” Environ. Sci. Technol. 47 (20): 11821–11828. https://doi.org/10.1021/es4030113.
Mathuriya, A. S. 2013. “Inoculum selection to enhance performance of a microbial fuel cell for electricity generation during wastewater treatment.” Environ. Technol. 34 (13): 1957–1964. https://doi.org/10.1080/09593330.2013.808674.
Mccarty, P. L., J. Bae, and J. Kim. 2011. “Domestic wastewater treatment as a net energy producer–can this be achieved?” Environ. Sci. Technol. 45 (17): 7100–7106. https://doi.org/10.1021/es2014264.
Mercuri, E. G. F., A. Y. J. Kumata, E. B. Amaral, and J. R. S. Vitule. 2016. “Energy by microbial fuel cells: Scientometric global synthesis and challenges.” Renewable Sustainable Energy Rev. 65 (Nov): 832–840. https://doi.org/10.1016/j.rser.2016.06.050.
Min, B., and I. Angelidak. 2008. “Innovative microbial fuel cell for electricity production from anaerobic reactors.” J. Power Sources 180 (1): 641–647. https://doi.org/10.1016/j.jpowsour.2008.01.076.
Nakhate, P. H., N. T. Joshi, and K. V. Marathe. 2016. “A critical review of bioelectrochemical membrane reactor (BECMR) as cutting-edge sustainable wastewater treatment.” Rev. Chem. Eng. 33 (2): 143–161. https://doi.org/10.1515/revce-2016-0012.
Nguyen, D. D., H. H. Ngo, S. D. Kim, and Y. S. Yoon. 2014. “A specific pilot-scale membrane hybrid treatment system for municipal wastewater treatment.” Bioresour. Technol. 169 (5): 52–61. https://doi.org/10.1016/j.biortech.2014.06.087.
Pant, D., G. V. Bogaert, L. Diels, and K. Vanbroekhoven. 2010. “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.” Bioresour. Technol. 101 (6): 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
Peng, H., W. Xie, D. Li, M. Wu, Y. Zhang, and H. Xu. 2019. “Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater.” Ecotoxicol. Environ. Saf. 168 (Jan): 17–26. https://doi.org/10.1016/j.ecoenv.2018.10.066.
Rabaey, K., D. S. K. Van, L. Maignien, N. Boon, P. Aelterman, and P. Clauwaert. 2006. “Microbial fuel cells for sulfide removal.” Environ. Sci. Technol. 40 (17): 5218–5224. https://doi.org/10.1021/es060382u.
Ren, L., Y. Ahn, and B. E. Logan. 2014. “A two-stage microbial fuel cell and anaerobic fluidized bed membrane bioreactor (MFC-AFMBR) system for effective domestic wastewater treatment.” Environ. Sci. Technol. 48 (7): 4199–4206. https://doi.org/10.1021/es500737m.
Rezaei, F., D. Xing, R. Wagner, J. M. Regan, T. L. Richard, and B. E. Logan. 2009. “Simultaneous cellulose degradation and electricity production by enterobacter cloacae in a microbial fuel cell.” Appl. Environ. Microbiol. 75 (11): 3673–3678. https://doi.org/10.1128/AEM.02600-08.
Rikame, S. S., A. A. Mungray, and A. K. Mungray. 2012. “Electricity generation from acidogenic food waste leachate using dual chamber mediator less microbial fuel cell.” Int. Biodeterior. Biodegrad. 75 (Nov): 131–137. https://doi.org/10.1016/j.ibiod.2012.09.006.
Rozendal, R. A., H. V. Hamelers, K. Rabaey, J. Keller, and C. J. Buisman. 2008. “Towards practical implementation of bioelectrochemical wastewater treatment.” Trends Biotechnol. 26 (8): 450–459. https://doi.org/10.1016/j.tibtech.2008.04.008.
Sarkar, B., S. Pal, T. B. Ghosh, S. De, and S. Dasgupta. 2008. “A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition.” J. Membr. Sci. 311 (1): 112–120. https://doi.org/10.1016/j.memsci.2007.11.053.
Smith, P. J., S. Vigneswaran, H. H. Ngo, R. Ben-Aim, and H. Nguyen. 2005. “Design of a generic control system for optimising back flush durations in a submerged membrane hybrid reactor.” J. Membr. Sci. 255 (1–2): 99–106. https://doi.org/10.1016/j.memsci.2005.01.026.
Song, J., L. Liu, F. Yang, N. Ren, and J. Crittenden. 2013. “Enhanced electricity generation by triclosan and iron anodes in the three-chambered membrane bio-chemical reactor (TC-MBCR).” Bioresour. Technol. 147 (9): 409–415. https://doi.org/10.1016/j.biortech.2013.07.062.
Su, X., Y. Tian, Z. Sun, Y. Lu, and Z. Li. 2013. “Performance of a combined system of microbial fuel cell and membrane bioreactor: Wastewater treatment, sludge reduction, energy recovery and membrane fouling.” Biosens. Bioelectron. 49 (22): 92–98. https://doi.org/10.1016/j.bios.2013.04.005.
Sun, G., C. Zhang, W. Li, L. Yuan, S. He, and L. Wang. 2018. “Effect of chemical dose on phosphorus removal and membrane fouling control in a UCT-MBR.” Front. Environ. Sci. Eng. 13 (1): 1–8. https://doi.org/10.1007/s11783-019-1085-8.
Sun, M., Z. X. Mu, Y. P. Chen, G. P. Sheng, X. W. Liu, Y. Z. Chen, Y. Zhao, H. L. Wang, H. Q. Yu, L. Wei, and F. Ma. 2009. “Microbe-asisted sulfide oxidation in the anode of a microbial fuel cell.” Environ. Sci. Technol. 43 (9): 3372–3377. https://doi.org/10.1021/es802809m.
Tarazaga, C. C., M. E. Campderrós, and A. P. Padilla. 2006. “Physical cleaning by means of electric field in the ultrafiltration of a biological solution.” J. Membr. Sci. 278 (1–2): 219–224. https://doi.org/10.1016/j.memsci.2005.11.004.
Tian, Y., C. Ji, K. Wang, and P. Le-Clech. 2014. “Assessment of an anaerobic membrane bio-electrochemical reactor (AnMBER) for wastewater treatment and energy recovery.” J. Membr. Sci. 450 (2): 242–248. https://doi.org/10.1016/j.memsci.2013.09.013.
Tian, Y., H. Li, L. Li, X. Y. Su, Y. Lu, Z. Wei, and J. Zhang. 2015. “In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation.” Biosens. Bioelectron. 64 (4): 189–195. https://doi.org/10.1016/j.bios.2014.08.070.
Virdis, B., K. Rabaey, Z. Yuan, and J. Keller. 2008. “Microbial fuel cells for simultaneous carbon and nitrogen removal.” Water Res. 42 (12): 3013–3024. https://doi.org/10.1016/j.watres.2008.03.017.
Wang, H., G. Xu, Z. Qiu, Y. Zhou, and Y. Liu. 2019. “NOB suppression in pilot-scale mainstream nitritation-denitritation system coupled with MBR for municipal wastewater treatment.” Chemosphere 216 (Feb): 633–639. https://doi.org/10.1016/j.chemosphere.2018.10.187.
Wang, J., Y. Zheng, H. Jia, and H. Zhang. 2013. “In situ investigation of processing property in combination with integration of microbial fuel cell and tubular membrane bioreactor.” Bioresour. Technol. 149 (Dec): 163–168. https://doi.org/10.1016/j.biortech.2013.09.055.
Wang, Y. K., G. P. Sheng, W. W. Li, Y. X. Huang, Y. Y. Yu, R. J. Zeng, and H. Q. Yu. 2011. “Development of a novel bioelectrochemical membrane reactor for wastewater treatment.” Environ. Sci. Technol. 45 (21): 9256–9261. https://doi.org/10.1021/es2019803.
Wang, Y. P., X. W. Liu, W. W. Li, F. Li, Y. K. Wang, G. P. Sheng, R. J. Zeng, and H. Q. Yu. 2012. “A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment.” Appl. Energy 98 (Oct): 230–235. https://doi.org/10.1016/j.apenergy.2012.03.029.
Wang, Z., Z. Wu, G. Yu, J. Liu, and Z. Zhou. 2006. “Relationship between sludge characteristics and membrane flux determination in submerged membrane bioreactors.” J. Membr. Sci. 284 (1): 87–94. https://doi.org/10.1016/j.memsci.2006.07.006.
Weerasekara, N. A., K. H. Choo, and C. H. Lee. 2014. “Hybridization of physical cleaning and quorum quenching to minimize membrane biofouling and energy consumption in a membrane bioreactor.” Water Res. 67 (Dec): 1–10. https://doi.org/10.1016/j.watres.2014.08.049.
Weiss, S., and T. Reemtsma. 2008. “Membrane bioreactors for municipal wastewater treatment: A viable option to reduce the amount of polar pollutants discharged into surface waters?” Water Res. 42 (14): 3837–3847. https://doi.org/10.1016/j.watres.2008.05.019.
Wu, Y., Q. Yang, Q. Zeng, H. H. Ngo, W. Guo, and H. Zhang. 2017. “Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode.” Chem. Eng. J. 316 (May): 315–322. https://doi.org/10.1016/j.cej.2016.11.141.
Xie, Z., H. Chen, P. Zheng, J. Zhang, J. Cai, and G. Abbas. 2013. “Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell.” Int. J. Hydrogen Energy 38 (25): 10607–10615. https://doi.org/10.1016/j.ijhydene.2013.06.056.
Xu, L., G. Q. Zhang, G. E. Yuan, H. Y. Liu, J. D. Liu, and F. L. Yang. 2015. “Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system.” RSC Adv. 5 (29): 22533–22543. https://doi.org/10.1039/C5RA00735F.
Yang, W., N. Cicek, and J. Ilg. 2006. “State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America.” J. Membr. Sci. 270 (1): 201–211. https://doi.org/10.1016/j.memsci.2005.07.010.
Yigit, N. O., N. Uzal, H. Koseoglu, I. Harman, H. Yukseler, U. Yetis, G. Civelekoglu, and M. Kitis. 2009. “Treatment of a denim producing textile industry wastewater using pilot-scale membrane bioreactor.” Desalination 240 (1): 143–150. https://doi.org/10.1016/j.desal.2007.11.071.
Yoo, R., J. Kim, P. L. Mccarty, and J. Bae. 2012. “Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system.” Bioresour. Technol. 120 (Sep): 133–139. https://doi.org/10.1016/j.biortech.2012.06.028.
Yu, T., L. Liu, Q. Yang, J. Song, and F. Yang. 2015. “Catalytic and filterable polyester-filter membrane electrode with a high performance carbon foam–Fe–Co catalyst improved electricity generation and waste-water treatment in MBR–MFC.” RSC Adv. 5 (60): 48946–48953. https://doi.org/10.1039/C5RA05965H.
Zhang, B. G., H. Z. Zhao, S. G. Zhou, C. Shi, C. Wang, and J. Ni. 2009. “A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation.” Bioresour. Technol. 100 (23): 5687–5693. https://doi.org/10.1016/j.biortech.2009.06.045.
Zhang, L., Y. Song, Y. Zuo, S. Huo, C. Liang, and C. Hu. 2019. “Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor.” Chemosphere 21 (Apr): 382. https://doi.org/10.1016/j.chemosphere.2018.12.168.
Zhou, G., Y. Zhou, G. Zhou, L. Lu, X. Wan, and H. Shi. 2015. “Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation.” Bioresour. Technol. 196 (Nov): 648–655. https://doi.org/10.1016/j.biortech.2015.08.032.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 146Issue 1January 2020

History

Received: Dec 8, 2018
Accepted: Apr 23, 2019
Published online: Oct 23, 2019
Published in print: Jan 1, 2020
Discussion open until: Mar 23, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, School of Civil Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Graduate Student, School of Environment, Nanjing Normal Univ., Nanjing 210023, China. Email: [email protected]
Professor, School of Civil Engineering, Southeast Univ., Nanjing 211189, China (corresponding author). ORCID: https://orcid.org/0000-0001-6570-8630. Email: [email protected]
Graduate Student, School of Civil Engineering, Southeast Univ., Nanjing 211189, China. Email: [email protected]
Assistant Professor, School of Environment, Nanjing Normal Univ., Nanjing 210023, China. Email: [email protected]
Professor, School of Environment, Nanjing Normal Univ., Nanjing 210023, China. ORCID: https://orcid.org/0000-0001-5747-8847. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share