Technical Papers
Oct 4, 2023

Flood Hazards Mapping by Linking CF, AHP, and Fuzzy Logic Techniques in Urban Areas

Publication: Natural Hazards Review
Volume 25, Issue 1

Abstract

Flooding has become a devastating natural hazard worldwide, posing a substantial hazard to civilization and leading to socioeconomic losses. Urban flooding in India is on the rise due to unplanned urbanization, uncontrolled population growth, and changes in land use. For this analysis, the urban region of Dhanera (Gujarat state, India) has been chosen as a study area to prepare a flood hazard map in a geographic information system (GIS) environment using a multiple-criteria decision making (MCDM) technique. This study includes qualitative analysis compound factor (CF) and analytical hierarchy process (AHP), and quantitative analysis (fuzzy logic) using eight flood-affected criteria (slope, distance from the main river, land-use land cover (LULC), soil, drainage density, elevation, geomorphology, and proximity to stream confluence). MCDM techniques examined the weight of each criterion. The historical flood depth data have been collected via field visits or published articles for validation. Flood hazard maps have been classified into very high, high, moderate, low, and very low hazard zones. In each MCDM method, Ward 1 and Ward 2 are very highly and highly hazardous, respectively. The flood hazard map using fuzzy logic and inundation map matches very high, high, and very low categories. So, fuzzy logic is the best method to quantify flood hazards for Dhanera. This study provides a low-cost and time-efficient tool that assists local administration in prioritizing the preservation and control of floods, further helping the decision makers in mitigation planning to reduce damages.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models used during the study are included in the published paper.

References

Abdelkarim, A., S. S. Al-Alola, H. M. Alogayell, S. A. Mohamed, I. I. Alkadi, and I. Y. Ismail. 2020. “Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-Shamal train pathway in Al-Qurayyat Region, Kingdom of Saudi Arabia.” Water 12 (6): 1702. https://doi.org/10.3390/w12061702.
Adnan, M. S. G., A. Haque, and J. W. Hall. 2019. “Have coastal embankments reduced flooding in Bangladesh?” Sci. Total Environ. 682 (Sep): 405–416. https://doi.org/10.1016/j.scitotenv.2019.05.048.
Ajjur, S. B., and Y. K. Mogheir. 2020. “Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine).” Arabian J. Geosci. 13 (2): 44. https://doi.org/10.1007/s12517-019-5024-6.
Akay, H. 2021. “Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods.” Soft Comput. 25 (14): 9325–9346. https://doi.org/10.1007/s00500-021-05903-1.
Arabameri, A., K. Rezaei, A. Cerdà, C. Conoscenti, and Z. Kalantari. 2019. “A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran.” Sci. Total Environ. 660 (Apr): 443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021.
Bansal, N., M. Mukherjee, and A. Gairola. 2022. “Evaluating urban flood hazard index (UFHI) of Dehradun city using GIS and multi-criteria decision analysis.” Model. Earth Syst. Environ. 8 (3): 4051–4064. https://doi.org/10.1007/s40808-021-01348-5.
Bathrellos, G. D., E. Karymbalis, H. D. Skilodimou, K. Gaki-Papanastassiou, and E. A. Baltas. 2016. “Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece.” Environ. Earth Sci. 75 (4): 319. https://doi.org/10.1007/s12665-015-5157-1.
Bhuvan. 2021. “Indian geo-platform of ISRO.” Accessed January 1, 2021. https://bhuvan.nrsc.gov.in/home/index.php.
Bisht, D. S., C. Chatterjee, S. Kalakoti, P. Upadhyay, M. Sahoo, and A. Panda. 2016. “Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study.” Nat. Hazards 84 (2): 749–776. https://doi.org/10.1007/s11069-016-2455-1.
Bouamrane, A., O. Derdous, N. Dahri, S.-E. Tachi, K. Boutebba, and M. T. Bouziane. 2020. “A comparison of the analytical hierarchy process and the fuzzy logic approach for flood susceptibility mapping in a semi-arid ungauged basin (Biskra basin: Algeria).” Int. J. River Basin Manage. 20 (2): 203–213. https://doi.org/10.1080/15715124.2020.1830786.
Boustan, L. P., M. E. Kahn, and P. W. Rhode. 2012. “Moving to higher ground: Migration response to natural disasters in the early twentieth century.” Am. Econ. Rev. 102 (3): 238–244. https://doi.org/10.1257/aer.102.3.238.
Chakraborty, S., and S. Mukhopadhyay. 2019. “Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): Application in Coochbehar district of West Bengal, India.” Nat. Hazards 99 (1): 247–274. https://doi.org/10.1007/s11069-019-03737-7.
Chen, J., S. T. Yang, H. W. Li, B. Zhang, and J. R. Lv. 2013. “Research on geographical environment unit division based on the method of natural breaks (Jenks).” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40 (Nov): 47–50. https://doi.org/10.5194/isprsarchives-XL-4-W3-47-2013.
Chen, Y.-R., C.-H. Yeh, and B. Yu. 2011. “Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan.” Nat. Hazards 59 (3): 1261–1276. https://doi.org/10.1007/s11069-011-9831-7.
De Haen, H., and G. Hemrich. 2007. “The economics of natural disasters: Implications and challenges for food security.” Agric. Econ. 37 (Dec): 31–45. https://doi.org/10.1111/j.1574-0862.2007.00233.x.
Dottori, F., P. Salamon, A. Bianchi, L. Alfieri, F. A. Hirpa, and L. Feyen. 2016. “Development and evaluation of a framework for global flood hazard mapping.” Adv. Water Resour. 94 (Aug): 87–102. https://doi.org/10.1016/j.advwatres.2016.05.002.
Fernández, D. S., and M. A. Lutz. 2010. “Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis.” Eng. Geol. 111 (1–4): 90–98. https://doi.org/10.1016/j.enggeo.2009.12.006.
Ghosh, A., and S. K. Kar. 2018. “Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India.” Nat. Hazards 94 (Oct): 349–368. https://doi.org/10.1007/s11069-018-3392-y.
Gigović, L., D. Pamučar, Z. Bajić, and S. Drobnjak. 2017. “Application of GIS-interval rough AHP methodology for flood hazard mapping in urban areas.” Water 9 (6): 360. https://doi.org/10.3390/w9060360.
Glenn, E. P., K. Morino, P. L. Nagler, R. S. Murray, S. Pearlstein, and K. R. Hultine. 2012. “Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river.” J. Arid. Environ. 79 (Apr): 56–65. https://doi.org/10.1016/j.jaridenv.2011.11.025.
Haghizadeh, A., S. Siahkamari, A. H. Haghiabi, and O. Rahmati. 2017. “Forecasting flood-prone areas using Shannon’s entropy model.” J. Earth Syst. Sci. 126 (3): 39. https://doi.org/10.1007/s12040-017-0819-x.
Hammami, S., L. Zouhri, D. Souissi, A. Souei, A. Zghibi, A. Marzougui, and M. Dlala. 2019. “Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia).” Arabian J. Geosci. 12 (Nov): 653. https://doi.org/10.1007/s12517-019-4754-9.
Hembram, T., and S. Saha. 2018. “Prioritization of sub-watersheds for soil erosion based on morphometric attributes using fuzzy AHP and compound factor in Jainti River Basin, Jharkhand, Eastern India.” Environ. Dev. Sustainability 22 (2): 1241–1268. https://doi.org/10.1007/s10668-018-0247-3.
Henry, R. K., Z. Yongsheng, and D. Jun. 2006. “Municipal solid waste management challenges in developing countries—Kenyan case study.” Waste Manage. 26 (1): 92–100. https://doi.org/10.1016/j.wasman.2005.03.007.
Horton, R. E. 1945. “Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology.” Geol. Soc. Am. Bull. 56 (3): 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.
Hosseini, F. S., B. Choubin, A. Mosavi, N. Nabipour, S. Shamshirband, H. Darabi, and A. T. Haghighi. 2020. “Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method.” Sci. Total Environ. 711 (Apr): 135161. https://doi.org/10.1016/j.scitotenv.2019.135161.
Huong, H. T. L., and A. Pathirana. 2013. “Urbanization and climate change impacts on future urban flooding in Can Tho city, Vietnam.” Hydrol. Earth Syst. Sci. 17 (1): 379–394. https://doi.org/10.5194/hess-17-379-2013.
India Meteorological Department. 2017. 2017 southwest monsoon end of season report. New Delhi, India: Ministry of Earth Sciences.
Jiang, W., L. Deng, L. Chen, J. Wu, and J. Li. 2009. “Risk assessment and validation of flood disaster based on fuzzy mathematics.” Prog. Nat. Sci. 19 (10): 1419–1425. https://doi.org/10.1016/j.pnsc.2008.12.010.
Kadam, A. K., T. H. Jaweed, B. N. Umrikar, K. Hussain, and R. N. Sankhua. 2017. “Morphometric prioritization of semi-arid watershed for plant growth potential using GIS technique.” Model. Earth Syst. Environ. 3 (Dec): 1663–1673. https://doi.org/10.1007/s40808-017-0386-9.
Kanani-Sadat, Y., R. Arabsheibani, F. Karimipour, and M. Nasseri. 2019. “A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method.” J. Hydrol. 572 (May): 17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034.
Khosravi, K., E. Nohani, E. Maroufinia, and H. R. Pourghasemi. 2016. “A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique.” Nat. Hazards 83 (Sep): 947–987. https://doi.org/10.1007/s11069-016-2357-2.
Kia, M. B., S. Pirasteh, B. Pradhan, A. R. Mahmud, W. N. A. Sulaiman, and A. Moradi. 2012. “An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia.” Environ. Earth Sci. 67 (1): 251–264. https://doi.org/10.1007/s12665-011-1504-z.
Kim, T. H., B. Kim, and K.-Y. Han. 2019. “Application of fuzzy TOPSIS to flood hazard mapping for levee failure.” Water 11 (3): 592. https://doi.org/10.3390/w11030592.
Kumar, N., X. Liu, S. Narayanasamydamodaran, and K. K. Pandey. 2021. “A systematic review comparing urban flood management practices in india to China’s sponge city program.” Sustainability 13 (11): 6346. https://doi.org/10.3390/su13116346.
Lane, S. N., N. Odoni, C. Landström, S. J. Whatmore, N. Ward, and S. Bradley. 2011. “Doing flood risk science differently: An experiment in radical scientific method.” Trans. Inst. Br. Geogr. 36 (1): 15–36. https://doi.org/10.1111/j.1475-5661.2010.00410.x.
Lyu, H.-M., W.-H. Zhou, S.-L. Shen, and A.-N. Zhou. 2020. “Inundation risk assessment of metro system using AHP and TFN-AHP in Shenzhen.” Sustainable Cities Soc. 56 (May): 102103. https://doi.org/10.1016/j.scs.2020.102103.
Memon, N., D. P. Patel, N. Bhatt, and S. B. Patel. 2020. “Integrated framework for flood relief package (FRP) allocation in semiarid region: A case of Rel River flood, Gujarat, India.” Nat. Hazards 100 (Jan): 279–311. https://doi.org/10.1007/s11069-019-03812-z.
Mohammady, M., H. R. Pourghasemi, and B. Pradhan. 2012. “Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster–Shafer, and weights-of-evidence models.” J. Asian Earth Sci. 61 (Nov): 221–236. https://doi.org/10.1016/j.jseaes.2012.10.005.
Mudashiru, R. B., N. Sabtu, I. Abustan, and W. Balogun. 2021. “Flood hazard mapping methods: A review.” J. Hydrol. 603 (Dec): 126846. https://doi.org/10.1016/j.jhydrol.2021.126846.
Nampak, H., B. Pradhan, and M. A. Manap. 2014. “Application of GIS based data driven evidential belief function model to predict groundwater potential zonation.” J. Hydrol. 513 (May): 283–300. https://doi.org/10.1016/j.jhydrol.2014.02.053.
Nguyen, H. X., et al. 2020. “A hybrid approach using GIS-based fuzzy AHP–TOPSIS assessing flood hazards along the south-central coast of Vietnam.” Appl. Sci. 10 (20): 7142. https://doi.org/10.3390/app10207142.
Nikolova, V., and P. Zlateva. 2016. “Assessment of flood vulnerability using fuzzy logic and geographical information systems.” In Proc., 1st Int. Conf. on Information Technology in Disaster Risk Reduction (ITDRR), 254–265. Berlin: Springer. https://doi.org/10.1007/978-3-319-68486-4_20.
Nugraha, A. L., M. Awaluddin, and B. Sasmito. 2018. “Modelling multi hazard mapping in semarang city using GIS-fuzzy method.” IOP Conf. Ser.: Earth Environ. Sci. 123 (1): 012002. https://doi.org/10.1088/1755-1315/123/1/012002.
Nyimbili, P. H., T. Erden, and H. Karaman. 2018. “Integration of GIS, AHP and TOPSIS for earthquake hazard analysis.” Nat. Hazards 92 (3): 1523–1546. https://doi.org/10.1007/s11069-018-3262-7.
Parsian, S., M. Amani, A. Moghimi, A. Ghorbanian, and S. Mahdavi. 2021. “Flood hazard mapping using fuzzy logic, analytical hierarchy process, and multi-source geospatial datasets.” Remote Sens. 13 (23): 4761. https://doi.org/10.3390/rs13234761.
Patel, D. P., M. B. Dholakia, N. Naresh, and P. K. Srivastava. 2012. “Water harvesting structure positioning by using geo-visualization concept and prioritization of mini-watersheds through morphometric analysis in the lower Tapi basin.” J. Indian Soc. Remote Sens. 40 (2): 299–312. https://doi.org/10.1007/s12524-011-0147-6.
Patra, S., P. Mishra, and S. C. Mahapatra. 2018. “Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process.” J. Cleaner Prod. 172 (Jan): 2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161.
Perotto-Baldiviezo, H. L., T. L. Thurow, C. T. Smith, R. F. Fisher, and X. B. Wu. 2004. “GIS-based spatial analysis and modeling for landslide hazard assessment in steeplands, southern Honduras.” Agric. Ecosyst. Environ. 103 (1): 165–176. https://doi.org/10.1016/j.agee.2003.10.011.
Pham, B. T., A. Jaafari, T. Van Phong, H. P. H. Yen, T. T. Tuyen, V. Van Luong, H. D. Nguyen, H. Van Le, and L. K. Foong. 2021. “Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques.” Geosci. Front. 12 (3): 101105. https://doi.org/10.1016/j.gsf.2020.11.003.
Pierdicca, N., L. Pulvirenti, M. Chini, L. Guerriero, and P. Ferrazzoli. 2010. “A fuzzy-logic-based approach for flood detection from Cosmo-SkyMed data.” In Proc., 2010 IEEE Int. Geoscience and Remote Sensing Symp., 4796–4798. New York: IEEE.
Pradhan, B. 2010. “Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia.” Adv. Space Res. 45 (10): 1244–1256. https://doi.org/10.1016/j.asr.2010.01.006.
Rahmati, O., H. R. Pourghasemi, and H. Zeinivand. 2016. “Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran.” Geocarto Int. 31 (1): 42–70. https://doi.org/10.1080/10106049.2015.1041559.
Ramkar, P., and S. M. Yadav. 2021. “Flood risk index in data-scarce river basins using the AHP and GIS approach.” Nat. Hazards 109 (1): 1119–1140. https://doi.org/10.1007/s11069-021-04871-x.
Rothstein, H., M. Huber, and G. Gaskell. 2006. “A theory of risk colonization: The spiralling regulatory logics of societal and institutional risk.” Econ. Soc. 35 (1): 91–112. https://doi.org/10.1080/03085140500465865.
Saaty, T. L. 1980. The analytic hierarchy process. New York: McGraw-Hill.
Sahana, M., and P. P. Patel. 2019. “A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India.” Environ. Earth Sci. 78 (10): 289. https://doi.org/10.1007/s12665-019-8285-1.
Samanta, S., C. Koloa, D. Kumar Pal, and B. Palsamanta. 2016. “Flood risk analysis in lower part of Markham river based on multi-criteria decision approach (MCDA).” Hydrology 3 (3): 29. https://doi.org/10.3390/hydrology3030029.
Shafapour Tehrany, M., L. Kumar, M. Neamah Jebur, and F. Shabani. 2019a. “Evaluating the application of the statistical index method in flood susceptibility mapping and its comparison with frequency ratio and logistic regression methods.” Geomatics Nat. Hazards Risk 10 (1): 79–101. https://doi.org/10.1080/19475705.2018.1506509.
Shafapour Tehrany, M., L. Kumar, and F. Shabani. 2019b. “A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia.” PeerJ 7 (Oct): e7653. https://doi.org/10.7717/peerj.7653.
Shaikh, M., S. Yadav, and V. Manekar. 2021. “Accuracy assessment of different open-source digital elevation model through morphometric analysis for a semi-arid river basin in the western part of India.” J. Geovisualization Spatial Anal. 5 (Dec): 1–21. https://doi.org/10.1007/s41651-021-00089-4.
Shaikh, M., S. Yadav, and V. Manekar. 2022a. “Application of the compound factor for runoff potential in sub-watersheds prioritisation based on quantitative morphometric analysis.” J. Geol. Soc. India 98 (5): 687–695. https://doi.org/10.1007/s12594-022-2045-7.
Shaikh, M. P., S. M. Yadav, and V. L. Manekar. 2022b. “Assessment of the empirical methods for the development of the synthetic unit hydrograph: A case study of a semi-arid river basin.” Water Pract. Technol. 17 (1): 139–156. https://doi.org/10.2166/wpt.2021.117.
Shaikh, M. P., S. M. Yadav, V. L. Manekar, and B. K. Samtani. 2022c. “Flood modelling for a data-scarce semi-arid region by using a synthetic unit hydrograph and 1D or 2D hydrodynamic model.” Int. J. Hydrol. Sci. Technol. 13 (4): 373–402. https://doi.org/10.1504/IJHST.2022.123155.
Shaikh, M. P., V. G. Yadav, and S. M. Yadav. 2018. “Simulation of rainfall-runoff event using HEC-HMS model for Rel Sub-Basin, Gujarat, India.” J. Emerging Technol. Innovative Res. 5 (4): 402–407.
Sonmez, O., and H. Bizimana. 2020. “Flood hazard risk evaluation using fuzzy logic and weightage based combination methods in geographic information system (GIS).” Sci. Iran. 27 (2): 517–528. https://doi.org/10.24200/SCI.2018.21037.
Souissi, D., L. Zouhri, S. Hammami, M. H. Msaddek, A. Zghibi, and M. Dlala. 2020. “GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia.” Geocarto Int. 35 (9): 991–1017. https://doi.org/10.1080/10106049.2019.1566405.
Stefanidis, S., and D. Stathis. 2013. “Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP).” Nat. Hazards 68 (2): 569–585. https://doi.org/10.1007/s11069-013-0639-5.
Tehrany, M. S., M.-J. Lee, B. Pradhan, M. N. Jebur, and S. Lee. 2014a. “Flood susceptibility mapping using integrated bivariate and multivariate statistical models.” Environ. Earth Sci. 72 (10): 4001–4015. https://doi.org/10.1007/s12665-014-3289-3.
Tehrany, M. S., B. Pradhan, and M. N. Jebur. 2013. “Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS.” J. Hydrol. 504 (Nov): 69–79. https://doi.org/10.1016/j.jhydrol.2013.09.034.
Tehrany, M. S., B. Pradhan, and M. N. Jebur. 2014b. “Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS.” J. Hydrol. 512 (May): 332–343. https://doi.org/10.1016/j.jhydrol.2014.03.008.
Tehrany, M. S., B. Pradhan, and M. N. Jebur. 2015. “Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method.” Stochastic Environ. Res. Risk Assess. 29 (4): 1149–1165. https://doi.org/10.1007/s00477-015-1021-9.
Thai Pham, B., A. Shirzadi, H. Shahabi, E. Omidvar, S. K. Singh, M. Sahana, D. Talebpour Asl, B. Bin Ahmad, N. Kim Quoc, and S. Lee. 2019. “Landslide susceptibility assessment by novel hybrid machine learning algorithms.” Sustainability 11 (16): 4386. https://doi.org/10.3390/su11164386.
Todorovski, L., and S. Džeroski. 2006. “Integrating knowledge-driven and data-driven approaches to modeling.” Ecol. Modell. 194 (1–3): 3–13. https://doi.org/10.1016/j.ecolmodel.2005.10.001.
Vignesh, K. S., I. Anandakumar, R. Ranjan, and D. Borah. 2021. “Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques.” Model. Earth Syst. Environ. 7 (Jun): 767–781. https://doi.org/10.1007/s40808-020-00997-2.
Wang, Y., Z. Fang, H. Hong, R. Costache, and X. Tang. 2021. “Flood susceptibility mapping by integrating frequency ratio and index of entropy with multilayer perceptron and classification and regression tree.” J. Environ. Manage. 289 (Jul): 112449. https://doi.org/10.1016/j.jenvman.2021.112449.
Wierzbicki, G., P. Ostrowski, and T. Falkowski. 2020. “Applying floodplain geomorphology to flood management (The Lower Vistula River upstream from Plock, Poland).” Open Geosci. 12 (1): 1003–1016. https://doi.org/10.1515/geo-2020-0102.
Yang, X., J. Ding, and H. Hou. 2013. “Application of a triangular fuzzy AHP approach for flood risk evaluation and response measures analysis.” Nat. Hazards 68 (Sep): 657–674. https://doi.org/10.1007/s11069-013-0642-x.
Youssef, A. M., B. Pradhan, and A. M. Hassan. 2011. “Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery.” Environ. Earth Sci. 62 (3): 611–623. https://doi.org/10.1007/s12665-010-0551-1.
Zheng, Q., S.-L. Shen, A. Zhou, and H.-M. Lyu. 2022. “Inundation risk assessment based on G-DEMATEL-AHP and its application to Zhengzhou flooding disaster.” Sustainable Cities Soc. 86 (Nov): 104138. https://doi.org/10.1016/j.scs.2022.104138.

Information & Authors

Information

Published In

Go to Natural Hazards Review
Natural Hazards Review
Volume 25Issue 1February 2024

History

Received: Jul 29, 2022
Accepted: Aug 8, 2023
Published online: Oct 4, 2023
Published in print: Feb 1, 2024
Discussion open until: Mar 4, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395 007, India (corresponding author). ORCID: https://orcid.org/0000-0002-5566-538X. Email: [email protected]
Sanjaykumar M. Yadav, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395 007, India. Email: [email protected]
Vivek L. Manekar, Ph.D. [email protected]
Professor, Dept. of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat 395 007, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share