Research Article
Jun 1982

Sediment Transport and Unit Stream Power Function

Publication: Journal of the Hydraulics Division
Volume 108, Issue 6

Abstract

Basic fluid mechanics and turbulence theories are applied to show that suspended sediment concentration at a given depth of an open channel flow is a function of the turbulence energy production rate at that depth. Depth-averaged suspended sediment concentration can be obtained by integrating a function of the turbulence energy production rate over the depth of flow which in turn is a function of unit stream power. Total sediment concentration can also be expressed as a function of unit stream power following the foresaid and a procedure similar to that proposed by Einstein. Comparisons of seven total load equations indicate that equations derived from the concept that the rate of sediment transport should be related to the rate of energy dissipation of the flow are more accurate than other equations for both laboratory flumes and natural rivers.

Get full access to this article

View all available purchase options and get full access to this article.

Information & Authors

Information

Published In

Journal of the Hydraulics Division
Volume 108Issue 6June 1982
Pages: 774 - 793

History

Published in print: Jun 1982
Published online: Feb 3, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Chih Ted. Yang, M.ASCE
Civ. Engr., U.S. Dept. of the Interior, Bureau of Reclamation, Engrg. and Research Center, Denver Federal Center, Denver, Colo.
Albert Molinas, AM.ASCE
Research Assoc., Dept. of Civ. Engrg., Colorado State Univ., Ft. Collins, Colo.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share