Technical Papers
Jun 1, 2021

Identifying Modal Parameters of a Multispan Bridge Based on High-Rate GNSS–RTK Measurement Using the CEEMD–RDT Approach

Publication: Journal of Bridge Engineering
Volume 26, Issue 8

Abstract

This article aims to develop a hybrid approach of complementary ensemble empirical mode decomposition (CEEMD) and random decrement technique (RDT) for identifying the modal parameters (i.e., natural frequency and damping ratio) of structures using high-rate (50 Hz) global navigation satellite system and real-time kinematic (GNSS–RTK) measurement data. The framework of the proposed approach included two stages: (1) CEEMD was first used to derive a set of single-component signals, called intrinsic mode functions (IMFs); and (2) RDT was employed to extract the free decaying signals from the IMFs, including the main frequency information of structures. Subsequently, a three-story shear building model and an actual multispan bridge were used to validate the proposed approach. Additionally, a finite-element (FE) model of the bridge was built for comparing with the experimental case. Finally, the results indicated that the GNSS–RTK technique is capable of monitoring the dynamic displacements of multispan bridges with reliable accuracy. The proposed method performed better than the classical natural excitation technique—eigensystem realization algorithm (NExT–ERA) and stochastic subspace identification (SSI) algorithm—and was viable in practical applications.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors would like to gratefully acknowledge the support from the National Natural Science Foundation of China (U1709216), the National Key R&D Program of China (2018YFE0125400), and the Center for Balance Architecture of Zhejiang University, which made the research work possible.

References

Andreas, B. 2017. “Reliable GPS + BDS RTK positioning with partial ambiguity resolution.” GPS Solut. 21 (3): 1083–1092. https://doi.org/10.1007/s10291-016-0594-1.
Brownjohn, J. M. W., F. Magalhaes, and A. Cunha. 2010. “Ambient vibration re-testing and operational modal analysis of the Humber Bridge.” Eng. Struct. 32 (8): 2003–2018. https://doi.org/10.1016/j.engstruct.2010.02.034.
Cunha, A., E. Caetano, and R. Delgado. 2001. “Dynamic tests on large cable-stayed bridge.” J. Bridge Eng. 6 (1): 54–62. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(54).
De-Oliveira, J. V. M., A. P. C. Larocca, J. O. De-Araújo-Neto, A. L. Cunha, M. C. Dos-Santos, and R. E. Schaal. 2019. “Vibration monitoring of a small concrete bridge using wavelet transforms on GPS data.” J. Civ. Struct. Health Monit. 9 (3): 397–409. https://doi.org/10.1007/s13349-019-00341-y.
Doong, S. H. 2009. “A closed-form formula for GPS GDOP computation.” GPS Solut. 13 (3): 183–190. https://doi.org/10.1007/s10291-008-0111-2.
dos Reis, J., C. Oliveira-Costa, and J. Sá-da-Costa. 2018. “Strain gauges debonding fault detection for structural health monitoring.” Struct. Control Health Monit. 25 (12): e2264. https://doi.org/10.1002/stc.2264.
Górski, P. 2015. “Investigation of dynamic characteristics of tall industrial chimney based on GPS measurements using random decrement method.” Eng. Struct. 83: 30–49. https://doi.org/10.1016/j.engstruct.2014.11.006.
Hartnagel, B., J. O’Connor, W. Yen, P. Clogston, and M. Celebi. 2006. “Planning and implementation of a seismic monitoring system for the Bill Emerson Memorial Bridge in Cape Girardeau, MO.” In Structures Congress 2006: Structural Engineering and Public Safety, edited by B. Cross and J. Finke, 1–8. Reston, VA: ASCE.
He, X., B. Moaveni, J. P. Conte, A. Elgamal, and S. F. Masri. 2009. “System identification of Alfred Zampa Memorial Bridge using dynamic field test data.” J. Struct. Eng. 135 (1): 54–66. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:1(54).
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. 1998. “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.” Proc. R. Soc. London, Ser. A 454: 903–995. https://doi.org/10.1098/rspa.1998.0193.
Huang, Q. Z., X. J. Zhu, Z. Y. Gao, S. W. Gao, and E. Y. Jiang. 2013. “Analysis and implementation of improved multi-input multi-output filtered-X least mean square algorithm for active structural vibration control.” Struct. Control Health Monit. 20 (11): 1351–1365. https://doi.org/10.1002/stc.1541.
Ibrahim, S. R., and R. S. Pappa. 1982. “Large modal survey testing using the Ibrahim time domain identification technique.” J. Spacecraft Rockets 19 (5): 459–465. https://doi.org/10.2514/3.62285.
James, G. H., T. G. Carne, and J. P. Lauffer. 1995. “The natural excitation technique (NExT) for modal parameter extraction from operating structures.” Modal Anal. 10 (4): 260–277.
Juang, J. N., and R. S. Pappa. 1985. “An eigensystem realization algorithm for modal parameter identification and model reduction.” J. Guidance Control Dyn. 8 (5): 620–627. https://doi.org/10.2514/3.20031.
Juang, J. N., and R. S. Pappa. 1986. “Effects of noise on modal parameters identified by the eigensystem realization algorithm.” J. Guidance Control Dyn. 9 (3): 294–303. https://doi.org/10.2514/3.20106.
Kaloop, M. R., M. Hussan, and D. Kim. 2019. “Time-series analysis of GPS measurements for long-span bridge movements using wavelet and model prediction techniques.” Adv. Space Res. 63 (11): 3505–3521. https://doi.org/10.1016/j.asr.2019.02.027.
Kaloop, M. R., and H. Li. 2014. “Multi input-single output models identification of tower bridge movements using GPS monitoring system.” Measurement 47: 531–539. https://doi.org/10.1016/j.measurement.2013.09.046.
Ku, C. J., J. E. Cermak, and L. S. Chou. 2007. “Random decrement based method for modal parameter identification of a dynamic system using acceleration responses.” J. Wind Eng. Ind. Aerodyn. 95 (6): 389–410. https://doi.org/10.1016/j.jweia.2006.08.004.
Kurt, M., M. Eriten, D. M. McFarland, L. A. Bergman, and A. F. Vakakis. 2014. “Strongly nonlinear beats in the dynamics of an elastic system with a strong local stiffness nonlinearity: Analysis and identification.” J. Sound Vib. 333 (7): 2054–2072. https://doi.org/10.1016/j.jsv.2013.11.021.
Li, H. N., T. H. Yi, X. D. Yi, and G. X. Wang. 2007. “Measurement and analysis of wind-induced response of tall building based on GPS technology.” Adv. Struct. Eng. 10 (1): 83–93. https://doi.org/10.1260/136943307780150869.
Li, J., C. Liu, Z. F. Zeng, and L. N. Chen. 2015a. “GPR signal denoising and target extraction with the CEEMD method.” IEEE Geosci. Remote Sens. Lett. 12 (8): 1615–1619. https://doi.org/10.1109/LGRS.2015.2415736.
Li, X., X. Zhang, X. Ren, M. Fritsche, J. Wickert, and H. Schuh. 2015b. “Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou.” Sci. Rep. 5 (1): 8328–8341. https://doi.org/10.1038/srep08328.
Moore, K. J., M. Kurt, M. Eriten, D. M. McFarland, L. A. Bergman, and A. F. Vakakis. 2018. “Wavelet-bounded empirical mode decomposition for measured time series analysis.” Mech. Syst. Sig. Process. 99: 14–29. https://doi.org/10.1016/j.ymssp.2017.06.005.
Moreu, F., H. Jo, J. Li, R. E. Kim, S. Cho, A. Kimmle, S. Scola, H. Le, B. F. Spencer, and J. M. LaFave. 2015. “Dynamic assessment of timber railroad bridges using displacements.” J. Bridge Eng. 20 (10): 04014114. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000726.
Moreu, F., R. E. Kim, and B. F. Spencer. 2017. “Railroad bridge monitoring using wireless smart sensors.” Struct. Control Health Monit. 24 (2): e1863. https://doi.org/10.1002/stc.1863.
Morsy, R., H. Marzouk, X. Gu, and A. Elshafey. 2016. “Use of the random decrement technique for non-destructive detection of damage to beams.” Mater. Struct. 49 (11): 4719–4727. https://doi.org/10.1617/s11527-016-0819-3.
Moschas, F., and S. Stiros. 2011. “Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer.” Eng. Struct. 33 (1): 10–17. https://doi.org/10.1016/j.engstruct.2010.09.013.
Moschas, F., and S. Stiros. 2014. “Dynamic multipath in structural bridge monitoring: An experimental approach.” GPS Solut. 18 (2): 209–218. https://doi.org/10.1007/s10291-013-0322-z.
Mukhopadhyay, S., H. Luş, and R. Betti. 2014. “Modal parameter based structural identification using input-output data: Minimal instrumentation and global identifiability issues.” Mech. Syst. Sig. Process. 45 (2): 283–301. https://doi.org/10.1016/j.ymssp.2013.11.005.
Nagarajaiah, S., and K. Erazo. 2016. “Structural monitoring and identification of civil infrastructure in the United States.” Struct. Monit. Maint. 3 (1): 51–69. https://doi.org/10.12989/smm.2016.3.1.051.
Niu, Y. B., Y. Ye, W. J. Zhao, and J. P. Shu. 2021. “Dynamic monitoring and data analysis of a long-span arch bridge based on high-rate GNSS-RTK measurement combining CF-CEEMD method.” J. Civ. Struct. Health Monit. 11 (1): 35–48. https://doi.org/10.1007/s13349-020-00436-x.
Niu, Y. B., and C. Xiong. 2018. “Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and a wavelet packet technique.” Meas. Sci. Technol. 29 (8): 085103. https://doi.org/10.1088/1361-6501/aacb47.
Pi, Y. L., and N. C. Mickleborough. 1989. “Modal identification of vibrating structures using ARMA model.” J. Eng. Mech. 115 (10): 2232–2250. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:10(2232).
Priori, C., M. De-Angelis, and R. Betti. 2018. “On the selection of user-defined parameters in data-driven stochastic subspace identification.” Mech. Syst. Sig. Process. 100: 501–523. https://doi.org/10.1016/j.ymssp.2017.07.045.
Ren, W. X., and Z. H. Zong. 2004. “Output-only modal parameter identification of civil engineering structures.” Struct. Eng. Mech. 17 (3–4): 429–444. https://doi.org/10.12989/sem.2004.17.3_4.429.
Shu, J. P., N. Bagge, and J. Nilimaa. 2020. “Field destructive testing of a reinforced concrete bridge deck slab.” J. Bridge Eng. 25 (9): 04020067. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001604.
Shu, J. P., N. Bagge, M. Plos, M. Johansson, Y. G. Yang, and K. Zandi. 2018. “Shear capacity of a RC bridge deck slab: Comparison between multilevel assessment and field test.” J. Struct. Eng. 144 (7): 04018081. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002076.
Shu, J. P., M. Plos, K. Zandi, and A. Ashraf. 2019. “Distribution of shear force: A multi-level assessment of a cantilever RC slab.” Eng. Struct. 190: 345–359. https://doi.org/10.1016/j.engstruct.2019.04.045.
Siringoringo, D. M., and Y. Fujino. 2008. “System identification of suspension bridge from ambient vibration response.” Eng. Struct. 30 (2): 462–477. https://doi.org/10.1016/j.engstruct.2007.03.004.
Smyth, A. W., J. S. Pei, and S. F. Masri. 2003. “System identification of the Vincent Thomas suspension bridge using earthquake records.” Earthquake Eng. Struct. Dyn. 32 (3): 339–367. https://doi.org/10.1002/eqe.226.
Tharach, J., and B. Virote. 2011. “Determination of flutter derivatives of bridge decks by covariance-driven stochastic subspace identification.” Int. J. Struct. Stab. Dyn. 11 (1): 73–99. https://doi.org/10.1142/S0219455411003999.
Vazquez, B. G. E., J. R. Gaxiola-Camacho, R. Bennett, G. M. Guzman-Acevedo, and I. E. Gaxiola-Camacho. 2017. “Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology.” Measurment 110: 146–153. https://doi.org/10.1016/j.measurement.2017.06.026.
Vrochidou, E., P. Alvanitopoulos, I. Andreadis, and A. Elenas. 2018. “Artificial accelerograms composition based on the CEEMD.” Trans. Inst. Meas. Control 40 (1): 239–250. https://doi.org/10.1177/0142331216654533.
Wang, D. H., X. L. Meng, C. F. Gao, S. G. Pan, and Q. S. Chen. 2017. “Multipath extraction and mitigation for bridge deformation monitoring using a single-difference model.” Adv. Space Res. 60 (12): 2882–2895. https://doi.org/10.1016/j.asr.2017.01.007.
Wang, J. J., X. F. He, and V. G. Ferreira. 2015. “Ocean wave separation using CEEMD-wavelet in GPS wave measurement.” Sensors 15 (8): 19416–19428. https://doi.org/10.3390/s150819416.
Wu, W. H., C. C. Chen, and J. A. Liau. 2012. “A multiple random decrement method for modal parameter identification of stay cables based on ambient vibration signals.” Adv. Struct. Eng. 15 (6): 969–982. https://doi.org/10.1260/1369-4332.15.6.969.
Wu, Z., and N. E. Huang. 2009. “Ensemble empirical mode decomposition: A noise-assisted data analysis method.” Adv. Adapt. Data Anal. 1 (1): 1–41. https://doi.org/10.1142/S1793536909000047.
Xi, R., H. Chen, X. Meng, W. Jiang, and Q. Chen. 2018. “Reliable dynamic monitoring of bridges with integrated GPS and BeiDou.” J. Surv. Eng. 144 (4): 04018008. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000263.
Xu, Y. L., J. M. Ko, and W. S. Zhang. 1997. “Vibration studies of tsing Ma suspension bridge.” J. Bridge Eng. 2 (4): 149–156. https://doi.org/10.1061/(ASCE)1084-0702(1997)2:4(149).
Yeh, J. R., J. S. Shieh, and N. E. Huang. 2010. “Complementary ensemble empirical mode decomposition: A novel noise enhanced data analysis method.” Adv. Adapt. Data Anal. 2 (2): 135–156. https://doi.org/10.1142/S1793536910000422.
Yi, T. H., H. N. Li, and M. Gu. 2010. “Full-scale measurements of dynamic response of suspension bridge subjected to environmental loads using GPS technology.” Sci. China Technol. Sci. 53 (2): 469–479. https://doi.org/10.1007/s11431-010-0051-2.
Yi, T. H., H. N. Li, and M. Gu. 2013a. “Recent research and applications of GPS-based monitoring technology for high-rise structures.” Struct. Control Health Monit. 20 (5): 649–670. https://doi.org/10.1002/stc.1501.
Yi, T. H., H. N. Li, and M. Gu. 2013b. “Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer.” Smart Struct. Syst. 11 (4): 331–348. https://doi.org/10.12989/sss.2013.11.4.331.
Yi, T. H., H. N. Li, G. B. Song, and Q. Guo. 2016. “Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart.” Int. J. Struct. Stab. Dyn. 16 (4): 1640024. https://doi.org/10.1142/S0219455416400241.
Yu, D. J., and W. X. Ren. 2005. “EMD-based stochastic subspace identification of structures from operational vibration measurements.” Eng. Struct. 27 (12): 1741–1751. https://doi.org/10.1016/j.engstruct.2005.04.016.
Yu, J., X. Meng, B. Yan, B. Xu, Q. Fan, and Y. Xie. 2020. “Global navigation satellite system-based positioning technology for structural health monitoring: A review.” Struct. Control Health Monit. 27 (1): e2467. https://doi.org/10.1002/stc.2467.
Zhang, B., X. Ding, C. Werner, K. Tan, B. Zhang, M. Jiang, J. Zhao, and Y. Xu. 2018. “Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer.” ISPRS J. Photogramm. Remote Sens. 138: 252–264. https://doi.org/10.1016/j.isprsjprs.2018.02.020.
Zhang, C., Y. Ge, Z. Hu, K. Zhou, G. Ren, and X. Wang. 2019. “Research on deflection monitoring for long span cantilever bridge based on optical fiber sensing.” Opt. Fiber Technol. 53: 102035. https://doi.org/10.1016/j.yofte.2019.102035.

Information & Authors

Information

Published In

Go to Journal of Bridge Engineering
Journal of Bridge Engineering
Volume 26Issue 8August 2021

History

Received: Jul 25, 2020
Accepted: Apr 9, 2021
Published online: Jun 1, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 1, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China. ORCID: https://orcid.org/0000-0002-6323-3704. Email: [email protected]
Engineer, Architectural Design and Research Institute of Zhejiang Univ. Co. Ltd, Center for Balance Architecture, Zhejiang Univ., Hangzhou 310028, China. Email: [email protected]
Weijian Zhao [email protected]
Professor, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Yuanfeng Duan [email protected]
Professor, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China. Email: [email protected]
Professor, College of Civil Engineering and Architecture, Zhejiang Univ., Hangzhou 310058, China; Assistant Professor, Institute of Technology and Innovation, Univ. of Southern Denmark, Odense M-DK-5230, Denmark (corresponding author). ORCID: https://orcid.org/0000-0001-8443-5033. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Dynamic displacement estimation and modal analysis of long-span bridges integrating multi-GNSS and acceleration measurements, Journal of Infrastructure Preservation and Resilience, 10.1186/s43065-023-00077-6, 4, 1, (2023).
  • Model-informed deep learning strategy with vision measurement for damage identification of truss structures, Mechanical Systems and Signal Processing, 10.1016/j.ymssp.2023.110327, 196, (110327), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share