Technical Notes
Aug 21, 2015

Heavy Metal Removal from Industrial Wastewater Using Fungi: Uptake Mechanism and Biochemical Aspects

Publication: Journal of Environmental Engineering
Volume 142, Issue 9

Abstract

In this review, recent developments pertaining to the use of fungi as biosorbent for heavy metals removal from wastewater has been presented with critical analysis of the present status of the subject. Undoubtedly fungi have emerged as an interesting biosorbent family. They are superior to other microorganisms as they can be easily grown, produce large biomass, and genetic and morphological manipulation is easily possible with them. Various aspects of this field, such as classification, general characteristics, composition and role of the cell wall, and metal uptake mechanisms have been critically analyzed. The superiority of dead biomass of fungi and immobilization was paid enough attention. The use of fungal species as biosensors for metal detection in the environment was also presented.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are thankful to Amity University Haryana, COMSATS Institute of Information Technology, Abbottabad and UNESCO-IHE Institute for Water Education, Delft for providing sufficient time to accomplish this work, Prof. Ajai K. Singh, Chemistry Department, Indian Institute of Technology Delhi to provide valuable suggestions, and anonymous reviewers for providing precious comments and corrections.

References

Adeniran, A., Sherer, M., and Tyo, K. E. (2014). “Yeast-based biosensors: Design and applications.” FEMS Yeast Res., 15(1), 1–15.
Aftab, K., Akhtar, K., and Jabbar, A. (2014). “Batch and column study for Pb-II remediation from industrial effluents using glutaraldehyde-alginate-fungi biocomposites.” Ecol. Eng., 73, 319–325.
Aftab, K., Akhtar, K., Jabbar, A., Bukhari, I. H., and Noreen, R. (2013). “Physico-chemical study for zinc removal and recovery onto native/chemically modified Aspergillus flavus NA9 from industrial effluent.” Water Res., 47(13), 4238–4246.
Ahluwalia, S. S., and Goyal, D. (2007). “Microbial and plant derived biomass for removal of heavy metal from wastewater.” Bioresour. Technol., 98(12), 2243–2257.
Ahluwalia, S. S., and Goyal, D. (2010). “Removal of Cr(VI) from aqueous solution by fungal biomass.” Eng. Life Sci., 10(5), 480–485.
Akar, T., Tunali, S., and Cabuk, A. (2007). “Study on the characterization of lead(II) biosorption by fungus Aspergillus parasiticus.” Appl. Biochem. Biotech., 136(3), 389–405.
Aksu, Z., and Balibek, E. (2007). “Chromium(VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters.” J. Hazard. Mater., 145(1–2), 210–220.
Avery, S. V. (2001). “Metal toxicity in yeasts and the role of oxidative stress.”Adv. Appl. Microbiol., 49, 111–142.
Avery, S. V., and Tobin, J. M. (1992). “Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae.” Appl. Environ. Microbiol., 58(12), 3883–3889.
Azila, Y. (2008). “Biosorption of selected heavy metals by free and immobilized Pycnoporus sanguineus: batch and column studies.” M.Sc. dissertation, Univ. Sains Malaysia, Malaysia.
Barakat, M. A. (2011). “New trends in removing heavy metals from industrial wastewater.” Arab. J. Chem., 4(4), 361–377.
Bayramoglu, G., and Arıca, M. Y. (2008). “Removal of heavy mercury (II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets.” Chem. Eng. J., 143(1), 133–140.
Bayramoğlu, G., Bektaş, S., and Arıca, M. Y. (2003). “Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor.” J. Hazard. Mater., 101(3), 285–300.
Bereza-Malcolm, L. T., Mann, G., and Franks, A. E. (2014). “Environmental sensing of heavy metals through whole cell microbial biosensors: A synthetic biology approach.” ACS Synth. Biol., 4(5), 535–546.
Çeribasi, I. H., and Yetis, U. (2004). “Biosorption of Ni(II) and Pb(II) by phanerochaete chrysosporium from a binary metal system-kinetics.” Water SA, 27(1), 15–20.
Chen, B.-Y., et al. (2014). “Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.” Bioresour. Technol., 160, 175–181.
Chen, C., and Wang, J. L. (2006). “Cation (K(I), Mg(II), Na(I), Ca(II)) release during Zn(II) biosorption by Saccharomyces cerevisiae.” Environ. Sci., 27, 2261–2267.
Chen, C., and Wang, J. L. (2007a). “Biosorption of heavy metal ions by a brewery’s waste: Kinetic and equilibrium.” Acta. Sci. Circumst., 27, 544–553.
Chen, C., and Wang, J. L. (2007b). “Characteristics of Zn(II) biosorption by Saccharomyces cerevisiae.” Biomed. Environ. Sci., 20(6), 478–482.
Chen, C., and Wang, J. L. (2007c). “Correlating metal ionic characteristics with biosorption capacity using QSAR model.” Chem., 69(10), 1610–1616.
Chen, C., and Wang, J. L. (2007d). “Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae.” Appl. Microbiol Biotechnol., 74(4), 911–917.
Chen, C., and Wang, J. L. (2007e). “Response of Saccharomyces cerevisiae to lead ion stress.” Appl. Microbiol. Biotechnol., 74(3), 683–687.
Chen, C., and Wang, J. L. (2008a). “Biosorption of cesium by Saccharomyces cerevisiae.”At. Energy Sci. Technol., 42(4), 308–312.
Chen, C., and Wang, J. L. (2008b). “Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS.” Appl. Microbiol. Biotechnol., 79(2), 293–299.
Chen, C., and Wang, J. L. (2008c). “Removal of Pb(II), Ag(I), Cs(I) and Sr(II) from aqueous solution by brewery’s waste biomass.” J. Hazard. Mater., 151(1), 65–70.
Chen, G. Q., Zhang, W. J., Zeng, G. M., Huang, J. H., Wang, L., and Shen, G. L. (2011). “Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr (VI)-contaminated wastewater.” J. Hazard. Mater., 186(2), 2138–2143.
Chen, J. M., and Hao, O. J. (1998). “Microbial chromium (VI) reduction.” Crit. Rev. Environ. Sci. Technol., 28(3), 219–251.
Cho, D. H., and Kim, E. Y. (2003). “Characterization of Pb2+ biosorption from aqueous solution by Rhodoturula glutinis.” Bioproc. Biosyst. Eng., 25(5), 271–277.
Choe, S. I., Gravelat, F. N., Al Abdallah, Q., Lee, M. J., Gibbs, B. F., and Sheppard, D. C. (2012). “Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor.” Appl. Environ. Microbiol., 78(11), 3855–3863.
Chojnacka, K. (2010). “Biosorption and bioaccumulation—The prospects for practical applications.” Environ. Int., 36(3), 299–307.
Clausen, C. A., and Green, F. (2003). “Oxalic acid overproduction by copper-tolerant brown rot basidiomyceteson southern yellow pine treated with copper-based preservatives.” Int. Biodeter Biodegrad., 51(2), 139–144.
Damodaran, D., Shetty, V. K., and Mohan, B. R. (2013). “Effect of chelaters on bioaccumulation of Cd (II), Cu(II), Cr(VI), Pb(II) and Zn(II) in Galerina vittiformis from soil.” Int. Biodeter. Biodegrad., 85, 182–188.
Das, S. K., and Guha, A. K. (2009). “Biosorption of hexavalent chromium by Termitomyces clypeatusbiomass: Kinetics and transmission electron microscopic study.” J. Hazard. Mater., 167(1–3), 685–691.
Datta, M. (2013). “Development of biosensor for heavy metal detection.” Ph.D. dissertation, Thapar Univ., Patiala, India.
Datta, S., Christena, L. R., and Rajaram, Y. R. S. (2013). “Enzyme immobilization: An overview on techniques and support materials.” Biotech, 3(1), 1–9.
Dey, S., Rao, P., Bhattacharyya, B., and Bandyopadhyay, M. (1995). “Sorption of heavy metals by four basidiomycetous fungi.” Bioprocess. Eng., 12(5), 273–277.
Dhankhar, R., and Hooda, A. (2011). “Fungal biosorption—An alternative to meet the challenges of heavy metal pollution in aqueous solutions.” Environ. Technol., 32(5), 467–491.
Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., De Castro, H. F., and Rosa, C. A. (2002). “Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix.” Lett. Appl. Microbiol., 34(1), 46–50.
Dragone, R., Frazzoli, C., Grasso, G., and Rossi, G. (2014). “Sensor with intact or modified yeast cells as rapid device for toxicological test of chemicals.” J. Agr. Chem. Environ., 3(02), 35–40.
Duddridge, J. E., and Wainwright, M. (1980). “Heavy metal accumulation by aquatic fungi and reduction in viability of Gammarus pulex fed Cd(II) contaminated mycelium.” Water Res., 14(11), 1605–1611.
Dursun, A. (2006). “A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger.” Biochem. Eng. J., 28(2), 187–195.
Dursun, A. Y., Uslu, G., Cuci, Y., and Aksu, Z. (2003). “Bioaccumulation of copper(II), lead(II) and chromium(VI) by growing Aspergillus niger.” Proc. Biochem., 38(12), 1647–1651.
Dwivedi, S., Mishra, A., and Saini, D. (2012). “Removal of heavy metals in liquid media through fungi isolated from wastewater.” Int. J. Sci. Res., 1(3), 181–185.
Eccles, H. (1999). “Treatment of metal-contaminated wastes: Why select a biological process?” Trends Biotechnol., 17(12), 462–465.
Falih, A. M. (1997). “Influence of heavy-metals toxicity on the growth of Phanerochaete chrysosporium.” Bioresour. Technol., 60(1), 87–90.
Farooq, U., Kozinski, J. A., Khan, M. A., and Athar, M. (2010). “Biosorption of heavy metal ions using wheat based biosorbents—A review of the recent literature.” Bioresour. Technol., 101(14), 5043–5053.
Fogarty, R. V., and Tobin, J. M. (1996). “Fungal melanins and their interactions with metals.”Enzyme. Microb. Technol., 19(4), 311–317.
Fomina, M., and Gadd, G. M. (2014). “Biosorption: current perspectives on concept, definition and application.” Bioresour. Technol., 160, 3–14.
Fourest, E., Canal, C., and Roux, J.-C. (1994). “Improvement of heavy metal biosorption by mycelial dead biomasses (Rhizopus arrhizus, Mucor miehei and Penicillium chrysogenum): pH control and cationic activation.” FEMS Microbiol. Rev., 14(4), 325–332.
Fu, F., and Wang, Q. (2011). “Removal of heavy metal ions from wastewaters: A review.” J. Environ. Manage., 92(3), 407–418.
Fu, Y., and Viraraghavan, T. (2001). “Fungal decolorization of dye wastewaters: A review.” Bioresour. Technol., 79(3), 251–262.
Gadd, G. M. (1990). “Fungi and yeasts for metal accumulation.” Microbial mineral recovery, H. L. Ehrlich and C. L. Brierley, eds., McGraw-Hill, New York, 249–276.
Gautam, R. K., Mudhoo, A., Lofrano, G., and Chattopadhyaya, M. C. (2014). “Biomass-derived biosorbents for metal ions sequestration: Adsorbent modification and activation methods and adsorbent regeneration.” J. Environ. Chem. Eng., 2(1), 239–259.
Gharieb, M. M., and Gadd, G. M. (1998). “Evidence for the involvement of vacuolar activity in metal(loid) tolerance: Vacuolar-lacking and -defective mutants of Saccharomyces cerevisiae display higher sensitivity to chromate, tellurite and selenite.” Biometals, 11(2), 101–106.
Gohari, M., Hosseini, S. N., Sharifnia, S., and Khatami, M. (2013). “Enhancement of metal ion adsorption capacity of Saccharomyces cerevisiae’s cells by using disruption method.” J. Taiwan Inst. Chem. Eng., 44(4), 637–645.
Göksungur, Y., Üren, S., and Güvenc, U. (2005). “Biosorption of cadmium and lead ion by ethanol treated waste baker’s yeast biomass.” Bioresour. Technol., 96(1), 103–109.
Gomez, R., Schnabel, I., and Garrido, J. (1988). “Pellet growth and citric acid yield of Aspergillus niger 110.” Enzyme Microb. Technol., 10(3), 188–191.
González-Guerrero, M., Benabdellah, K., Ferrol, N., and Azcón-Aguilar, C. (2009). “Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas.” Mycorrhizas—Functional processes and ecological impacts, C. Azcón-Aguilar, J. M. Barea, S. Gianinazzi, and V. Gianinazzi-Pearson, eds.,” Springer, Berlin, 107–122.
Gopal, M., Pakshirajan, K., and Swaminathan, T. (2002). “Heavy metal removal by biosorption using Phanerochaete chrysosporium.” Appl. Biochem. Biotechnol., 102(1–6), 227–237.
Gutierrez, J. C., Amaro, F., and Martin-Gonzalez, A. (2015). “Heavy metal whole-cell biosensors using eukaryotic microorganisms: An updated critical review.” Front. Microbiol., 6, 48.
Hanif, M. A., Bhatti, H. N., and Ali, M. A. (2008). “Heavy metal uptake potential of various types of white rot fungi: A preliminary study and investigation of metal toxicity.” J. Biotechnol., 136(Supplement), S30.
Harms, H., Schlosser, D., and Wick, L. Y. (2011). “Untapped potential: Exploiting fungi in bioremediation of hazardous chemicals.” Nat. Rev. Micro., 9(3), 177–192.
Hu, J., Wu, S., Wu, F., Leung, H. M., Lin, X., and Wong, M. H. (2013). “Arbuscular mycorrhizal fungi enhance both absorption and stabilization of Cd by Alfred stonecrop (Sedum alfredii Hance) and perennial ryegrass (Lolium perenne L.) in a Cd-contaminated acidic soil.” Chem., 93(7), 1359–1365.
Igwe, C., Nwokennaya, E. C., and Abia, A. A. (2005). “The role of pH in heavy metal detoxification by biosorption from aqueous solutions containing chelating agents.” Afr. J. Biotechnol., 4(10), 1113–1116.
Iskandar, N. L., Zainudin, N. A. I. M., and Tan, S. G. (2011). “Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem.” J. Environ. Sci., 23(5), 824–830.
Izquierdo, M., Gabaldon, C., Marzal, P., and Alvarez-Hornos, F. J. (2010). “Modeling of copper fixed bed biosorption from waste water by Posidonia oceanica.” Bioresour. Technol., 101(2), 510–517.
Jarosz-Wilkołazka, A., and Gadd, G. M. (2003). “Oxalate production by wood-rotting fungi growing in toxic metal-amended medium.” Chem., 52(3), 541–547.
Jarosz-Wilkołazka, A., Graz, M., Braha, B., Menge, S., Schlosser, D., and Krauss, G. J. (2006). “Species-specific Cd-stress response in the white rot basidiomycetes Abortiporus biennis and Cerrena unicolor.” Biometal., 19(1), 39–49.
Järup, L. (2003). “Hazards of heavy metal contamination.” Br. Med. Bull., 68(1), 167–182.
Javaid, A., and Bajwa, R. (2008). “Biosorption of electroplating heavy metals by some basidiomycetes.” Mycopath., 6(1–2), 1–6.
Kaçar, Y., Arpa, Ç., Tan, S., Denizli, A., Genç, Ö., and Arıca, M. Y. (2002). “Biosorption of Hg(II) and Cd(II) from aqueous solutions: Comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium.” Process Biochem., 37(6), 601–610.
Kapoor, A., and Viraraghavan, T. (1997). “Heavy metal biosorption sites in Aspergillus niger.” Bioresour. Technol., 61(3), 221–227.
Kapoor, A., Viraraghavan, T., and Cullimore, D. R. (1999). “Removal of heavy metals using the fungus Aspergillus niger.” Bioresour. Technol., 70(1), 95–104.
Kavita, K., and Keharia, H. (2012). “Biosorption potential of trichoderma gamsii biomass for removal of Cr(VI) from electroplating industrial effluent.” Int. J. Chem. Eng., 2012, 1–7.
Khambhaty, Y., Mody, K., Basha, S., and Jha, B. (2009). “Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger.” Chem. Eng. J., 145(3), 489–495.
Khezami, L., and Capart, R. (2005). “Removal of chromium (VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies.” J. Hazard. Mater., 123(1), 223–231.
Kiran, I., Akar, T., and Tunali, S. (2005). “Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa.” Process Biochem., 40(11), 3550–3558.
Kocaoba, S., and Arısoy, M. (2011). “The use of a white rot fungi (Pleurotus ostreatus) immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination.” Bioresour. Technol., 102(17), 8035–8039.
Kratochvil, D., Pimentel, P., and Volesky, B. (1998). “Removal of trivalent chromium by seaweed biosorbent.” Environ. Sci. Technol., 32(18), 2693–2698.
Kumar, A., Agarwal, M., and Singh, A. K. (2008). “Schiff bases of 1’–hydroxy–2’–acetonaphthone containing chalcogen functionalities and their complexes with (p–cymene) Ru(II), Pd(II), Pt(II) and Hg(II): synthesis, structures and applications in C–C coupling reactions.” J. Organomet. Chem., 693(23), 3533–3545.
Kumar, A., Agarwal, M., and Singh, A. K. (2009). “Palladium(II), platinum(II), ruthenium(II) and mercury(II) complexes of potentially tridentate Schiff base ligands of (E, N, O) type (E = S, Se, Te): Synthesis, crystal structures and applications in Heck and Suzuki C-C coupling reactions.” Inorg. Chim. Acta, 362(9), 3208–3218.
Kumar, A., Rao, G. K., Kumar, S., and Singh, A. K. (2013). “Organosulphur and related ligands in Suzuki-Miyaura C-C coupling,” Dalton Trans., 42(15), 5200–5223.
Kumar, A., Rao, G. K., Saleem, F., Kumar, R., and Singh, A. K. (2014). “Efficient catalysis of Suzuki-Miyaura C-C coupling reactions with palladium(II) complexes of partially hydrolysed bisimine ligands: A process important in environment context.” J. Hazard. Mater., 269, 9–17.
Kumar, A., Rao, G. K., and Singh, A. K. (2012). “Organochalcogen ligands and their palladium(II) complexes: Synthesis to catalytic activity for Heck coupling.” RSC Adv., 2(33), 12552–12574.
Kumar, A., and Singh, A. K. (2007). “First ditelluride containing Schiff base functionality: Synthesis and instantaneous ligand exchange with other ditelluride investigated by 125Te NMR.” Inorg. Chem. Commun., 10(11), 1315–1317.
Kurniati, E., et al. (2014). “Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil.” J. Environ. Sci., 26(6), 1223–1231.
Kushwah, B. S., Bhadauria, S., Shukla, S., and Sikarwar, A. S. (2014). “Extraction and purification of laccase enzyme from agaricus bisporous for development of low cost nanopolyaniline based biosensor.” Extract., 3(3), 178–183.
Lester, J. N., and Birkettn J. W., eds. (1999). Microbiology and chemistry for environmental scientists and engineers, Spon Press, London.
Li, Q., et al. (2004). “Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium.” Sep. Purif. Technol., 34(1), 135–142.
Lo, W., Chua, H., Lam, K. H., and Bi, S. P. (1999). “A comparative investigation on the biosorption of lead by filamentous fungal biomass.” Chem., 39(15), 2723–2736.
Lo, Y.-C., Cheng, C.-L., Han, Y.-L., Chen, B.-Y., and Chang, J.-S. (2014). “Recovery of high-value metals from geothermal sites by biosorption and bioaccumulation.” Bioresour. Technol., 160, 182–190.
Luef, E., Prey, T., and Kubicek, C. P. (1991). “Biosorption of zinc by fungal mycelial wastes.”Appl. Microbiol. Biotechnol., 34(5), 688–692.
Madigan, M. T., Martinko, J. M., and Parker, J. B. (2000). Biology of microorganisms, 9th Ed., Pearson Prentice Hall, Upper Saddle River, NJ.
Mahapatra, D. M., Chanakya, H. N., and Ramachandra, T. V. (2014). “Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater.” Bioresour. Technol., 168, 142–150.
Malik, A. (2004). “Metal bioremediation through growing cells.” Environ. Int., 30(2), 261–278.
Marandi, R., Ardejani, F. D., and Afshar, H. A. (2010). “Biosorption of lead (II) and zinc (II) ions by pre-treated biomass of Phanerochaete chrysosporium.” Int. J. Min. Environ. Issues, 1(1), 9–16.
Martínez-Juárez, V. M., Cárdenas-González, J. F., Torre-Bouscoulet, M. E., and Acosta-Rodríguez, I. (2012). “Biosorption of mercury (II) from aqueous solutions onto fungal biomass.” Bioinorganic Chem. Appl., 2012, 1–5.
Mashitah, M. D., Yus Azila, Y., and Bhatia, S. (2008). “Biosorption of cadmium (II) ions by immobilized cells of Pycnoporus sanguineus from aqueous solution.” Bioresour. Technol., 99(11), 4742–4748.
Melgar, M. J., Alonso, J., and García, M. A. (2007). “Removal of toxic metals from aqueous solutions by fungal biomass of Agaricus macrosporus.” Sci. Total Environ., 385(1), 12–19.
Mishra, A., and Malik, A. (2014). “Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream.” Bioresour. Technol., 171, 217–226.
Modak, J. M., and Natarajan, K. A. (1995). “Biosorption of metals using nonliving biomass: A review.” Mineral. Metallurg. Proc., 12(4), 189–196.
Moore, J. W., and Ramamoorthy, S. (1984). Heavy metals in natural waters, applied monitoring and impact assessment, Springer, New York.
Morley, G. F., and Gadd, G. M. (1995). “Sorption of toxic metals by fungi and clay minerals.”Mycolog. Res., 99(12), 1429–1438.
Mullen, M. D., Wolf, D. C., Beveridge, T. J., and Bailey, G. W. (1992). “Sorption of heavy metals by the soil fungi Aspergillus niger and Mucor rouxii.” Soil Biol. Biochem., 24(2), 129–135.
Ngah, W., and Hanafiah, M. (2008). “Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review.” Bioresour. Technol., 99(10), 3935–3948.
Nieboer, E., and Richardson, D. H. S. (1980). “The replacement of the nondescript term ‘heavy metals’ by a biologically and chemically significant classification of metal ions.” Environ. Poll. Ser. B Chem. Phys., 1(1), 3–26.
Özer, A., Özer, D., and İbrahim Ekİz, H. (2004). “The equilibrium and kinetic modeling of the biosorption of copper(II) ions on Cladophora crispate.” Adsorption, 10(4), 317–326.
Pearson, R. G. (1963). “Hard and soft acids and bases.” J. Am. Chem. Soc., 85(22), 3533–3539.
Pócsi, I., Prade, R. A., and Penninckx, M. J. (2004). “GSH, altruistic metabolite in fungi.” Adv. Microb. Physiol., 49, 1–76.
Pradhan, A., et al. (2014). “Physiological responses to nano CuO in fungi from non-polluted and metal-polluted streams.” Sci. Total Environ., 466–467, 556–563.
Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., and Ramakrishna, S. V. (1999). “Biosorption of chromium VI by free and immobilized Rhizopus arrhizus.” Environ. Pollut., 104(3), 421–427.
Prescott, L. M., Harley, J. P., and Klein, D. A. (2002). 5th Ed., Microbiology McGraw-Hill Science/Engineering/Math, New York.
Prigione, V., Zerlottin, M., Refosco, D., Tigini, V., Anastasi, A., and Varese, G. C. (2009). “Chromium removal from a real tanning effluent by autochthonous and allochthonous fungi.” Bioresour. Technol., 100(11), 2770–2776.
Puranik, P. R., and Paknikar, K. M. (1997). “Biosorption of lead and zinc from solutions using Streptoverticillium cinnamoneum waste biomass.” J. Biotechnol., 55(2), 113–124.
Raja, H. A., et al. (2013). “Freshwater ascomycetes: Minutisphaera (Dothideomycetes) revisited, including one new species from Japan.” Mycologia, 105(4), 959–976.
Ramsay, L. M., and Gadd, G. M. (1997). “Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification.” FEMS Microbiol Lett., 152(2), 293–298.
Rao, G. K., Kumar, A., Ahmed, J., and Singh, A. K. (2010). “Palladacycle containing nitrogen and selenium: Highly active pre-catalyst for Suzuki-Miyaura coupling reaction and unprecedented conversion into nano sized Pd17Se15.” Chem. Commun., 46(32), 5954–5956.
Rao, G. K., Kumar, A., Bhunia, M., Singh, M. P., and Singh, A. K. (2014). “Complex of 2-(methylthio) aniline with palladium(II) as an efficient catalyst for Suzuki-Miyaura C-C coupling in ecofriendly water.” J. Hazard. Mater., 269, 18–23.
Rao, G. K., Kumar, A., Kumar, B., and Singh, A. K. (2012). “Didocosyl selenide stabilized recyclable Pd(0) nanoparticles and coordinated palladium(II) as efficient catalysts for Suzuki-Miyaura coupling.” Dalton Trans., 41(15), 4306–4309.
Rao, G. K., Kumar, A., Kumar, S., Dupare, U. B., and Singh, A. K. (2013). “Palladacycles of thioethers catalyzing Suzuki-Miyaura C-C coupling: Generation and catalytic activity of nanoparticles.” Organometal., 32(8), 2452–2458.
Reddy, B., Mirghaffari, N., and Gaballah, I. (1997). “Removal and recycling of copper from aqueous solutions using treated Indian barks.” Resour. Conserv. Recycl., 21(4), 227–245.
Remacle, J. (1990). “The cell wall and metal binding.” Biosorption of heavy metals, B. Volesky, ed., CRC, Boca Raton, FL, 83–92.
Saleem, F., Rao, G. K., Kumar, A., Kumar, S., Singh, M. P., and Singh, A. K. (2014). “Palladium(II) complexes bearing the 1, 2, 3-triazole based organosulfur/-selenium ligand: Synthesis, structure and applications in Heck and Suzuki-Miyaura coupling as a catalyst via palladium nanoparticles.” RSC Adv., 4(99), 56102–56111.
Saleem, F., Rao, G. K., Kumar, A., Mukherjee, G., and Singh, A. K. (2013). “Half sandwich ruthenium(II) complexes of click generated 1, 2, 3-triazole based organosulfur/-selenium ligands: Structural and donor site dependent catalytic oxidation and transfer hydrogenation aspects.” Organomet., 32(13), 3595–3603.
Sarı, A., and Tuzen, M. (2009). “Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amanita rubescens) biomass.” J. Hazard. Mater., 164(2), 1004–1011.
Say, R., Denizli, A., and Yakup Arıca, M. (2001). “Biosorption of cadmium (II), lead(II) and copper(II) with the filamentous fungus Phanerochaete chrysosporium.” Bioresour. Technol., 76(1), 67–70.
Say, R., Yilmaz, N., and Denizli, A. (2003). “Removal of heavy metalions using the fungus Penicillium canescens.” Adsorpt. Sci. Technol., 21(7), 643–650.
Schlosser, D., and Höfer, C. (2002). “Laccase-catalyzed oxidation of Mn(II) in the presence of natural Mn(III) chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase.” Appl. Environ. Microbiol., 68(7), 3514–3521.
Sepehr, M. N., Zarrabi, M., and Amrane, A. (2012). “Removal of CR (III) from model solutions by isolated Aspergillus niger and Aspergillus oryzae living microorganisms, equilibrium and kinetic studies.” J. Taiwan Inst. Chem. Engineers, 43(3), 420–427.
Sharma, S., and Adholeya, A. (2011). “Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi.” Int. Biodet. Biodegrad., 65(2), 309–317.
Simonesco, C. M., and Ferdes, M. (2012). “Fungal biomass for Cu(II) uptake from aqous system.” Pol. J. Environ. Stud., 21(6), 1831–1839.
Spinti, M., Zhuang, H., and Trujillo, E. M. (1995). “Evaluation of immobilized biomass beads for removing heavy metals from wastewaters.” Water Environ. Res., 67(6), 943–952.
Sprocati, A. R., Alisi, C., Segre, L., Tasso, F., Galletti, M., and Cremisini, C. (2006). “Investigating heavy metal resistance, bioaccumulation and metabolic profile of a metallophile microbial consortium native to an abandoned mine.” Sci. Total Environ., 366(2), 649–658.
Srinath, T., Verma, T., Ramteke, P. W., and Garg, S. K. (2002). “Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria.” Chem., 48(4), 427–435.
Srivastava, N., and Majumder, C. (2008). “Novel biofiltration methods for the treatment of heavy metals from industrial wastewater.” J. Hazard. Mater., 151(1), 1–8.
Srivastava, S., and Thakur, I. S. (2006). “Isolation and process parameter optimization of Aspergillus sp. for removal of chromium from tannery effluent.” Bioresour. Technol., 97(10), 1167–1173.
Su, L., Jia, W., Hou, C., and Lei, Y. (2011). “Microbial biosensors: A review.” Biosens. Bioelectron., 26(5), 1788–1799.
Talaro, K. P., and Talaro, A. (2002). Foundations in microbiology, 4th Ed., McGraw-Hill College, Blacklick, OH.
Tamás, M. J., Labarre, J., Toledano, M. B., and Wysocki, R. (2005). “Mechanisms of toxic metal tolerance in yeast.” Molecular biology of metal homeostasis and detoxification: From microbes to man, M. J. Tamás and E. Martinoia, eds., Springer, Berlin, 395–454.
Tasten, B. E., Ertuğul, S., and Dönmez, G. (2010). “Effective bioremoval of reactive dye and heavy metals by Aspergillus versicolor.” Bioresour. Technol., 101(3), 870–876.
Tobin, J. M., Cooper, D. G. and Neufeld, R. J. (1984). “Uptake of metal ions by rhizopus arrhizus biomass.” Appl. Environ. Microbiol., 47(4), 821–824.
Tomko, J., Baèkor, M., and Štofko, M. (2006). “Biosorption of heavy metals by dry fungi biomass.” Acta Metallurg. Slovac., 12, 447–451.
Tonk, S., Măicăneanu, A., Indolean, C., Burca, S., and Majdik, C. (2011). “Application of immobilized waste brewery yeast cells for Cd2+ removal: Equilibrium and kinetics.” J. Serb. Chem. Soc., 76(3), 363–373.
Tsekova, K., Christova, D., and Ianis, M. (2006). “Heavy metal biosorption sites in Penicillium cyclopium.” J. Appl. Sci. Environ. Manage., 10(3), 117–121.
Tsekova, K., Todorova, D., and Ganeva, S. (2010). “Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger.” Int. Biodeter. Biodegr., 64(6), 447–451.
Tunali, S., et al. (2006). “Equilibrium and kinetics of biosorption of lead (II) from aqueous solutions by Cephalosporium aphidicola.”Sep. Purif. Technol., 47(3), 105–112.
Tunali, S., Kiran, I., and Akar, T. (2005). “Chromium(VI) biosorption characteristics of Neurospora crassa fungal biomass.” Min. Engine., 18(7), 681–689.
Velmurugan, P., et al. (2010). “Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals.” J. Hazard. Mater., 182(1), 317–324.
Verma, A., Singh, S. A., Bishnoi, N. R., and Gupta, A. (2013). “Biosorption of Cu(II) using free and immobilized biomass of Penicillium citrinum.” Ecol. Eng., 61(A), 486–490.
Vijver, M. G., Van Gestel, C. A. M., Lanno, R. P., Van Straalen, N. M., and Peijnenburg, W. (2004). “Internal metal sequestration and its ecotoxicological relevance: A review.” Environ. Sci. Technol., 38(18), 4705–4712.
Volesky, B. (1994). “Advances in biosorption of metals: Selection of biomass types.” FEMS Microbiol. Rev., 14(4), 291–302.
Volesky, B. (2001). “Detoxification of metal-bearing effluents: Biosorption for the next century.” Hydrometal., 59(2–3), 203–216.
Volesky, B. (2007). “Biosorption and me.” Water Res., 41(18), 4017–4029.
Wang, H., and Ren, Z. J. (2014). “Bioelectrochemical metal recovery from wastewater: A review.” Water Res., 66, 219–232.
Wang, J., and Chen, C. (2009). “Biosorbents for heavy metals removal and their future.” Biotechnol. Adv., 27(2), 195–226.
Wang, J. L. (2002). “Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae.” Process Biochem., 37(8), 847–850.
Wang, J. L., and Chen, C. (2006). “Biosorption of heavy metals by Saccharomyces cerevisiae: A review.” Biotech. Adv., 24(5), 427–451.
White, C., Wilkinson, S. C., and Gadd, G. M. (1995). “The role of microorganisms in biosorption of toxic metals and radionuclides.” Inter. Biodeter. Biodegrad., 35(1), 17–40.
Wysocki, R., and Tamás, M. J. (2010). “How Saccharomyces cerevisiae copes with toxic metals and metalloids.” FEMS Microbiol. Rev., 34(6), 925–951.
Xu, P., et al. (2012). “Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis.” Chem. Eng. J., 203, 423–431.
Xu, P., et al. (2013). “Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb(II) removal.” Colloids Surf. A, 419, 147–155.
Yahaya, Y. A., and Don, M. E. (2014). “Pycnoporus sanguineus as potential biosorbent for heavy metal removal from aqueous solution: A review.” J. Phys. Sci., 25(1), 1–32.
Yakup Arıca, M., Bayramoǧlu, G., Yılmaz, M., Bektaş, S., and Genç, Ö. (2004). “Biosorption of Hg(II), Cd(II), and Zn(II) by Ca-alginate and immobilized wood-rotting fungus Funalia trogii.” J. Hazard. Mater., 109(1), 191–199.
Yan, G., and Viraraghavan, T. (2003). “Heavy-metal removal from aqueous solution by fungus Mucor rouxii.” Water Res., 37(18), 4486–4496.
Yang, Y., et al. (2004). “Sorption of 241 Am by Aspergillus niger spore and hyphae.” J. Radioanal. Nucl. Chem., 260(3), 659–663.
Zafar, S., Aqil, F., and Ahmad, I. (2007). “Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil.” Bioresour. Technol., 98(13), 2557–2561.
Zeng, X.-X., Chai, L.-Y., Tang, J.-X., Liu, X.-D., and Yang, Z.-H. (2013). “Taxonomy characterization and cadmium biosorption of fungus strain.” Trans. Nonf. Metals Soc. China, 23(9), 2759–2765.
Zucconi, L., Ripa, C., Alianiello, F., Benedetti, A., and Onofri, S. (2003). “Lead resistance, sorption and accumulation in a Paecilomyces lilacinus strain.” Biol. Fertil. Soils, 37(1), 17–22.
Zulfadhly, Z., Mashitah, M. D., and Bhatia, S. (2001). “Heavy metals removal in fixed-bed column by the macro fungus Pycnoporus sanguineus.” Environ. Pollut., 112(3), 463–470.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 142Issue 9September 2016

History

Received: Dec 28, 2014
Accepted: May 4, 2015
Published online: Aug 21, 2015
Discussion open until: Jan 21, 2016
Published in print: Sep 1, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Manisha Shakya [email protected]
M.Sc. Student, Dept. of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, Netherlands. E-mail: [email protected]
Pratibha Sharma [email protected]
M.Sc. Student, Dept. of Chemistry, Amity School of Applied Sciences, Amity Univ. Haryana, Gurgaon, Manesar, India. E-mail: [email protected]
Syeda Shaima Meryem [email protected]
Ph.D. Student, Dept. of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan. E-mail: [email protected]
Qaisar Mahmood [email protected]
Associate Professor, Dept. of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan. E-mail: [email protected]
Assistant Professor, Dept. of Chemistry, Amity School of Applied Sciences, Amity Univ. Haryana, Gurgaon, Manesar, India (corresponding author). E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share