Abstract

Conventional approaches of design variable generation in nacelle design cases are usually proposed from either of two perspectives: (1) utilizing geometric resemblance to airfoil shape; or (2) selecting flexible geometric parametrization so that any potential geometry can be produced. However, the relationship between geometry and aerodynamic performance objectives is not emphasized in these approaches: design variables are likely not carrying the information that is most needed for aerodynamic optimization, as is the case in nacelle cowl design of drag reduction. In fact, an ideal aerodynamic information should be related with the move of samples toward better aerodynamic performance in design space. As an attempt to fix this issue, this paper proposes a new design variable generation method by extracting objective space (i.e., the aerodynamic performance of samples mapped from nacelle design space) information via linear discriminant analysis (LDA). By accomplishing this “objective space filtration,” the aerodynamic performance improvement potential is injected into design variable generation. Proof-of-concept studies of nacelle cowl design are provided in the paper demonstrating a more direct relationship that links: (1) LDA-aided design variables versus cowl drag, and (2) LDA-aided design variables versus shock strength and laminar length, respectively. LDA is used in the studies as a classic technique of classification, so that the analysis of objective space information finds a way to have impact on design space. The new approach outperforms a controlled test realized by Proper Orthogonal Decomposition in terms of reflecting aerodynamic information in design space, in that a localized improvement of aerodynamic objectives can be more clearly seen in the newly generated design variables. The result shows that the new design variable generation helps improve aerodynamic design and that it can be further extended to other cases beyond the scope of nacelle cowl design.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The paper is sponsored by the project of “Tools and Software development for laminar nacelle” funded by AECC Commercial Aircraft Engine Co., Ltd. The paper also gains help from Huiyi L., as well as Lin Gong, Yuping Gu, and Yanfen Gu. The first author extends his condolences to the victims in the two enduring man-made disasters on the Euro-Asian continent taking place in the first half of 2022.

References

Abbas, A., J. De Vicente, and E. Valero. 2013. “Aerodynamic technologies to improve aircraft performance.” Aerosp. Sci. Technol. 28 (1): 100–132. https://doi.org/10.1016/j.ast.2012.10.008.
Achleitner, J., K. Rohde-Brandenburger, and M. Hornung. 2018. “Airfoil optimization with CST-parameterization for (un-)conventional demands.” In Proc., 34th Congress of the Int. Scientific and Technical Organisation for Gliding. Braunschweig, Germany: Technical Univ. of Braunschweig.
Amoiralis, E. I., and I. K. Nikolos. 2008. “Freeform deformation versus b-spline representation in inverse airfoil design.” J. Comput. Inf. Sci. Eng. 8 (2): 024001. https://doi.org/10.1115/1.2906694.
Anderson, G. R., M. J. Aftosmis, and M. Nemec. 2012. “Constraint-based shape parameterization for aerodynamic design.” In Proc., 7th Int. Conf. on Computational Fluid Dynamics (ICCFD7). Honolulu: Big Island.
Ariyarit, A., and M. Kanazaki. 2014. “Multi-segment class-shape-transformation (CST) for global design exploration.” In Proc., 10th France-Japan/8th Europe-Asia Congress on Mecatronics (MECATRONICS2014-Tokyo). New York: IEEE.
Asouti, V. G., S. A. Kyriacou, and K. C. Giannakoglou. 2016. PCA-enhanced metamodel-assisted evolutionary algorithms for aerodynamic optimization. Cham, Switzerland: Springer.
Berguin, S. H., and D. N. Mavris. 2015. “Dimensionality reduction in aerodynamic design using principal component analysis with gradient information.” In Proc., 10th AIAA Multidisciplinary Design Optimization Conf. National Harbor, MD: Gaylord National Resort & Convention Center.
Biacki, R. A., A. J. Kassab, and A. Fic. 2005. “Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis.” Int. J. Numer. Methods Eng. 62 (6): 774–797. https://doi.org/10.1002/nme.1205.
Bobrowski, K., E. Ferrer, E. Valero, and H. Barnewitz. 2017. “Aerodynamic shape optimization using geometry surrogates and adjoint method.” AIAA J. 55 (10): 3304–3317.
Ceze, M., M. Hayashi, and E. Volpe. 2009. “A study of the cst parameterization characteristics.” In Proc., 27th AIAA Applied Aerodynamics Conf. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2009-3767.
Chen, J., Y. Wu, Z. Wang, and A. Wang. 2015. “Nacelle aerodynamic optimization and inlet compatibility.” In Vol. 56628 of Turbo expo: Power for land, sea, and air. Reston, VA: ASCE.
Christie, R., A. Heidebrecht, and D. G. Macmanus. 2016. “An automated approach to nacelle parameterization using intuitive class shape transformation curves.” J. Eng. Gas Turbines Power-Trans. ASME 139 (6): 062601. https://doi.org/10.1115/1.4035283.
Cinquegrana, D., and E. Iuliano. 2017. “Efficient global optimization of a transonic wing with geometric data reduction.” In Proc., 35th AIAA Applied Aerodynamics Conf., 3057. Reston, VA: American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2017-3057.
Dornaika, F., and Y. El Traboulsi. 2015. “Learning flexible graph-based semi-supervised embedding.” IEEE Trans. Cybern. 46 (1): 206–218. https://doi.org/10.1109/TCYB.2015.2399456.
Droandi, G., and G. Gibertini. 2015. “Aerodynamic blade design with multi-objective optimization for a tiltrotor aircraft.” Aircr. Eng. Aerosp. Technol. 87 (1): 19–29. https://doi.org/10.1108/AEAT-01-2013-0005.
Eleshaky, M. E., and O. Baysal. 1998. “Shape optimizing nacelle near flat-plate wing using multiblock sensitivity analysis.” J. Aircr. 35 (1): 33–38. https://doi.org/10.2514/2.2286.
Falkiewicz, N. J., and C. E. S. Cesnik. 2011. “Proper orthogonal decomposition for reduced-order thermal solution in hypersonic aerothermoelastic simulations.” AIAA J. 49 (5): 994–1009. https://doi.org/10.2514/1.J050701.
Fang, X., Y. Zhang, S. Li, and H. Chen. 2016. “Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm.” In Proc., 17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf, 3833. Reston, VA: American Institute of Aeronautics and Astronautics.
Ghojogh, B., and M. Crowley. 2019. Linear and quadratic discriminant analysis: Tutorial. Ithaca, NY: arXiv.
Ghoman, S., Z. Wang, P. Chen, and R. Kapania. 2012. “A pod-based reduced order design scheme for shape optimization of air vehicles.” In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf. 20th AIAA/ASME/AHS Adaptive Structures Conf. 14th AIAA, 1808. Reston, VA: American Institute of Aeronautics and Astronautics.
Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep learning. Cambridge, MA: MIT Press.
Heidebrecht, A., T. Staakowski, and D. MacManus. 2016. “Parametric geometry and CFD process for turbofan nacelles.” In Vol. 49682 of Turbo expo: Power for land, sea, and air. New York: American Society of Mechanical Engineers.
Kapsoulis, D., K. Tsiakas, X. Trompoukis, V. Asouti, and K. Giannakoglou. 2018a. “A PCA-assisted hybrid algorithm combining EAS and adjoint methods for CFD-based optimization.” Appl. Soft Comput. 73 (Dec): 520–529. https://doi.org/10.1016/j.asoc.2018.09.002.
Kapsoulis, D., K. Tsiakas, X. S. Trompoukis, V. G. Asouti, and K. C. Giannakoglou. 2018b. “Evolutionary multi-objective optimization assisted by metamodels, kernel PCA and multi-criteria decision making techniques with applications in aerodynamics.” Appl. Soft Comput. 64 (Mar): 1–13. https://doi.org/10.1016/j.asoc.2017.11.046.
Karhunen, K. 1947. Uber lineare Methoden in der Wahrscheinlichkeitsrechnung: Akademische Abhandlung. Helsinki, Finland: Suomalainen Tiedeakatemia.
Keane, A., and P. Nair. 2005. Computational approaches for aerospace design: The pursuit of excellence. Hoboken, NJ: John Wiley & Sons.
Koc, S., H. J. Kim, and K. Nakahashi. 2013. “Aerodynamic design of wing-body-nacelle-pylon configuration.” In Proc., 17th AIAA Computational Fluid Dynamics Conf., 4856. Reston, VA: American Institute of Aeronautics and Astronautics.
Krzanowski, W. J., P. Jonathan, W. V. McCarthy, and M. R. Thomas. 1995. “Discriminant analysis with singular covariance matrices: Methods and applications to spectroscopic data.” J. R. Stat. Soc.: Series C (Applied Statistics) 44 (1): 101–115.
Kulfan, B., and J. Bussoletti. 2006. “Fundamental parameteric geometry representations for aircraft component shapes.” In Proc., AIAA/ISSMO Multidisciplinary Analysis & Optimization Conf. Reston, VA: American Institute of Aeronautics and Astronautics.
Kulfan, B. M. 2008. “Universal parametric geometry representation method.” J. Aircr. 45 (1): 142–158. https://doi.org/10.2514/1.29958.
Kyriacou, S. A., V. G. Asouti, and K. C. Giannakoglou. 2014. “Efficient PCA-driven EAS and metamodel-assisted EAS, with applications in turbomachinery.” Eng. Optim. 46 (7): 895–911. https://doi.org/10.1080/0305215X.2013.812726.
Kyriacou, S. A., S. Weissenberger, and K. C. Giannakoglou. 2012. “Design of a matrix hydraulic turbine using a metamodel-assisted evolutionary algorithm with PCA-driven evolution operators.” Int. J. Math. Modell. Numer. Optim. 3 (1–2): 45–63. https://doi.org/10.1504/IJMMNO.2012.044713.
Lambert, E. A., J. L. Lecordix, and V. Braibant. 1995. “Constrained optimization of nacelle shapes in Euler flow using semianalytical sensitivity analysis.” Struct. Optim. 10 (3–4): 239–246. https://doi.org/10.1007/BF01742598.
Lattarulo, V., T. Kipouros, and G. T. Parks. 2013. “Application of the multi-objective alliance algorithm to a benchmark aerodynamic optimization problem.” In Proc., 2013 IEEE Congress on Evolutionary Computation, 3182–3189. New York: IEEE.
Li, M., and B. Yuan. 2005. “2D-LDA: A statistical linear discriminant analysis for image matrix.” Pattern Recognit. Lett. 26 (5): 527–532. https://doi.org/10.1016/j.patrec.2004.09.007.
Li, Q., and J. You. 2019. “Two-dimensional locality adaptive discriminant analysis.” Multimedia Tools Appl. 78 (21): 30397–30418. https://doi.org/10.1007/s11042-019-07861-1.
Lin, Y., T. Robinson, J. Early, D. Riordan, and J. Tweedie. 2011. “Implementation of menter’s transition model on an isolated natural laminar flow nacelle.” AIAA J. 49 (4): 824–835. https://doi.org/10.2514/1.J050890.
Lu, X., J. Huang, L. Song, and J. Li. 2018. “An improved geometric parameter airfoil parameterization method.” Aerosp. Sci. Technol. 78 (Jul): 241–247. https://doi.org/10.1016/j.ast.2018.04.025.
Majić, F., G. Efraimsson, and C. J. O’Reilly. 2016. “The influence of an adaptive nacelle inlet lip on fan noise propagation.” In Vol. 28 of Proc., Meetings on Acoustics 22ICA, 030004. Melville, NY: Acoustical Society of America.
Martinez, A., and A. Kak. 2001. “PCA versus LDA.” IEEE Trans. Pattern Anal. Mach. Intell. 23 (2): 228–233. https://doi.org/10.1109/34.908974.
Masters, D., D. Poole, N. Taylor, T. Rendall, and C. Allen. 2016. “Impact of shape parameterisation on aerodynamic optimisation of benchmark problem.” In Proc., 54th AIAA Aerospace Sciences Meeting, 1544. Reston, VA: American Institute of Aeronautics and Astronautics.
Masters, D. A., N. J. Taylor, T. C. S. Rendall, C. B. Allen, and D. J. Poole. 2017. “Geometric comparison of aerofoil shape parameterization methods.” AIAA J. 55 (5): 1575–1589. https://doi.org/10.2514/1.J054943.
My-Ha, D., K. M. Lim, B. C. Khoo, and K. Willcox. 2007. “Real-time optimization using proper orthogonal decomposition: Free surface shape prediction due to underwater bubble dynamics.” Comput. Fluids 36 (3): 499–512. https://doi.org/10.1016/j.compfluid.2006.01.016.
Nadarajah, S., P. Castonguay, and A. Mousavi. 2007. “Survey of shape parameterization techniques and its effect on three-dimensional aerodynamic shape optimization.” In Proc., 18th AIAA Computational Fluid Dynamics Conf., 3837. Reston, VA: American Institute of Aeronautics and Astronautics.
Pearson, K. 1901. “LIII. On lines and planes of closest fit to systems of points in space.” Philos. Mag. Ser. 1 2 (11): 559–572. https://doi.org/10.1080/14786440109462720.
Placzek, A., D. M. Tran, and R. Ohayon. 2008. “Hybrid proper orthogonal decomposition formulation for linear structural dynamics.” J. Sound Vib. 318 (4–5): 943–964. https://doi.org/10.1016/j.jsv.2008.05.015.
Poole, D. J., C. B. Allen, and T. Rendall. 2013. “Aerofoil design variable extraction for aerodynamic optimization.” In Proc., 21st AIAA Computational Fluid Dynamics Conf., 2705. Reston, VA: American Institute of Aeronautics and Astronautics.
Poole, D. J., C. B. Allen, and T. Rendall. 2015. “Metric-based mathematical derivation of efficient airfoil design variables.” AIAA J. 53 (5): 1349–1361. https://doi.org/10.2514/1.J053427.
Reddy, S. R., H. Sobieczky, G. S. Dulikravic, and A. Abdoli. 2016. “Multi-element winglets: Multi-objective optimization of aerodynamic shapes.” J. Aircr. 53 (4): 992–1000. https://doi.org/10.2514/1.C033334.
Renganathan, A., S. H. Berguin, M. Chen, J. Ahuja, J. C. Tai, D. N. Mavris, and D. Hills. 2018. “Sensitivity analysis of aero-propulsive coupling for over-wing-nacelle concepts.” In Proc., 2018 AIAA Aerospace Sciences Meeting, 1757. Reston, VA: American Institute of Aeronautics and Astronautics.
Robinson, G. M., and A. J. Keane. 2001. “Concise orthogonal representation of supercritical airfoils.” J. Aircr. 38 (3): 580–583. https://doi.org/10.2514/2.2803.
Samareh, J. A. 2001. “Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization.” AIAA J. 39 (5): 877–884. https://doi.org/10.2514/2.1391.
Sasaki, D., and K. Nakahashi. 2011. “Aerodynamic optimization of an over-the-wing-nacelle-mount configuration.” Modell. Simulation Eng. 2011 (May): 293078. https://doi.org/10.1155/2011/293078.
Savelyev, A., N. Zlenko, E. Matyash, S. Mikhaylov, and A. Shenkin. 2016. “Optimal design and installation of ultra high bypass ratio turbofan nacelle.” In Vol. 1770 of Proc., AIP Conf., 030123. Melville, NY: AIP Publishing LLC.
Savelyev, A., N. Zlenko, and S. Mikhaylov. 2014. “Shape optimization of the engine nacelle using RANS.” In Proc., Int. Conf. on the Methods of Aerophysical Research. Melville, NY: AIP Publishing LLC.
Sharma, A., and K. K. Paliwal. 2008. “Rotational linear discriminant analysis technique for dimensionality reduction.” IEEE Trans. Knowledge Data Eng. 20 (10): 1336–1347. https://doi.org/10.1109/TKDE.2008.101.
Sheng, R. 2019. Systems engineering for aerospace: A practical approach. Cambridge, MA: Academic Press.
Sobester, A. 2009. “Concise airfoil representation via case-based knowledge capture.” AIAA J. 47 (5): 1209–1218. https://doi.org/10.2514/1.40119.
Sóbester, A., and T. Barrett. 2008. “The quest for a truly parsimonious airfoil parameterisation scheme.” In Proc., 26th Congress of ICAS and 8th AIAA ATIO. Reston, VA: American Institute of Aeronautics and Astronautics.
Song, F., D. Mei, and H. Li. 2010. “Feature selection based on linear discriminant analysis.” In Vol. 1 of Proc., 2010 Int. Conf. on Intelligent System Design & Engineering Application, 746–749. New York: IEEE.
Sripawadkul, V., M. Padulo, and M. Guenov. 2010. “A comparison of airfoil shape parameterization techniques for early design optimization.” In Proc., 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conf., 9050. Reston, VA: American Institute of Aeronautics and Astronautics.
Tejero, F., R. Christie, D. MacManus, and C. Sheaf. 2021. “Non-axisymmetric aero-engine nacelle design by surrogate-based methods.” Aerosp. Sci. Technol. 117 (Oct): 106890. https://doi.org/10.1016/j.ast.2021.106890.
Tejero, F., M. Robinson, D. G. Macmanus, and C. Sheaf. 2019. “Multi-objective optimisation of short nacelles for high bypass ratio engines.” Aerosp. Sci. Technol. 91 (Aug): 410–421. https://doi.org/10.1016/j.ast.2019.02.014.
Toal, D. J. J., N. W. Bressloff, A. J. Keane, and C. M. E. Holden. 2010. “Geometric filtration using proper orthogonal decomposition for aerodynamic design optimization.” AIAA J. 48 (5): 916–928. https://doi.org/10.2514/1.41420.
Turk, M., and A. Pentland. 1991. “Eigenfaces for recognition.” J. Cognit. Neurosci. 3 (1): 71–86. https://doi.org/10.1162/jocn.1991.3.1.71.
Viswanath, A., A. I. J. Forrester, and A. J. Keane. 2011. “Dimension reduction for aerodynamic design optimization.” AIAA J. 49 (6): 1256–1266. https://doi.org/10.2514/1.J050717.
Wang, S., C. Cao, C. Wang, L. Wang, and G. Sun. 2021. “A nacelle inlet design approach with more three-dimensional geometric consideration.” Aerosp. Sci. Technol. 112 (May): 106624. https://doi.org/10.1016/j.ast.2021.106624.
Wang, S., G. Sun, and C. Li. 2019. “Natural laminar flow optimization of transonic nacelle based on differential evolution algorithm.” J. Aerosp. Eng. 32 (4): 06019001. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001028.
Wang, S., G. Sun, M. Wang, and X. Wang. 2018. “Laminar transition over airfoil: Numerical simulation of turbulence models and experiment validation.” In Proc., Asia-Pacific Int. Symp. on Aerospace Technology, 1623–1632. Singapore: Springer.
Wang, S., C. Wang, and G. Sun. 2020. “The objective space and the formulation of design requirement in natural laminar flow optimization.” Appl. Sci. 10 (17): 5943. https://doi.org/10.3390/app10175943.
Wang, W., R. Mo, and Y. Zhang. 2011. “Multi-objective aerodynamic optimization design method of compressor rotor based on isight.” Procedia Eng. 15 (2011): 3699–3703. https://doi.org/10.1016/j.proeng.2011.08.693.
Wen, J., X. Fang, J. Cui, L. Fei, K. Yan, K. Yan, Y. Chen, and Y. Xu. 2018. “Robust sparse linear discriminant analysis.” IEEE Trans. Circuits Syst. Video Technol. 29 (2): 390–403. https://doi.org/10.1109/TCSVT.2018.2799214.
Wu, X., W. Zhang, X. Peng, and Z. Wang. 2019. “Benchmark aerodynamic shape optimization with the pod-based CST airfoil parametric method.” Aerosp. Sci. Technol. 84 (Jan): 632–640. https://doi.org/10.1016/j.ast.2018.08.005.
Xie, S., M. Imani, E. R. Dougherty, and U. M. Braga-Neto. 2017. “Nonstationary linear discriminant analysis.” In Proc., 51st Asilomar Conf. on Signals, Systems, and Computers, 161–165. New York: IEEE.
Xin, Z., Z. Chen, G. U. Wenting, G. Wang, Z. Tan, L. I. Dong, and B. Zhang. 2019. “Nacelle-airframe integration design method for blended-wing-body transport with podded engines.” Chin. J. Aeronaut. 32 (8): 1860–1868. https://doi.org/10.1016/j.cja.2019.06.009.
Xu, S., S. Timme, O. Mykhaskiv, and J.-D. Müller. 2017. “Wing-body junction optimisation with CAD-based parametrisation including a moving intersection.” Aerosp. Sci. Technol. 68 (Sep): 543–551. https://doi.org/10.1016/j.ast.2017.06.014.
Yang, J., Z. Jin, and J. Yang. 2009. “Non-linear techniques for dimension reduction.” In Encycl. Biometrics, edited by S. Z. Li and A. Jain, 1003–1007. Boston, MA: Springer. https://doi.org/10.1007/978-0-387-73003-5_294.
Ye, J. 2007. “Least squares linear discriminant analysis.” In Proc., 24th Int. Conf. on Machine Learning, 1087–1093. New York: Association for Computing Machinery.
Ye, Q., L. Fu, Z. Zhao, Z. Henghao, and N. Meem. 2018. “Lp- and Ls-norm distance based robust linear discriminant analysis.” Neural Netw. 105 (Sep): 393–404. https://doi.org/10.1016/j.neunet.2018.05.020.
Zhang, P., J. Peng, and N. Riedel. 2005. “Discriminant analysis: A unified approach.” In Proc., 5th IEEE Int. Conf. on Data Mining (ICDM'05), 8. New York: IEEE.
Zhang, T. T., Z. G. Wang, W. Huang, and L. Yan. 2018. “A review of parametric approaches specific to aerodynamic design process.” Acta Astronaut. 145 (Apr): 319–331. https://doi.org/10.1016/j.actaastro.2018.02.011.
Zheng, S., C. Ding, F. Nie, and H. Huang. 2018. “Harmonic mean linear discriminant analysis.” IEEE Trans. Knowl. Data Eng. 31 (8): 1520–1531. https://doi.org/10.1109/TKDE.2018.2861858.
Zhou, Y., W. Zhang, J. Zhu, and Z. Xu. 2016. “Feature-driven topology optimization method with signed distance function.” Comput. Methods Appl. Mech. Eng. 310 (Oct): 1–32. https://doi.org/10.1016/j.cma.2016.06.027.

Information & Authors

Information

Published In

Go to Journal of Aerospace Engineering
Journal of Aerospace Engineering
Volume 36Issue 1January 2023

History

Received: Dec 24, 2020
Accepted: Jun 23, 2022
Published online: Sep 22, 2022
Published in print: Jan 1, 2023
Discussion open until: Feb 22, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China. ORCID: https://orcid.org/0000-0001-8452-5602. Email: [email protected]
Ph.D. Candidate, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China. Email: [email protected]
Ph.D. Candidate, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China. Email: [email protected]
Ph.D. Candidate, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China. Email: [email protected]
Ph.D. Candidate, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China. Email: [email protected]
Professor, Dept. of Aeronautics & Astronautics, Fudan Univ., 220 Handan Rd., Shanghai 200437, China (corresponding author). ORCID: https://orcid.org/0000-0003-4827-103X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share