Free access
Research Article
Jan 21, 2021

On the Effect of the Electrical Load on Vibration Energy Harvesting Under Stochastic Resonance

Publication: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
Volume 7, Issue 1

Abstract

Vibration energy harvesting (VEH) is a promising alternative for powering wireless electronics in many practical applications. Ambient vibration energy in the surrounding space of a target application often involves an inescapable randomness in the exciting vibrations, which may lead to deterioration of the expected power gains due to insufficient tuning and limited optimal designs. Stochastic resonance (SR) is a concept that has recently been considered for exploiting this randomness toward improving power generation from vibrating systems, based on the coexistence of near-harmonic vibrations with broadband noise excitations in a variety of practical mechanical systems. This paper is concerned with the optimal conditions for SR in vibration energy harvesters, exploring the frequently neglected effect of realistic architectures of the electrical circuit on the system dynamics and the achievable power output. A parametric study is conducted using a numerical path integration (PI) method to compute the response probability density functions (PDFs) of vibration energy harvesters, focusing on the effect of standard electrical components; namely, a load resistor, a rectifier, and a capacitor. It is found that the conditions for SR exhibit a nonlinear dependence on the weak harmonic excitation amplitude. Moreover, the modified nonlinear dissipation properties introduced by the rectifier and the capacitor lead to a tradeoff between the power output and the nonconducting dynamics that is essential in order to determine optimal harvesting designs. This article is available in the ASME Digital Collection at https://doi.org/10.1115/1.4049209.

Information & Authors

Information

Published In

Go to ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
Volume 7Issue 1March 2021

History

Received: Feb 17, 2020
Revision received: Jun 11, 2020
Published online: Jan 21, 2021
Published in print: Mar 1, 2021

Authors

Affiliations

Panagiotis Alevras [email protected]
Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK e-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share