Technical Papers
Jun 27, 2024

Predicting the Residual Compressive Strength of Concrete Exposed to Elevated Temperatures Using Interpretable Machine Learning

Publication: Practice Periodical on Structural Design and Construction
Volume 29, Issue 4

Abstract

The accurate prediction of residual compressive strength (RCS) of concrete plays a critical role in assessing concrete constructions’ safety and structural integrity following exposure to elevated temperatures. Existing ensemble models exhibit RCS prediction capabilities, yet they are constrained by their opaque nature. This research endeavors to develop an intelligible model for RCS by employing five ensemble machine-learning models, namely, random forest (RF), adaptive boosting (AdaBoost), gradient boosting (GBoost), light gradient boosting (LGBoost), and extreme gradient boosting (XGBoost), and integrating Shapley additive explanations (SHAP) to ascertain the precise importance of each input variable in forecasting the RCS of concrete under elevated temperature conditions. The input variables encompass concrete type, compressive strength, aggregate type, water-cement ratio, heating type, heating rate, maximum core temperature, and cooling type. Model performance is appraised using established performance metrics such as mean absolute error (MAE), mean squared error (MSE), root-mean squared error (RMSE), and coefficient of determination (R2). The analytical results exhibit the efficacy of employing machine-learning models in accurately predicting the RCS of concrete under elevated temperature conditions. Among the implemented models, XGBoost demonstrated the highest performance, yielding an R2 value of 0.876, closely trailed by the LGBoost model at 0.871. The SHAP analysis elucidates the crucial role of core temperature, water-cement ratio, heating rate, and compressive strength in determining the RCS of concrete.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or codes generated or used during the study are available from the corresponding author by request.

References

Abubaker, A. M., and C. T. Davie. 2023. “A generalised model for direct prediction of stresses in concrete at high temperatures.” Mag. Concr. Res. 75 (4): 176–186. https://doi.org/10.1680/jmacr.21.00294.
ACI (American Concrete Institute). 2019. Building code requirements for structural concrete (ACI 318-19) and commentary. Farmington Hills, MI: ACI.
Ahmad, A., K. A. Ostrowski, M. Maślak, F. Farooq, I. Mehmood, and A. Nafees. 2021a. “Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature.” Materials 14 (15): 4222. https://doi.org/10.3390/ma14154222.
Ahmad, M., J.-L. Hu, F. Ahmad, X.-W. Tang, M. Amjad, M. J. Iqbal, M. Asim, and A. Farooq. 2021b. “Supervised learning methods for modeling concrete compressive strength prediction at high temperature.” Materials 14 (8): 1983. https://doi.org/10.3390/ma14081983.
Al-ameri, R. A., S. R. Abid, and M. Ozakca. 2022. “Mechanical and impact properties of engineered cementitious composites reinforced with PP fibers at elevated temperatures.” Fire 5 (1): 3. https://doi.org/10.3390/fire5010003.
Alarifi, S. A., M. Abdel-Aty, and J. Lee. 2018. “A Bayesian multivariate hierarchical spatial joint model for predicting crash counts by crash type at intersections and segments along corridors.” Accid. Anal. Prev. 119 (Apr): 263–273. https://doi.org/10.1016/j.aap.2018.07.026.
Andic-Cakir, O., and S. Hizal. 2012. “Influence of elevated temperatures on the mechanical properties and microstructure of self consolidating lightweight aggregate concrete.” Constr. Build. Mater. 34 (Sep): 575–583. https://doi.org/10.1016/j.conbuildmat.2012.02.088.
Arioz, O. 2007. “Effects of elevated temperatures on properties of concrete.” Fire Saf. J. 42 (8): 516–522. https://doi.org/10.1016/j.firesaf.2007.01.003.
Aslani, F., and J. Kelin. 2018. “Assessment and development of high-performance fibre-reinforced lightweight self-compacting concrete including recycled crumb rubber aggregates exposed to elevated temperatures.” J. Cleaner Prod. 200 (Aug): 1009–1025. https://doi.org/10.1016/j.jclepro.2018.07.323.
ASTM. 2020. Standard test methods for fire tests of building construction and materials. ASTM E119-20. West Conshohocken, PA: ASTM.
Awal, A. S. M. A., and I. A. Shehu. 2015. “Performance evaluation of concrete containing high volume palm oil fuel ash exposed to elevated temperature.” Constr. Build. Mater. 76 (Jun): 214–220. https://doi.org/10.1016/j.conbuildmat.2014.12.001.
Aydin, S., and B. Baradan. 2007. “Effect of pumice and fly ash incorporation on high temperature resistance of cement based mortars.” Cem. Concr. Res. 37 (6): 988–995. https://doi.org/10.1016/j.cemconres.2007.02.005.
Balgourinejad, N., M. Haghighifar, R. Madandoust, and S. Charkhtab. 2022. “Experimental study on mechanical properties, microstructural of lightweight concrete incorporating polypropylene fibers and metakaolin at high temperatures.” J. Mater. Res. Technol. 18 (Feb): 5238–5256. https://doi.org/10.1016/j.jmrt.2022.04.005.
Baltacıoğlu, A. K., B. Öztürk, Ö. Civalek, and B. Akgöz. 2010. “Is artificial neural network suitable for damage level determination of RC-structures?” Int. J. Eng. Appl. Sci. 2 (3): 71–81.
Bamonte, P., and P. G. Gambarova. 2012. “A study on the mechanical properties of self-compacting concrete at high temperature and after cooling.” Mater. Struct. 45 (9): 1375–1387. https://doi.org/10.1617/s11527-012-9839-9.
Baradaran-nasiri, A., and M. Nematzadeh. 2017. “The effect of elevated temperatures on the mechanical properties of concrete with fine recycled refractory brick aggregate and aluminate cement.” Constr. Build. Mater. 147 (Sep): 865–875. https://doi.org/10.1016/j.conbuildmat.2017.04.138.
Basilio, S. A., and L. Goliatt. 2022. “Gradient boosting hybridized with exponential natural evolution strategies for estimating the strength of geopolymer self-compacting concrete.” Knowl. Based Eng. Sci. 3 (1): 1–16. https://doi.org/10.51526/kbes.2022.3.1.1-16.
Bastami, M., M. Baghbadrani, and F. Aslani. 2014. “Performance of nano-silica modified high strength concrete at elevated temperatures.” Constr. Build. Mater. 68 (Jan): 402–408. https://doi.org/10.1016/j.conbuildmat.2014.06.026.
Behnood, A., and H. Ziari. 2008. “Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures.” Cem. Concr. Compos. 30 (2): 106–112. https://doi.org/10.1016/j.cemconcomp.2007.06.003.
Bing, A. F. 2009. “Effect of elevated temperatures and cooling regimes on normal strength concrete.” Fire Mater. 33 (Nov): 79–88. https://doi.org/10.1002/fam.
Bisby, L. A., J. F. Chen, S. Q. Li, T. J. Stratford, N. Cueva, and K. Crossling. 2011. “Strengthening fire-damaged concrete by confinement with fibre-reinforced polymer wraps.” Constr. Build. Mater. 33 (Jun): 3381–3391. https://doi.org/10.1016/j.engstruct.2011.07.002.
Boga, A. R., C. Karakurt, and A. F. Senol. 2022. “The effect of elevated temperature on the properties of SCC’s produced with different types of fibers.” Constr. Build. Mater. 340 (Jul): 127803. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2022.127803.
Bošnjak, J., A. Sharma, and K. Grauf. 2019. “Mechanical properties of concrete with steel and polypropylene fibres at elevated temperatures.” Fibers 7 (2): 9. https://doi.org/10.3390/fib7020009.
Breiman, L. 2001. “Random forests.” Mach. Learn. 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Canbaz, M. 2014. “The effect of high temperature on reactive powder concrete.” Constr. Build. Mater. 70 (Feb): 508–513. https://doi.org/10.1016/j.conbuildmat.2014.07.097.
Chaabene, W. B., M. Flah, and M. L. Nehdi. 2020. “Machine learning prediction of mechanical properties of concrete: Critical review.” Constr. Build. Mater. 260 (Apr): 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889.
Chai, T., and R. R. Draxler. 2014. “Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature.” Geosci. Model Dev. 7 (3): 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014.
Chan, Y. N., X. Luo, and W. Sun. 2000. “Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800°C.” Cem. Concr. Res. 30 (2): 247–251. https://doi.org/10.1016/S0008-8846(99)00240-9.
Chan, Y. N., G. F. Peng, and M. Anson. 1999. “Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures.” Cem. Concr. Res. 21 (Sep): 23–27. https://doi.org/10.1016/S0958-9465(98)00034-1.
Chang, Y.-F., Y.-H. Chen, M.-S. Sheu, and G. C. Yao. 2006. “Residual stress–strain relationship for concrete after exposure to high temperatures.” Cem. Concr. Res. 36 (10): 1999–2005. https://doi.org/10.1016/j.cemconres.2006.05.029.
Chen, G. M., Y. H. He, H. Yang, J. F. Chen, and Y. C. Guo. 2014. “Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures.” Constr. Build. Mater. 71 (Apr): 1–15. https://doi.org/10.1016/j.conbuildmat.2014.08.012.
Chen, T., and C. Guestrin. 2016. “XGboost: A scalable tree boosting system.” In Proc., 22nd ACM sigkdd Int. Conf. on Knowledge Discovery and Data Mining, 785–794. San Francisco: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785.
Chen, T., J. Xu, H. Ying, X. Chen, R. Feng, X. Fang, H. Gao, and J. Wu. 2019. “Prediction of extubation failure for intensive care unit patients using light gradient boosting machine.” IEEE Access 7 (Jun): 150960–150968. https://doi.org/10.1109/ACCESS.2019.2946980.
Chen, W., L. Peng, and H. Yang. 2021. “Fracture behaviors of concrete incorporating different levels of recycled coarse aggregate after exposure to elevated temperatures.” J. Build. Eng. 35 (Dec): 102040. https://doi.org/10.1016/j.jobe.2020.102040.
Cong, S., C. Sun, and M. Etxeberria. 2014. “Cement & concrete composites residue strength, water absorption and pore size distributions of recycled aggregate concrete after exposure to elevated temperatures.” Cem. Concr. Compos. 53 (Sep): 73–82. https://doi.org/10.1016/j.cemconcomp.2014.06.001.
Correia, J. R., J. S. Lima, and J. De Brito. 2014. “Cement and concrete composites post-fire mechanical performance of concrete made with selected plastic waste aggregates.” Cem. Concr. Compos. 53 (Aug): 187–199. https://doi.org/10.1016/j.cemconcomp.2014.07.004.
Cülfik, M. S., and T. Özturan. 2010. “Mechanical properties of normal and high strength concretes subjected to high temperatures and using image analysis to detect bond deteriorations.” Constr. Build. Mater. 24 (8): 1486–1493. https://doi.org/10.1016/j.conbuildmat.2010.01.020.
Demirel, B. 2010. “Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume.” Fire Saf. J. 45 (6–8): 385–391. https://doi.org/10.1016/j.firesaf.2010.08.002.
de-Prado-Gil, J., C. Palencia, N. Silva-Monteiro, and R. Martínez-García. 2022. “To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models.” Case Stud. Constr. Mater. 16 (May): e01046. https://doi.org/10.1016/j.cscm.2022.e01046.
Dong, S., A. Khattak, I. Ullah, J. Zhou, and A. Hussain. 2022. “Predicting and analyzing road traffic injury severity using boosting-based ensemble learning models with Shapley additive explanations.” Int. J. Environ. Res. Public Health 19 (5): 2925. https://doi.org/10.3390/ijerph19052925.
Drzymala, T., W. Jackiewicz-rek, J. Galaj, and R. Sukys. 2018. “Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperature.” J. Civ. Eng. Manage. 24 (2): 138–144. https://doi.org/10.3846/jcem.2018.457.
Duan, J., P. G. Asteris, H. Nguyen, X.-N. Bui, and H. Moayedi. 2021. “A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model.” Eng. Comput. 37 (4): 3329–3346. https://doi.org/10.1007/s00366-020-01003-0.
Ehm, C. 1985. “The high temperature behaviour of concrete under biaxial conditions.” Cem. Concr. Res. 15 (1): 27–34. https://doi.org/10.1016/0008-8846(85)90005-5.
Eidan, J., I. Rasoolan, A. Rezaeian, and D. Poorveis. 2019. “Residual mechanical properties of polypropylene fiber-reinforced concrete after heating.” Constr. Build. Mater. 198 (Apr): 195–206. https://doi.org/10.1016/j.conbuildmat.2018.11.209.
Ergün, A., G. Kürklü, M. S. Başpınar, and M. Y. Mansour. 2013. “The effect of cement dosage on mechanical properties of concrete exposed to high temperatures.” Fire Saf. J. 55 (Jan): 160–167. https://doi.org/10.1016/j.firesaf.2012.10.016.
Fathi, H., and K. Farhang. 2014. “Effect of cyclic loadings on heated self-compacting concrete.” Constr. Build. Mater. 69 (Dec): 26–31. https://doi.org/10.1016/j.conbuildmat.2014.07.040.
Feng, D., Z. Liu, X. Wang, Y. Chen, J. Chang, D. Wei, and Z. Jiang. 2020. “Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach.” Constr. Build. Mater. 230 (Jan): 117000. https://doi.org/10.1016/j.conbuildmat.2019.117000.
Freund, Y., and R. E. Schapire. 1997. “A decision-theoretic generalization of on-line learning and an application to boosting.” J. Comput. Syst. Sci. 55 (1): 119–139. https://doi.org/10.1006/jcss.1997.1504.
Friedman, J. H. 2001. “Greedy function approximation: A gradient boosting machine.” Ann. Stat. 29 (5): 1189–1232.
Ghazy, M. F., M. A. A. Elaty, and N. M. Zalhaf. 2022. “Mechanical properties of HPC incorporating fly ash and ground granulated blast furnace slag after exposure to high temperatures.” Period. Polytech. Civ. Eng. 66 (3): 761–774. https://doi.org/10.3311/PPci.19751.
Hachemi, S., and A. Ounis. 2015. “Performance of concrete containing crushed brick aggregate exposed to different fire temperatures.” Eur. J. Environ. Civ. Eng. 8189 (Jun): 1–20. https://doi.org/10.1080/19648189.2014.973535.
Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman. 2009. The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.
Heikal, M., H. El-didamony, T. M. Sokkary, and I. A. Ahmed. 2013. “Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature.” Constr. Build. Mater. 38 (Apr): 1180–1190. https://doi.org/10.1016/j.conbuildmat.2012.09.069.
Hlavička, V., L. E. Hlavicka-Laczak, and E. Lubloy. 2022. “Residual fracture mechanical properties of quartz and expanded clay aggregate concrete subjected to elevated temperature.” Constr. Build. Mater. 328 (Jan): 126845. https://doi.org/10.1016/j.conbuildmat.2022.126845.
Hossain, K. M. A. 2006. “High strength blended cement concrete incorporating volcanic ash: Performance at high temperatures.” Cem. Concr. Compos. 28 (6): 535–545. https://doi.org/10.1016/j.cemconcomp.2006.01.013.
Hou, X., M. Abid, W. Zheng, and G. Qadir. 2017. “Evaluation of residual mechanical properties of steel fiber- reinforced reactive powder concrete after exposure to high temperature using nondestructive testing.” Procedia Eng. 210 (Aug): 588–596. https://doi.org/10.1016/j.proeng.2017.11.118.
Ibrahim, R. K., R. Hamid, and M. R. Taha. 2012. “Fire resistance of high-volume fly ash mortars with nanosilica addition.” Constr. Build. Mater. 36 (Jul): 779–786. https://doi.org/10.1016/j.conbuildmat.2012.05.028.
Ismail, M., M. E. Ismail, and B. Muhammad. 2011. “Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash.” Constr. Build. Mater. 25 (5): 2358–2364. https://doi.org/10.1016/j.conbuildmat.2010.11.034.
ISO. 1999a. Fire-resistance tests–Elements of building construction–Part 1: General requirements. ISO 834-1: 1999. Geneva: ISO.
ISO. 1999b. Fire resistance tests-Elements of building construction. ISO 834. Geneva: ISO.
Karakoç, M. B. 2013. “Effect of cooling regimes on compressive strength of concrete with lightweight aggregate exposed to high temperature.” Constr. Build. Mater. 41 (Sep): 21–25. https://doi.org/10.1016/j.conbuildmat.2012.11.104.
Kareem, H., and I. Alyaseri. 2020. “Effects of elevated temperatures on mechanical properties of reactive powder concrete elements.” Constr. Build. Mater. 261 (Aug): 120555. https://doi.org/10.1016/j.conbuildmat.2020.120555.
Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. 2017. “Lightgbm: A highly efficient gradient boosting decision tree.” In Vol. 30 of Proc., 31st Conf. on Neural Information Processing Systems (NIPS 2017), 3146–3154. Red Hook, NY: Curran Associates.
Khaliq, W. 2018. “Mechanical and physical response of recycled aggregates high-strength concrete at elevated temperatures.” Fire Saf. J. 96 (May): 203–214. https://doi.org/10.1016/j.firesaf.2018.01.009.
Khan, A.-R., T. Aziz, S. Fareed, and J. Xiao. 2020. “Behaviour and residual strength prediction of recycled aggregates concrete exposed to elevated temperatures.” Arab. J. Sci. Eng. 45 (10): 8241–8253. https://doi.org/10.1007/s13369-020-04682-5.
Khan, M. A., S. A. Memon, F. Farooq, M. F. Javed, F. Aslam, and R. Alyousef. 2021. “Compressive strength of fly-ash-based geopolymer concrete by gene expression programming and random forest.” Adv. Civ. Eng. 2021 (Apr): 1–17. https://doi.org/10.1155/2021/6618407.
Kodur, V. K. R., S. Banerji, and R. Solhmirzaei. 2020. “Test methods for characterizing concrete properties at elevated temperature.” Fire Mater. 44 (3): 381–395. https://doi.org/10.1002/fam.2777.
Kodur, V. K. R., M. Garlock, and N. Iwankiw. 2012. “Structures in fire: State-of-the-art, research and training needs.” Fire Technol. 48 (4): 825–839. https://doi.org/10.1007/s10694-011-0247-4.
Kumar, P., S. Kelly, and Z. Yao. 2014. “Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete.” J. Mater. 63 (Jan): 584–592. https://doi.org/10.1016/j.matdes.2014.06.059.
Lau, A., and M. Anson. 2006. “Effect of high temperatures on high performance steel fibre reinforced concrete.” Cem. Concr. Res. 36 (9): 1698–1707. https://doi.org/10.1016/j.cemconres.2006.03.024.
Lenwari, A., J. Rungamornrat, and S. Woonprasert. 2016. “Axial compression behavior of fire-damaged concrete cylinders confined with CFRP sheets.” J. Compos. Constr. 20 (5): 04016027. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000683.
Leo, S., and T. Horiguchi. 2006. “Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition.” Cem. Concr. Res. 36 (Aug): 1672–1678. https://doi.org/10.1016/j.cemconres.2006.05.006.
Li, M., C. Qian, and W. Sun. 2004. “Mechanical properties of high-strength concrete after fire.” Cem. Concr. Res. 34 (6): 1001–1005. https://doi.org/10.1016/j.cemconres.2003.11.007.
Li, Q., Z. Li, and G. Yuan. 2012. “Effects of elevated temperatures on properties of concrete containing ground granulated blast furnace slag as cementitious material.” Constr. Build. Mater. 35 (Jun): 687–692. https://doi.org/10.1016/j.conbuildmat.2012.04.103.
Li, S., and J. Y. R. Liew. 2022. “Experimental and data-driven analysis on compressive strength of steel fibre reinforced high strength concrete and mortar at elevated temperature.” Constr. Build. Mater. 341 (Dec): 127845. https://doi.org/10.1016/j.conbuildmat.2022.127845.
Li, Y., E. Yang, and K. Hai. 2019. “Effects of heating followed by water quenching on strength and microstructure of ultra-high performance concrete.” Constr. Build. Mater. 207 (Nov): 403–411. https://doi.org/10.1016/j.conbuildmat.2019.02.123.
Liang, S., J. Peng, Y. Xu, and H. Ye. 2021. “Passive fetal movement recognition approaches using hyperparameter tuned LightGBM model and Bayesian optimization.” Comput. Intell. Neurosci. 2021 (Mar): 18. https://doi.org/10.1155/2021/6252362.
Liang, X., C. Wu, Y. Su, Z. Chen, and Z. Li. 2018. “Development of ultra-high performance concrete with high fire resistance.” Constr. Build. Mater. 179 (Jun): 400–412. https://doi.org/10.1016/j.conbuildmat.2018.05.241.
Lundberg, S. M., G. G. Erion, and S.-I. Lee. 2018. “Consistent individualized feature attribution for tree ensembles.” Preprint, submitted February 6, 2018. http://arxiv.org/abs/arXiv1802.03888.
Lundberg, S. M., and S.-I. Lee. 2017. “A unified approach to interpreting model predictions.” In Vol. 30 of Proc., 31st Conf. on Neural Information Processing Systems (NIPS 2017), 4765–4774. Red Hook, NY: Curran Associates.
Luo, X., W. Sun, S. Yin, and N. Chan. 2000. “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete.” Cem. Concr. Res. 30 (3): 379–383. https://doi.org/10.1016/S0008-8846(99)00264-1.
Ma, Q., R. Guo, Z. Zhao, Z. Lin, and K. He. 2015. “Mechanical properties of concrete at high temperature—A review.” Constr. Build. Mater. 93 (Sep): 371–383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
Martins, D. J., J. R. Correia, and J. De Brito. 2016. “The effect of high temperature on the residual mechanical performance of concrete made with recycled ceramic coarse aggregates.” Fire Mater. 40 (2): 289–304. https://doi.org/10.1002/fam.2287.
Mehdipour, S., I. M. Nikbin, S. Dezhampanah, R. Mohebbi, H. Moghadam, S. Charkhtab, and A. Moradi. 2020. “Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures.” J. Cleaner Prod. 254 (Jun): 120126. https://doi.org/10.1016/j.jclepro.2020.120126.
Mello, L. C. D. A., A. S. Marcos, M. V. V. A. De Sá, N. S. L. De Souza, and E. C. De Farias. 2020. “Effect of high temperatures on self-compacting concrete with high levels of sugarcane bagasse ash and metakaolin.” Constr. Build. Mater. 248 (Apr): 118715. https://doi.org/10.1016/j.conbuildmat.2020.118715.
Mendes, A., Æ. J. Sanjayan, and Æ. F. Collins. 2008. “Phase transformations and mechanical strength of OPC/slag pastes submitted to high temperatures.” Mater. Struct. 41 (2): 345–350. https://doi.org/10.1617/s11527-007-9247-8.
Moghadam, M. A., and R. A. Izadifard. 2020. “Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures.” Fire Saf. J. 113 (Mar): 102978. https://doi.org/10.1016/j.firesaf.2020.102978.
Montgomery, D. C., E. A. Peck, and G. G. Vining. 2021. Introduction to linear regression analysis. New York: Wiley.
Morsy, M. S., H. Abbas, and S. H. Alsayed. 2012. “Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures.” Constr. Build. Mater. 35 (Jun): 900–905. https://doi.org/10.1016/j.conbuildmat.2012.04.099.
Mousavimehr, M., and M. Nematzadeh. 2019. “Predicting post-fire behavior of crumb rubber aggregate concrete.” Constr. Build. Mater. 229 (Apr): 116834. https://doi.org/10.1016/j.conbuildmat.2019.116834.
Mydin, M. A. O., N. M. Zamzani, and A. N. A. Ghani. 2019. “Data in brief experimental data on compressive and flexural strengths of coir fibre reinforced foamed concrete at elevated temperatures.” Data Br. 25 (Apr): 104320. https://doi.org/10.1016/j.dib.2019.104320.
Nadeem, A., S. Ali, and T. Yiu. 2014. “The performance of fly ash and metakaolin concrete at elevated temperatures.” Constr. Build. Mater. 62 (Sep): 67–76. https://doi.org/10.1016/j.conbuildmat.2014.02.073.
Naser, M. Z. 2021. “Observational analysis of fire-induced spalling of concrete through ensemble machine learning and surrogate modeling.” J. Mater. Civ. Eng. 33 (1): 4020428. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003525.
Naser, M. Z., V. Kodur, H.-T. Thai, R. Hawileh, J. Abdalla, and V. V. Degtyarev. 2021. “StructuresNet and FireNet: Benchmarking databases and machine learning algorithms in structural and fire engineering domains.” J. Build. Eng. 44 (Nov): 102977. https://doi.org/10.1016/j.jobe.2021.102977.
Nayef, A.-M., A.-R. Fahad, and B. Ahmed. 2010. “Effect of microsilica addition on compressive strength of rubberized concrete at elevated temperatures.” J Mater Cycles Waste Manage. 12 (Apr): 41–49. https://doi.org/10.1007/s10163-009-0243-7.
Netinger, I., I. Kesegic, and I. Guljas. 2011. “The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates.” Fire Saf. J. 46 (7): 425–430. https://doi.org/10.1016/j.firesaf.2011.07.002.
Noman, M., M. Yaqub, M. Abid, M. A. Musarat, N. I. Vatin, and M. Usman. 2022a. “Effects of low-cost repair techniques on restoration of mechanical properties of fire-damaged concrete.” Front. Mater. 8 (Jan): 1–14. https://doi.org/10.3389/fmats.2021.801464.
Noman, M., M. Yaqub, M. Fahad, F. Butt, and B. Khalid. 2022b. “Dynamic characteristics of RC structures in short and long duration real fires.” Case Stud. Constr. Mater. 16 (Feb): e01058. https://doi.org/10.1016/j.cscm.2022.e01058.
Noumowe, A. N., P. Clastres, G. Debicki, and J.-L. Costaz. 1996. “Transient heating effect on high strength concrete.” Nucl. Eng. Des. 166 (1): 99–108. https://doi.org/10.1016/0029-5493(96)01235-6.
Ouyang, L., M. Chai, J. Song, L. Hu, and W. Gao. 2021. “Repair of thermally damaged concrete cylinders with basalt fiber-reinforced polymer jackets.” J. Build. Eng. 44 (Nov): 102673. https://doi.org/10.1016/j.jobe.2021.102673.
Papayianni, J., and T. Valiasis. 1991. “Residual mechanical properties of heated concrete incorporating different pozzolanic materials.” Mater. Struct. 24 (2): 115–121. https://doi.org/10.1007/BF02472472.
Pasztetnik, M., and R. Wróblewski. 2021. “A literature review of concrete ability to sustain strength after fire exposure based on the heat accumulation factor.” Materials 14 (16): 4719. https://doi.org/10.3390/ma14164719.
Peng, G., W. Yang, J. Zhao, Y. Liu, S. Bian, and L. Zhao. 2006. “Explosive spalling and residual mechanical properties of fiber-toughened high-performance concrete subjected to high temperatures.” Cem. Concr. Res. 36 (4): 723–727. https://doi.org/10.1016/j.cemconres.2005.12.014.
Phan, L. T., and N. J. Carino. 2002. “Effects of test conditions and mixture proportions on behavior of high-strength concrete exposed to high temperatures.” ACI Mater. J. 99 (1): 54–66. https://doi.org/10.14359/11317.
Qin, D., P. Gao, F. Aslam, M. Sufian, and H. Alabduljabbar. 2022. “A comprehensive review on fire damage assessment of reinforced concrete structures.” Case Stud. Constr. Mater. 16 (Apr): e00843. https://doi.org/10.1016/j.cscm.2021.e00843.
Rahim, A., U. K. Sharma, K. Murugesan, A. Sharma, and P. Arora. 2013. “Multi-response optimization of post-fire residual compressive strength of high performance concrete.” Constr. Build. Mater. 38 (Sep): 265–273. https://doi.org/10.1016/j.conbuildmat.2012.08.048.
Rajczakowska, M., M. Szeląg, K. Habermehl-Cwirzen, H. Hedlund, and A. Cwirzen. 2023. “Interpretable machine learning for prediction of post-fire self-healing of concrete.” Materials 16 (3): 1273. https://doi.org/10.3390/ma16031273.
Rani, D., N. S. Gill, P. Gulia, and J. M. Chatterjee. 2022. “An ensemble-based multiclass classifier for intrusion detection using internet of things.” Comput. Intell. Neurosci. 2022 (May): 1–16. https://doi.org/10.1155/2022/1668676.
Saad, M., S. A. Abo-El-Enein, G. B. Hanna, and M. F. Kotkata. 1996. “Effect of temperature on physical and mechanical properties of concrete containing silica fume.” Cem. Concr. Res. 26 (5): 669–675. https://doi.org/10.1016/S0008-8846(96)85002-2.
Sadrmomtazi, A., S. H. Gashti, and B. Tahmouresi. 2020. “Residual strength and microstructure of fiber reinforced self-compacting concrete exposed to high temperatures.” Constr. Build. Mater. 230 (Jan): 116969. https://doi.org/10.1016/j.conbuildmat.2019.116969.
Sairam, N. V., and K. S. S. Ram. 2019. “Performance of concrete at elevated temperatures made with crushed rock dust as filler material.” Mater. Today Proc. 18 (Jan): 2270–2278. https://doi.org/10.1016/j.matpr.2019.07.009.
Sakr, K., and E. El-hakim. 2005. “Effect of high temperature or fire on heavy weight concrete properties.” Cem. Concr. Res. 35 (3): 590–596. https://doi.org/10.1016/j.cemconres.2004.05.023.
Sancak, E., Y. D. Sari, and O. Simsek. 2008. “Effects of elevated temperature on compressive strength and weight loss of the light-weight concrete with silica fume and superplasticizer.” Cem. Concr. Compos. 30 (8): 715–721. https://doi.org/10.1016/j.cemconcomp.2008.01.004.
Sardar, H., R. Arsalan, W. Khaliq, H. Anis, and M. Farhan. 2022. “Influence of pyrolytic waste tire residue on the residual performance of high strength concrete exposed to elevated temperatures.” J. Build. Eng. 54 (Feb): 104657. https://doi.org/10.1016/j.jobe.2022.104657.
Schapire, R. E. 2013. “Explaining AdaBoost.” In Empirical inference Festschrift Honor Vladimir N. Vapnik, 37–52. Berlin: Springer.
Sedaghatdoost, A., K. Behfarnia, M. Bayati, and M. Vaezi. 2019. “Influence of recycled concrete aggregates on alkali-activated slag mortar exposed to elevated temperatures.” J. Build. Eng. 26 (Jul): 100871. https://doi.org/10.1016/j.jobe.2019.100871.
Serrano, R., A. Cobo, M. I. Prieto, M. De, and N. González. 2016. “Analysis of fire resistance of concrete with polypropylene or steel fibers.” Constr. Build. Mater. 122 (Sep): 302–309. https://doi.org/10.1016/j.conbuildmat.2016.06.055.
Shapley, L. S. 1953. “Stochastic games.” Proc. Natl. Acad. Sci. 39 (10): 1095–1100. https://doi.org/10.1073/pnas.39.10.1095.
Shihada, S. 2011. “Effect of polypropylene fibers on concrete fire resistance.” J. Civ. Eng. Manage. 17 (2): 259–264. https://doi.org/10.3846/13923730.2011.574454.
Siddique, R., and D. Kaur. 2012. “Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures.” J. Adv. Res. 3 (1): 45–51. https://doi.org/10.1016/j.jare.2011.03.004.
Sideris, K. K., P. Manita, and E. Chaniotakis. 2009. “Performance of thermally damaged fibre reinforced concretes.” Constr. Build. Mater. 23 (3): 1232–1239. https://doi.org/10.1016/j.conbuildmat.2008.08.009.
Song, J., W. Gao, L. Ouyang, J. Zeng, and J. Yang. 2021. “Compressive behavior of heat-damaged square concrete prisms confined with basalt fiber-reinforced polymer jackets.” Eng. Struct. 242 (Nov): 112504. https://doi.org/10.1016/j.engstruct.2021.112504.
Tai, Y., H. Pan, and Y. Kung. 2011. “Mechanical properties of steel fiber reinforced reactive powder concrete following exposure to high temperature reaching 800°C.” Nucl. Eng. Des. 241 (7): 2416–2424. https://doi.org/10.1016/j.nucengdes.2011.04.008.
Tanaçan, L., H. Yas, and Ü. Arpacıog. 2009. “Effect of high temperature and cooling conditions on aerated concrete properties.” Constr. Build. Mater. 23 (3): 1240–1248. https://doi.org/10.1016/j.conbuildmat.2008.08.007.
Tang, W. C., and T. Y. Lo. 2009. “Mechanical and fracture properties of normal- and high-strength concretes with fly ash after exposure to high temperatures.” Mag. Concr. Res. 61 (5): 323–330. https://doi.org/10.1680/macr.2008.00084.
Tanyildizi, H. 2008. “Effect of temperature, carbon fibers, and silica fume on the mechanical properties of lightweight concretes.” New Carbon Mater. 23 (4): 339–344. https://doi.org/10.1016/S1872-5805(09)60005-6.
Tanyildizi, H., and A. Coskun. 2008. “The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash.” Constr. Build. Mater. 22 (11): 2269–2275. https://doi.org/10.1016/j.conbuildmat.2007.07.033.
Tanyildizi, H., and Y. Yonar. 2016. “Mechanical properties of geopolymer concrete containing polyvinyl alcohol fiber exposed to high temperature.” Constr. Build. Mater. 126 (Sep): 381–387. https://doi.org/10.1016/j.conbuildmat.2016.09.001.
Thai, H.-T. 2022. “Machine learning for structural engineering: A state-of-the-art review.” Structures 38 (Apr): 448–491. https://doi.org/10.1016/j.istruc.2022.02.003.
Tolentino, E., F. S. Lameiras, A. M. Gomes, and W. L. Vasconcelos. 2002. “Effects of high temperature on the residual performance.” Mater. Res. 5 (3): 301–307. https://doi.org/10.1590/S1516-14392002000300014.
Torić, N., I. Boko, and B. Peroš. 2013. “Reduction of postfire properties of high-strength concrete.” Adv. Mater. Sci. Eng. 2013 (2013): 1–9. https://doi.org/10.1155/2013/712953.
Tran, V. Q. 2022. “Machine learning approach for investigating chloride diffusion coefficient of concrete containing supplementary cementitious materials.” Constr. Build. Mater. 328 (Apr): 127103. https://doi.org/10.1016/j.conbuildmat.2022.127103.
Trt, K., and O. Kapi. 2004. “The effect of temperature on strength–porosity relationship for concrete.” Constr. Build. Mater. 18 (Apr): 529–534. https://doi.org/10.1016/j.conbuildmat.2004.04.009.
Tufail, M., K. Shahzada, B. Gencturk, and J. Wei. 2016. “Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete.” Int. J. Concr. Struct. Mater. 10 (1): 1–6. https://doi.org/10.1007/s40069-016-0175-2.
Tufail, M., K. Shahzada, B. Gencturk, and J. Wei. 2017. “Effect of elevated temperature on mechanical properties of limestone, quartzite and granite concrete.” Int. J. Concr. Struct. Mater. 11 (1): 17–28. https://doi.org/10.1007/s40069-016-0175-2.
Turner, R., D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. 2021. “Bayesian optimization is superior to random search for machine learning hyperparameter tuning: Analysis of the black-box optimization challenge 2020.” In Proc., NeurIPS 2020 Competition and Demonstration Track, 3–26. Stockholm, Sweden: Proceedings of Machine Learning Research.
Usman, M., M. Yaqub, M. Auzair, W. Khaliq, M. Noman, and A. Afaq. 2021. “Restorability of strength and stiffness of fire damaged concrete using various composite confinement techniques.” Constr. Build. Mater. 272 (Feb): 121984. https://doi.org/10.1016/j.conbuildmat.2020.121984.
Uysal, M. 2012. “Self-compacting concrete incorporating filler additives: Performance at high temperatures.” Constr. Build. Mater. 26 (1): 701–706. https://doi.org/10.1016/j.conbuildmat.2011.06.077.
Uysal, M., K. Yilmaz, and M. Ipek. 2012. “Properties and behavior of self-compacting concrete produced with GBFS and FA additives subjected to high temperatures.” Constr. Build. Mater. 28 (1): 321–326. https://doi.org/10.1016/j.conbuildmat.2011.08.076.
Varona, F. B., F. J. Baeza, D. Bru, and S. Ivorra. 2018. “Influence of high temperature on the mechanical properties of hybrid fibre reinforced normal and high strength concrete.” Constr. Build. Mater. 159 (Jun): 73–82. https://doi.org/10.1016/j.conbuildmat.2017.10.129.
Vieira, J. P. B., J. R. Correia, and J. De Brito. 2011. “Cement and concrete research post-fire residual mechanical properties of concrete made with recycled concrete coarse aggregates.” Cem. Concr. Res. 41 (5): 533–541. https://doi.org/10.1016/j.cemconres.2011.02.002.
Wang, W., C. Lu, Y. Li, and Q. Li. 2017. “An investigation on thermal conductivity of fly ash concrete after elevated temperature exposure.” Constr. Build. Mater. 148 (Aug): 148–154. https://doi.org/10.1016/j.conbuildmat.2017.05.068.
Wang, W., H. Wang, K. Chang, and S. Wang. 2020. “Effect of high temperature on the strength and thermal conductivity of glass fiber concrete.” Constr. Build. Mater. 245 (Sep): 118387. https://doi.org/10.1016/j.conbuildmat.2020.118387.
Wang, Y., F. Liu, L. Xu, and H. Zhao. 2019. “Effect of elevated temperatures and cooling methods on strength of concrete made with coarse and fine recycled concrete aggregates.” Constr. Build. Mater. 210 (Jun): 540–547. https://doi.org/10.1016/j.conbuildmat.2019.03.215.
Willmott, C. J., and K. Matsuura. 2005. “Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance.” Clim. Res. 30 (1): 79–82. https://doi.org/10.3354/cr030079.
Xia, Y., C. Liu, Y. Li, and N. Liu. 2017. “A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring.” Expert Syst. Appl. 78 (Feb): 225–241. https://doi.org/10.1016/j.eswa.2017.02.017.
Xiao, J., and H. Falkner. 2006. “On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures.” Fire Saf. J. 41 (2): 115–121. https://doi.org/10.1016/j.firesaf.2005.11.004.
Xiao, J., Z. Li, Q. Xie, and L. Shen. 2016. “Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures.” Fire Saf. J. 83 (Sep): 25–37. https://doi.org/10.1016/j.firesaf.2016.04.006.
Xiao, J., M. Xie, and C. Zhang. 2006. “Residual compressive behaviour of pre-heated high-performance concrete with blast–furnace–slag.” Fire Saf. J. 41 (2): 91–98. https://doi.org/10.1016/j.firesaf.2005.11.001.
Xu, Y., Y. L. Wong, C. S. Poon, and M. Anson. 2016. “Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures.” Cem. Concr. Res. 33 (2003): 2009–2016. https://doi.org/10.1016/S0008-8846(03)00216-3.
Yang, H. 2018. “Residual cube strength of coarse RCA concrete after exposure to elevated temperatures.” Fire Mater. 42 (4): 424–435. https://doi.org/10.1002/fam.2508.
Yasin, M., and A. Hayrullah. 2019. “High temperature resistance of concretes with GGBFS, waste glass powder, and colemanite ore wastes after different cooling conditions.” Constr. Build. Mater. 196 (Jun): 66–81. https://doi.org/10.1016/j.conbuildmat.2018.11.087.
Yazıcı, Ş., G. İ. Sezer, and H. Şengül. 2012. “The effect of high temperature on the compressive strength of mortars.” Constr. Build. Mater. 35 (Oct): 97–100. https://doi.org/10.1016/j.conbuildmat.2012.02.082.
Yermak, N., P. Pliya, A. Beaucour, A. Simon, and A. Noumowé. 2017. “Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties.” Constr. Build. Mater. 132 (Sep): 240–250. https://doi.org/10.1016/j.conbuildmat.2016.11.120.
Yin, S., N. Chan, X. Luo, W. Sun, C. Consulting, B. Centre, N. Road, and H. Kong. 2000. “Effect of high temperature and cooling regimes on the compressive strength and pore properties of high performance concrete.” Constr. Build. Mater. 14 (5): 261–266. https://doi.org/10.1016/S0950-0618(00)00031-3.
Yoon, M., G. Kim, G. Choel, Y. Lee, and T. Lee. 2015. “Effect of coarse aggregate type and loading level on the high temperature properties of concrete.” Constr. Build. Mater. 78 (Mar): 26–33. https://doi.org/10.1016/j.conbuildmat.2014.12.096.
Yu, X., L. Chen, Q. Fang, Z. Ruan, J. Hong, and H. Xiang. 2017. “A concrete constitutive model considering coupled effects of high temperature and high strain rate.” Int. J. Impact Eng. 101 (Jun): 66–77. https://doi.org/10.1016/j.ijimpeng.2016.11.009.
Zega, C. J., and A. A. Di Maio. 2009. “Recycled concrete made with different natural coarse aggregates exposed to high temperature.” Constr. Build. Mater. 23 (5): 2047–2052. https://doi.org/10.1016/j.conbuildmat.2008.08.017.
Zhai, Y., Z. Deng, N. Li, and R. Xu. 2014. “Study on compressive mechanical capabilities of concrete after high temperature exposure and thermo-damage constitutive model.” Constr. Build. Mater. 68 (Apr): 777–782. https://doi.org/10.1016/j.conbuildmat.2014.06.052.
Zhang, B. 2011. “Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures.” Fire Saf. J. 46 (8): 543–549. https://doi.org/10.1016/j.firesaf.2011.07.010.
Zhang, B., N. Bicanic, C. J. Pearce, and D. V. Phillips. 2002. “Relationship between brittleness and moisture loss of concrete exposed to high temperatures.” Cem. Concr. Res. 32 (3): 363–371. https://doi.org/10.1016/S0008-8846(01)00684-6.
Zhang, J., G. Ma, Y. Huang, F. Aslani, and B. Nener. 2019. “Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression.” Constr. Build. Mater. 210 (Aug): 713–719. https://doi.org/10.1016/j.conbuildmat.2019.03.189.
Zhao, H., F. Liu, and H. Yang. 2020. “Residual compressive response of concrete produced with both coarse and fine recycled concrete aggregates after thermal exposure.” Constr. Build. Mater. 244 (Jun): 118397. https://doi.org/10.1016/j.conbuildmat.2020.118397.
Zhao, X.-Y., J.-X. Chen, and B. Wu. 2022. “An interpretable ensemble-learning-based open source model for evaluating the fire resistance of concrete-filled steel tubular columns.” Eng. Struct. 270 (Nov): 114886. https://doi.org/10.1016/j.engstruct.2022.114886.
Zheng, W., H. Li, and Y. Wang. 2012. “Compressive stress–strain relationship of steel fiber-reinforced reactive powder concrete after exposure to elevated temperatures.” Constr. Build. Mater. 35 (Sep): 931–940. https://doi.org/10.1016/j.conbuildmat.2012.05.031.
Zuda, L., J. Drchalová, P. Rovnaník, and P. Bayer. 2010. “Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties.” Cem. Concr. Compos. 32 (2): 157–163. https://doi.org/10.1016/j.cemconcomp.2009.11.009.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 29Issue 4November 2024

History

Received: Dec 27, 2023
Accepted: Apr 3, 2024
Published online: Jun 27, 2024
Published in print: Nov 1, 2024
Discussion open until: Nov 27, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Muhammad Noman, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, International Islamic Univ., Islamabad 44000, Pakistan. Email: [email protected]
Afaq Khattak, Ph.D. [email protected]
Postdoc Fellow, College of Transportation Engineering, Tongji Univ., Jiading Campus, Shanghai 201804, China. Email: [email protected]
Zeshan Alam, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, International Islamic Univ., Islamabad 44000, Pakistan. Email: [email protected]
Muhammad Yaqub, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Univ. of Engineering and Technology, Taxila 47080, Pakistan. Email: [email protected]
Senior Researcher, Urban Transformations Research Centre, Western Sydney Univ., Sydney, NSW 2150, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-2790-526X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share