Technical Papers
Jan 30, 2024

A Cost-Effective Slag-Based Mix Activated with Soda Ash and Hydrated Lime: A Pilot Study

Publication: Practice Periodical on Structural Design and Construction
Volume 29, Issue 2

Abstract

The present study explores a cost-effective method for using activated ground granulated blast furnace slag (GGBFS) and silica fume (SF) as cement substitutes. Instead of activating them with expensive alkali solutions, the present study employs industrial-grade powdered sodium aluminate (SA) and hydrated lime (HL) as activators, reducing expenses by about 94.5% compared to their corresponding analytical-grade counterparts. Herein, the exclusivity is depicted using less pure chemicals rather than relying on reagents with 99% purity. Two mixing techniques are compared: one involves directly introducing powdered SA and HL, while the other premixes SA with water before adding it to a dry powder mixture of GGBFS, SF, and HL. Microstructural analysis reveals that the initial strength results from various hydrate phases, including calcium–sodium–aluminate–silicate hydrate. The latter strength is attributed to the coexistence of calcium–silicate hydrate, calcium–aluminate–silicate hydrate, and sodium–aluminate–silicate hydrate, with contributions from calcite and hydrotalcite. The SF content significantly influenced the formation of these gel phases. Thermogravimetric analysis (TGA) reveals phase transitions and bound water related to hydration products. The optimal mix comprises 10% SF, 90% GGBFS, 9.26% HL, and 13.25% SA, with a water-to-solid ratio of 0.45. This approach yields a compressive strength of 35.1 MPa after 28 days and 41.33 MPa after 120 days, hence being suitable for structural construction.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

References

Abdalqader, A., F. Jin, and A. Al-Tabbaa. 2019. “Performance of magnesia-modified sodium carbonate-activated slag/fly ash concrete.” Cem. Concr. Compos. 103 (Oct): 160–174. https://doi.org/10.1016/j.cemconcomp.2019.05.007.
Abdalqader, A. F., F. Jin, and A. Al-Tabbaa. 2016. “Development of greener alkali-activated cement: Utilization of sodium carbonate for activating slag and fly ash mixtures.” J. Cleaner Prod. 113 (Feb): 66–75. https://doi.org/10.1016/j.jclepro.2015.12.010.
Adeleke, B., J. Kinuthia, and J. Oti. 2021. “Optimization of MgO-GGBS cementitious systems using thermo-chemical approaches.” Sustainability 13 (16): 9378. https://doi.org/10.3390/su13169378.
Adesanya, E., K. Ohenoja, T. Luukkonen, P. Kinnunen, and M. Illikainen. 2018. “One-part geopolymer cement from slag and pretreated paper sludge.” J. Cleaner Prod. 185 (Jun): 168–175. https://doi.org/10.1016/j.jclepro.2018.03.007.
Adesina, A. 2020. “Influence of various additives on the early age compressive strength of sodium carbonate activated slag composites: An overview.” J. Mech. Behav. Mater. 29 (1): 106–113. https://doi.org/10.1515/jmbm-2020-0011.
Ahari, R. S., T. K. Erdem, and K. Ramyar. 2015. “Effect of various supplementary cementitious materials on rheological properties of self-consolidating concrete.” Constr. Build. Mater. 75 (Jan): 89–98. https://doi.org/10.1016/j.conbuildmat.2014.11.014.
Akturk, B., S. Nayak, S. Das, and A. B. Kizilkanat. 2019. “Microstructure and strength development of sodium carbonate–activated blast furnace slags.” J. Mater. Civ. Eng. 31 (11): 04019283. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002944.
Alonso, M. M., C. Gascó, M. M. Morales, J. A. Suárez-Navarro, M. Zamorano, and F. Puertas. 2019. “Olive biomass ash as an alternative activator in geopolymer formation: A study of strength, durability, radiology and leaching behaviour.” Cem. Concr. Compos. 104 (Nov): 103384. https://doi.org/10.1016/j.cemconcomp.2019.103384.
Arshad, M. T., S. Ahmad, A. Khitab, and A. Hanif. 2021. “Synergistic use of fly ash and silica fume to produce high-strength self-compacting cementitious composites.” Crystals 11 (8): 95. https://doi.org/10.3390/cryst11080915.
Athira, G., and A. Bahurudeen. 2022. “Rheological properties of cement paste blended with sugarcane bagasse ash and rice straw ash.” Constr. Build. Mater. 332 (May): 127377. https://doi.org/10.1016/j.conbuildmat.2022.127377.
Bakharev, T. 2005. “Geopolymeric materials prepared using Class F fly ash and elevated temperature curing.” Cem. Concr. Res. 35 (6): 1224–1232. https://doi.org/10.1016/j.cemconres.2004.06.031.
Bernal, S. A., J. L. Provis, R. J. Myers, R. San Nicolas, and J. S. J. van Deventer. 2014. “Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders.” Mater. Struct. 48 (3): 517–529. https://doi.org/10.1617/s11527-014-0412-6.
Bhatty, J. I. 1986. “Hydration versus strength in a portland cement developed from domestic mineral wastes–A comparative study.” Thermochim. Acta 106 (Sep): 93–103. https://doi.org/10.1016/0040-6031(86)85120-6.
BSI (British Standards Institution). 1992. Specification for Ground granulated blastfurnace slag for use with Portland cement. BS 6699. London: BSI.
Cheah, C. B., L. E. Tan, and M. Ramli. 2019. “The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume.” Composites, Part B 160 (Mar): 558–572. https://doi.org/10.1016/j.compositesb.2018.12.056.
Correa-Yepes, J. A., N. Rojas-Reyes, and J. I. Tobón. 2018. “Effect of fly ash and silica fume on rheology, compressive strength and self-compacting in cement mixtures.” Dyna 85 (206): 59–68. https://doi.org/10.15446/dyna.v85n206.68960.
Deboucha, W., N. Leklou, A. Khelidj, and M. N. Oudjit. 2017. “Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): Methodology of calculating the degree of hydration.” Constr. Build. Mater. 146 (Aug):687–701. https://doi.org/10.1016/j.conbuildmat.2017.04.132.
De Silva, P., L. Bucea, and V. Sirivivatnanon. 2009. “Chemical, microstructural and strength development of calcium and magnesium carbonate binders.” Cem. Concr. Res. 39 (5): 105. https://doi.org/10.1016/j.cemconres.2009.02.003.
De Silva, P., K. Sagoe-Crenstil, and V. Sirivivatnanon. 2007. “Kinetics of geopolymerization: Role of Al2O3 and SiO2.” Cem. Concr. Res. 37 (4): 512–518. https://doi.org/10.1016/j.cemconres.2007.01.003.
Fawer, M., M. Concannon, and W. Rieber. 1999. “Life cycle inventories for the production of sodium silicates.” Int. J. Life Cycle Assess. 4 (4): 207–212. https://doi.org/10.1007/BF02979498.
Fernández-Jiménez, A., and F. Puertas. 2001. “Setting of alkali-activated slag cement. Influence of activator nature.” Adv. Cem. Res. 13 (3): 115–121. https://doi.org/10.1680/adcr.2001.13.3.115.
Flower, D. J. M., and J. G. Sanjayan. 2007. “Green house gas emissions due to concrete manufacture.” Int. J. Life Cycle Assess. 12 (5): 282–288. https://doi.org/10.1065/lca2007.05.327.
Garcia-Lodeiro, I., A. Palomo, and A. Fernández-Jiménez. 2015. “Crucial insights on the mix design of alkali-activated cement-based binders.” In Handbook of alkali-activated cements, mortars and concretes. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1533/9781782422884.1.49.
Garcia-Lodeiro, I., A. Palomo, A. Fernández-Jiménez, and D. E. MacPhee. 2011. “Compatibility studies between N─ A─ S─ H and C─ A─ S─ H gels. Study in the ternary diagram Na2OCaOAl2O3SiO2H2O.” Cem. Concr. Res. 41 (9): 923–931. https://doi.org/10.1016/j.cemconres.2011.05.006.
Gu, K., F. Jin, A. Al-Tabbaa, B. Shi, and J. Liu. 2014. “Mechanical and hydration properties of ground granulated blastfurnace slag pastes activated with MgO-CaO mixtures.” Constr. Build. Mater. 69 (Oct): 101–108. https://doi.org/10.1016/j.conbuildmat.2014.07.032.
Haha, M. B., B. Lothenbach, G. Le Saout, and F. Winnefeld. 2011. “Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag–Part I: Effect of MgO.” Cem. Concr. Res. 41 (9): 955–963. https://doi.org/10.1016/j.cemconres.2011.05.002.
Handayani, L., S. Aprilia, C. Rahmawati, T. B. Aulia, P. Ludvig, and J. Ahmad. 2022. “Sodium silicate from rice husk ash and their effects as geopolymer cement.” Polymers 14 (14): 2920. https://doi.org/10.3390/polym14142920.
Hardjito, D., and B. V. Rangan. 2005. Development and properties of low-calcium fly ash based geopolymer low-calcium fly ash-based geopolymer concrete. Australia, Perth: Univ. of Technology Perth.
IPCS (International Programme on Chemical Safety). 1998. Chemical safety training modules. Geneva: International Labour Organization.
ISO. 1988. Methods of physical tests for hydraulic cement. IS 4031-Part6. Geneva: ISO.
ISO. 1991. Indian specification for standard sand for testing of cement. IS 650:1991. Geneva: ISO.
Jackson, M. D., S. R. Mulcahy, H. Chen, Y. Li, Q. Li, P. Cappelletti, and H. R. Wenk. 2017. “Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete.” Am. Mineral. 102 (7): 1435–1450. https://doi.org/10.2138/am-2017-5993CCBY.
Jagad, G., C. Modhera, D. Patel, and V. Patel. 2023a. “Mechanical and microstructural behavior of high strength geopolymer concrete inclusion of various industrial wastes.” Innovative Infrastruct. Solutions 8 (6): 181. https://doi.org/10.1007/s41062-023-01149-y.
Jagad, G., C. Modhera, D. Patel, and V. Patel. 2023b. “Mechanical and microstructural characteristics of manufactured sand-based high-strength geopolymer concrete and its environmental impact.” Pract. Period. Struct. Des. Constr. 28 (4): 04023036. https://doi.org/10.1061/PPSCFX.SCENG-1308.
Jeon, D., Y. Jun, Y. Jeong, and J. E. Oh. 2015. “Microstructural and strength improvements through the use of Na2CO3 in a cementless Ca(OH)2-activated Class F fly ash system.” Cem. Concr. Res. 67 (Jan): 215–225. https://doi.org/10.1016/j.cemconres.2014.10.001.
Jin, F., K. Gu, and A. Al-Tabbaa. 2015. “Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste.” Cem. Concr. Compos. 57 (Mar): 8–16. https://doi.org/10.1016/j.cemconcomp.2014.10.007.
Kang, S. H., Y. H. Kwon, S. G. Hong, S. Chun, and J. Moon. 2019. “Hydrated lime activation on byproducts for eco-friendly production of structural mortars.” J. Cleaner Prod. 231 (Sep): 1389–1398. https://doi.org/10.1016/j.jclepro.2019.05.313.
Kearsley, E. P., M. Kovtun, and J. Shekhovtsova. 2015. “Dry powder alkali-activated slag cements.” Adv. Cem. Res. 27 (8): 447–456. https://doi.org/10.1680/jadcr.14.00078.
Khan, N., D. Dollimore, K. Alexander, and F. W. Wilburn. 2001. “The origin of the exothermic peak in the thermal decomposition of basic magnesium carbonate.” Thermochim. Acta 367 (Mar): 321–333. https://doi.org/10.1016/S0040-6031(00)00669-9.
Khater, H. M. 2013. “Effect of silica fume on the characterization of the geopolymer materials.” Int. J. Adv. Struct. Eng. 5 (1): 1–10. https://doi.org/10.1186/2008-6695-5-12.
Kovtun, M., E. P. Kearsley, and J. Shekhovtsova. 2015. “Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate.” Cem. Concr. Res. 72 (Mar): 1–9. https://doi.org/10.1016/j.cemconres.2015.02.014.
Lee, W. K. W., and J. S. J. Van Deventer. 2002. “The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements.” Cem. Concr. Res. 32 (4): 577–584. https://doi.org/10.1016/S0008-8846(01)00724-4.
Li, L., H. A. Ali, J. X. Lu, and C. S. Poon. 2022. “Role of silica fume in alkali-activated slag/glass powder paste.” Constr. Build. Mater. 356 (Nov): 129189. https://doi.org/10.1016/j.conbuildmat.2022.129189.
Luukkonen, T., Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, and M. Illikainen. 2018. “One-part alkali-activated materials: A review.” Cem. Concr. Res. 103 (Nov): 21–34. https://doi.org/10.1016/j.cemconres.2017.10.001.
Ma, C., B. Zhao, S. Guo, G. Long, and Y. Xie. 2019. “Properties and characterization of green one-part geopolymer activated by composite activators.” J. Cleaner Prod. 220 (May): 188–199. https://doi.org/10.1016/j.jclepro.2019.02.159.
Mahon, D., G. Claudio, and P. Eames. 2021. “An experimental study of the decomposition and carbonation of magnesium carbonate for medium temperature thermochemical energy storage.” Energies 14 (5): 1316. https://doi.org/10.3390/en14051316.
Memon, F. A., M. F. Nuruddin, and N. Shafiq. 2013. “Effect of silica fume on the fresh and hardened properties of fly ash-based self-compacting geopolymer concrete.” Int. J. Miner. Metall. Mater. 20 (2): 205–213. https://doi.org/10.1007/s12613-013-0714-7.
Merck. 2023a. “Calcium hydroxide CAS 1305-62-0 | 102047.” Merck. Accessed March 31, 2023. https://www.merckmillipore.com/IN/en/product/Calcium-hydroxide,MDA_CHEM-102047.
Merck. 2023b. “Sodium carbonate CAS 497-19-8 | 106392.” Merck. Accessed March 31, 2023. https://www.merckmillipore.com/IN/en/product/Sodium-carbonate,MDA_CHEM-106392.
Merck. 2023c. “Sodium hydroxide CAS 1310-73-2 | 106462.” Merck. Accessed March 31, 2023. https://www.merckmillipore.com/IN/en/product/Sodium-hydroxide,MDA_CHEM-106462.
Monteagudo, S. M., A. Moragues, J. C. Gálvez, M. J. Casati, and E. Reyes. 2014. “The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases.” Thermochim. Acta 592 (Sep): 37–51. https://doi.org/10.1016/j.tca.2014.08.008.
Montes-Hernandez, G., N. Findling, and F. Renard. 2016. “Dissolution-precipitation reactions controlling fast formation of dolomite under hydrothermal conditions.” Appl. Geochem. 73 (Oct): 169–177. https://doi.org/10.1016/j.apgeochem.2016.08.011.
Moraes, J. C. B., M. M. Tashima, J. L. Akasaki, J. L. P. Melges, J. Monzó, M. V. Borrachero, L. Soriano, and J. Payá. 2017. “Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS).” Constr. Build. Mater. 144 (Jul): 214–224. https://doi.org/10.1016/j.conbuildmat.2017.03.166.
Nematollahi, B., J. Sanjayan, and F. U. A. Shaikh. 2015. “Synthesis of heat and ambient cured one-part geopolymer mixes with different grades of sodium silicate.” Ceram. Int. 41 (4): 5696–5704. https://doi.org/10.1016/j.ceramint.2014.12.154.
Nežerka, V., P. Bílý, V. Hrbek, and J. Fládr. 2019. “Impact of silica fume, fly ash, and metakaolin on the thickness and strength of the ITZ in concrete.” Cem. Concr. Compos. 103 (Oct): 252–262. https://doi.org/10.1016/j.cemconcomp.2019.05.012.
Pane, I., and W. Hansen. 2005. “Investigation of blended cement hydration by isothermal calorimetry and thermal analysis.” Cem. Concr. Res. 35 (6): 1155–1164. https://doi.org/10.1016/j.cemconres.2004.10.027.
Park, C. K., M. H. Noh, and T. H. Park. 2005. “Rheological properties of cementitious materials containing mineral admixtures.” Cem. Concr. Res. 35 (5): 842–849. https://doi.org/10.1016/j.cemconres.2004.11.002.
Peyne, J., J. Gautron, J. Doudeau, E. Joussein, and S. Rossignol. 2017. “Influence of calcium addition on calcined brick clay based geopolymers: A thermal and FTIR spectroscopy study.” Constr. Build. Mater. 152 (Mar): 794–803. https://doi.org/10.1016/j.conbuildmat.2017.07.047.
Ponce-Antón, G., L. A. Ortega, M. C. Zuluaga, A. Alonso-Olazabal, and J. L. Solaun. 2018. “Hydrotalcite and hydrocalumite in mortar binders from the medieval castle of portilla (Álava, north Spain): Accurate mineralogical control to achieve more reliable chronological ages.” Minerals 8 (8): 326. https://doi.org/10.3390/min8080326.
Provis, J. L. 2018. “Alkali-activated materials.” Cem. Concr. Res. 114 (Dec): 40–48. https://doi.org/10.1016/j.cemconres.2017.02.009.
Reddy, M. S., P. Dinakar, and B. H. Rao. 2018. “Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete.” J. Build. Eng. 20 (Nov): 712–722. https://doi.org/10.1016/j.jobe.2018.09.010.
Rostami, M., and K. Behfarnia. 2017. “The effect of silica fume on durability of alkali activated slag concrete.” Constr. Build. Mater. 134 (Mar): 262–268. https://doi.org/10.1016/j.conbuildmat.2016.12.072.
Seymour, L. M., N. Tamura, M. D. Jackson, and A. Masic. 2022. “Reactive binder and aggregate interfacial zones in the mortar of Tomb of Caecilia Metella concrete, 1C BCE, Rome.” J. Am. Ceram. Soc. 105 (2): 1503–1518. https://doi.org/10.1111/jace.18133.
Shi, C., A. F. Jiménez, and A. Palomo. 2011. “New cements for the 21st century: The pursuit of an alternative to Portland cement.” Cem. Concr. Res. 41 (7): 750–763. https://doi.org/10.1016/j.cemconres.2011.03.016.
Shreeram Chemical Industries. 2022. “Hydrated lime.” IndiaMART. Accessed March 31, 2023. https://www.indiamart.com/shreeramchemicalindustries/search.html?ss=hydrated+lime.
Song, H., Y. Jeong, S. Bae, Y. Jun, S. Yoon, and J. Eun Oh. 2018. “A study of thermal decomposition of phases in cementitious systems using HT-XRD and TG.” Constr. Build. Mater. 169 (Apr): 648–661. https://doi.org/10.1016/j.conbuildmat.2018.03.001.
Tata Chemicals Limited. 2022. “Circular for soda-ash price revision.” Tata. Accessed March 31, 2023. https://www.tatachemicals.com/upload/images/circular-for-soda-ash-price-revision-22-11-07.pdf.
Teh, S. H., T. Wiedmann, A. Castel, and J. de Burgh. 2017. “Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia.” J. Cleaner Prod. 152 (May): 312–320. https://doi.org/10.1016/j.jclepro.2017.03.122.
Vigneshwari, M., K. Arunachalam, and A. Angayarkanni. 2018. “Replacement of silica fume with thermally treated rice husk ash in reactive powder concrete.” J. Cleaner Prod. 188 (Jul): 264–277. https://doi.org/10.1016/j.jclepro.2018.04.008.
Walkley, B., R. San Nicolas, M. A. Sani, S. A. Bernal, J. S. J. van Deventer, and J. L. Provis. 2017. “Structural evolution of synthetic alkali-activated CaOMgONa2OAl2O3SiO2 materials is influenced by Mg content.” Cem. Concr. Res. 99 (Sep): 155–171. https://doi.org/10.1016/j.cemconres.2017.05.006.
Wang, J., X. J. Lyu, L. Wang, X. Cao, Q. Liu, and H. Zang. 2018. “Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders.” J. Cleaner Prod. 171 (Jan): 622–629. https://doi.org/10.1016/j.jclepro.2017.10.077.
Wang, S. D., and K. L. Scrivener. 1995. “Hydration products of alkali activated slag cement.” Cem. Concr. Res. 25 (3): 561–571. https://doi.org/10.1016/0008-8846(95)00045-E.
Wu, M., Y. Zhang, Y. Ji, G. Liu, C. Liu, W. She, and W. Sun. 2018. “Reducing environmental impacts and carbon emissions: Study of effects of superfine cement particles on blended cement containing high volume mineral admixtures.” J. Cleaner Prod. 196 (Mar): 358–369. https://doi.org/10.1016/j.jclepro.2018.06.079.
Yang, W., Y. Kim, P. K. T. Liu, M. Sahimi, and T. T. Tsotsis. 2002. “A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide.” Chem. Eng. Sci. 57 (15): 2945–2953. https://doi.org/10.1016/S0009-2509(02)00185-9.
Yip, C. K., G. C. Lukey, and J. S. J. van Deventer. 2005. “The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation.” Cem. Concr. Res. 35 (9): 1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042.

Information & Authors

Information

Published In

Go to Practice Periodical on Structural Design and Construction
Practice Periodical on Structural Design and Construction
Volume 29Issue 2May 2024

History

Received: Jul 8, 2023
Accepted: Nov 8, 2023
Published online: Jan 30, 2024
Published in print: May 1, 2024
Discussion open until: Jun 30, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India (corresponding author). ORCID: https://orcid.org/0000-0002-6892-3480. Email: [email protected]
Nirjhar Dhang
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
Arghya Deb
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share