Abstract

Adapting reservoir operation to a changing climate is important to improve water system performance toward benefits including water security, and energy production. However, managers still need to know if and how reoperation can also assist long-term mitigation of climate change impacts on aquatic ecosystems, creating, for example, opportunities to revert fish migration and recruitment losses. This paper investigates the operational adaptive capacity of water systems to mitigate climate change impacts on both hydropower and aquatic ecosystems, with a detailed representation of fish species recruitment response to flow regime changes. The methodology framework combines hydroclimatic modeling, explicit stochastic reservoir operation modeling, and predictive modeling of migratory fish recruitment abundance, illustrated using the large-scale hydropower system of the Paraná River Basin in Brazil. Results identified that operating policies can be adapted to improve hydropower production under a changing climate with drier conditions by 2% to 8% compared with current operating policies. Although insufficient to eliminate all energy losses that climate change may cause, the optimized operation provided flexibility to adjust flow releases and reduce the likelihood of future severe multiyear deficits, which are very harmful to fish populations. Adapting operation to climate change sacrificed fish recruitment performance over a few years of the time horizon to maintain an overall higher storage, but it also improved the chances of producing flow releases in magnitude, timing, and duration during long drier periods that prevented more severe impacts of climate change on fish recruitment and population. This indicates that it might be possible to have synergies in adapting reservoir operation to not only prevent energy losses, but also to improve fish recruitment under climate change. The ecosystem resiliency under adapted operation increased up to 2 times compared with the isolated climate change effect.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. Items available: fish sampling data and framework routine codes. Flow/level data are publicly available from the references.

Acknowledgments

The authors thank the Inter-American Institute for Global Change Research (IAI) for financial support under the SGP-HW program, Project SGP-HW 091, and CNPq for financial support through Grant Nos. 308549/2019-8 and APQ 404242/2019-7.

References

Adam, K., F. Fan, P. Pontes, J. Bravo, and W. Collischonn. 2015. “Mudanças climáticas e vazões extremas na Bacia do Rio Paraná/Climate change and extreme streamflows in Paraná River Basin.” Revista Brasileira de Recursos Hídricos 20 (4): 999–1007. https://doi.org/10.21168/rbrh.v20n4.p999-1007.
Adams, L. E., J. R. Lund, P. B. Moyle, R. M. Quiñones, J. D. Herman, and T. A. O’Rear. 2017. “Environmental hedging: A theory and method for reconciling reservoir operations for downstream ecology and water supply.” Water Resour. Res. 53 (9): 7816–7831. https://doi.org/10.1002/2016WR020128.
Agostinho, A. A., F. M. Pelicice, A. C. Petry, L. C. Gomes, and H. F. Júlio. 2007. “Fish diversity in the upper Paraná River Basin: Habitats, fisheries, management and conservation.” Aquat. Ecosyst. Health Manage. 10 (2): 174–186. https://doi.org/10.1080/14634980701341719.
Alimohammadi, H., A. R. Massah Bavani, and A. Roozbahani. 2020. “Mitigating the impacts of climate change on the performance of multi-purpose reservoirs by changing the operation policy from SOP to MLDR.” Water Resour. Manage. 34 (4): 1495–1516. https://doi.org/10.1007/s11269-020-02516-5.
ANA (Agência Nacional de Águas). 2020. “SAR—Sistema de acompanhamento de reservatórios.” Accessed October 10, 2020. https://www.ana.gov.br/sar/.
Anghileri, D., M. Botter, A. Castelletti, H. Weigt, and P. Burlando. 2018. “A comparative assessment of the impact of climate change and energy policies on alpine hydropower.” Water Resour. Res. 54 (11): 9144–9161. https://doi.org/10.1029/2017WR022289.
Arthington, A. H., A. Bhaduri, S. E. Bunn, S. E. Jackson, R. E. Tharme, and D. Tickner. 2018. “The Brisbane declaration and global action agenda on environmental flows (2018).” Front. Environ. Sci. 6 (5): 45–62. https://doi.org/10.3389/fenvs.2018.0004.
Baumgartner, M. T., A. G. de Oliveira, A. A. Agostinho, and L. C. Gomes. 2018. “Fish functional diversity responses following flood pulses in the upper Paraná River floodplain.” Ecol. Freshwater Fish 27 (4): 910–919. https://doi.org/10.1111/eff.12402.
Bravo, J. M., W. Collischonn, A. R. da Paz, D. Allasia, and F. Domecq. 2014. “Impact of projected climate change on hydrologic regime of the Upper Paraguay River basin.” Clim. Change 127 (1): 27–41. https://doi.org/10.1007/s10584-013-0816-2.
Brêda, J. P. L. F., R. C. D. de Paiva, W. Collischon, J. M. Bravo, V. A. Siqueira, and E. B. Steinke. 2020. “Climate change impacts on South American water balance from a continental-scale hydrological model driven by CMIP5 projections.” Clim. Change 159 (4): 503–522. https://doi.org/10.1007/s10584-020-02667-9.
Castelletti, A., S. Galelli, M. Restelli, and R. Soncini-Sessa. 2010. “Tree-based reinforcement learning for optimal water reservoir operation.” Water Resour. Res. 46 (9): 8898. https://doi.org/10.1029/2009WR008898.
CCEE (Câmara de Comercialização de Energia Elétrica). 2020. “Hydroedit—Apoio à leitura de arquivos.” Accessed December 10, 2020. https://www.ccee.org.br/acervo-ccee?especie=44884&keyword=hydroedit&periodo=5000.
CEPEL (Centro de Pesquisas de Energia Elétrica). 2021. “Newave and Decomp models—Reservoir operating policies.” Accessed November 25, 2021. https://www.cepel.br/linhas-de-pesquisa/newave-saiba-mais/.
Chadwick, C., J. Gironás, P. Barría, S. Vicuña, and F. Meza. 2020. “Assessing reservoir performance under climate change. When is it going to be too late if current water management is not changed?” Water 13 (1): 64. https://doi.org/10.3390/w13010064.
Chang, J., X. Wang, Y. Li, Y. Wang, and H. Zhang. 2018. “Hydropower plant operation rules optimization response to climate change.” Energy 160 (8): 886–897. https://doi.org/10.1016/j.energy.2018.07.066.
Chen, W., and J. D. Olden. 2017. “Designing flows to resolve human and environmental water needs in a dam-regulated river.” Nat. Commun. 8 (1): 2158. https://doi.org/10.1038/s41467-017-02226-4.
Chou, S. C., J. F. Bustamante, and J. L. Gomes. 2005. “Evaluation of Eta model seasonal precipitation forecasts over South America.” Nonlinear Processes Geophys. 12 (4): 537–555. https://doi.org/10.5194/npg-12-537-2005.
Chou, S. C., A. Lyra, C. Mourão, C. Dereczynski, I. Pilotto, and J. Gomes. 2014. “Evaluation of the Eta simulations nested in three global climate models.” Am. J. Clim. Change 3 (5): 438–454. https://doi.org/10.4236/ajcc.2014.35039.
Culley, S., S. Noble, A. Yates, M. Timbs, S. Westra, and H. R. Maier. 2016. “A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate.” Water Resour. Res. 52 (9): 6751–6768. https://doi.org/10.1002/2015WR018253.
Cunha, A. P., et al. 2019. “Extreme drought events over Brazil from 2011 to 2019.” Atmosphere 10 (11): 642. https://doi.org/10.3390/atmos10110642.
Dalcin, A. P., G. F. Marques, A. Galego de Oliveira, and A. Tilmant. 2022. “Identifying functional flow regimes and fish response for multiple reservoir operating solutions.” J. Water Resour. Plann. Manage. 148 (6): 04022026. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001567.
de Paiva, R. C. D., D. C. Buarque, W. Collischonn, M.-P. Bonnet, F. Frappart, S. Calmant, and C. A. Bulhões Mendes. 2013. “Large-scale hydrologic and hydrodynamic modeling of the Amazon River basin.” Water Resour. Res. 49 (3): 1226–1243. https://doi.org/10.1002/wrcr.20067.
Draper, A. J., and J. R. Lund. 2004. “Optimal hedging and carryover storage value.” J. Water Resour. Plann. Manage. 130 (1): 83–87. https://doi.org/10.1061/(ASCE)0733-9496(2004)130:1(83).
Ehret, U., E. Zehe, V. Wulfmeyer, K. Warrach-Sagi, and J. Liebert. 2012. “HESS opinions ‘Should we apply bias correction to global and regional climate model data?’” Hydrol. Earth Syst. Sci. 16 (9): 3391–3404. https://doi.org/10.5194/hess-16-3391-2012.
Ehsani, N., C. J. Vörösmarty, B. M. Fekete, and E. Z. Stakhiv. 2017. “Reservoir operations under climate change: Storage capacity options to mitigate risk.” J. Hydrol. 555 (6): 435–446. https://doi.org/10.1016/j.jhydrol.2017.09.008.
Fagundes, H. O., F. M. Fan, R. C. D. Paiva, V. A. Siqueira, D. C. Buarque, and L. W. Kornowski. 2021. “Sediment flows in South America supported by daily hydrologic-hydrodynamic modeling.” Water Resour. Res. 57 (2): 27–50. https://doi.org/10.1029/2020WR027884.
Falco, M., A. F. Carril, C. G. Menéndez, P. G. Zaninelli, and L. Z. X. Li. 2019. “Assessment of CORDEX simulations over South America: Added value on seasonal climatology and resolution considerations.” Clim. Dyn. 52 (7–8): 4771–4786. https://doi.org/10.1007/s00382-018-4412-z.
Feser, F., B. Rockel, H. von Storch, J. Winterfeldt, and M. Zahn. 2011. “Regional climate models add value to global model data: A review and selected examples.” Bull. Am. Meteorol. Soc. 92 (9): 1181–1192. https://doi.org/10.1175/2011BAMS3061.1.
Giuliani, M., J. R. Lamontagne, P. M. Reed, and A. Castelletti. 2021. “A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world.” Water Resour. Res. 57 (12): 29–35. https://doi.org/10.1029/2021WR029927.
Goor, Q., R. Kelman, and A. Tilmant. 2011. “Optimal multipurpose-multireservoir operation model with variable productivity of hydropower plants.” J. Water Resour. Plann. Manage. 137 (3): 258–267. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000117.
Grantham, T. E., J. Mount, E. D. Stein, and S. Yarnell. 2020. Making the most of water for the environment: A functional flows approach for California’s rivers. San Francisco: Public Policy Institute of California.
Gregory, J. M. 2004. “A new method for diagnosing radiative forcing and climate sensitivity.” Geophys. Res. Lett. 31 (3): L03205. https://doi.org/10.1029/2003GL018747.
Grimm, N. B., F. S. Chapin, B. Bierwagen, P. Gonzalez, P. M. Groffman, and Y. Luo. 2013. “The impacts of climate change on ecosystem structure and function.” Front. Ecol. Environ. 11 (9): 474–482. https://doi.org/10.1890/120282.
Guo, Y., G. Fang, Y.-P. Xu, X. Tian, and J. Xie. 2021. “Responses of hydropower generation and sustainability to changes in reservoir policy, climate and land use under uncertainty: A case study of Xinanjiang Reservoir in China.” J. Cleaner Prod. 281 (12): 124609. https://doi.org/10.1016/j.jclepro.2020.124609.
Hagemann, S., C. Chen, J. O. Haerter, J. Heinke, D. Gerten, and C. Piani. 2011. “Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models.” J. Hydrometeorol. 12 (4): 556–578. https://doi.org/10.1175/2011JHM1336.1.
Hanak, E., J. Mount, C. P. Chappelle, J. Lund, O. Medellín-Azuara, P. Moyle, and N. Seavy. 2015. What if California’s drought continues? San Francisco: Public Policy Institute of California.
Hashimoto, T., J. R. Stedinger, and D. P. Loucks. 1982. “Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation.” Water Resour. Res. 18 (1): 14–20. https://doi.org/10.1029/WR018i001p00014.
Hayes, D. S., J. M. Brändle, C. Seliger, B. Zeiringer, T. Ferreira, and S. Schmutz. 2018. “Advancing towards functional environmental flows for temperate floodplain rivers.” Sci. Total Environ. 633 (3): 1089–1104. https://doi.org/10.1016/j.scitotenv.2018.03.221.
Herman, J. D., J. D. Quinn, S. Steinschneider, M. Giuliani, and S. Fletcher. 2020. “Climate adaptation as a control problem: Review and perspectives on dynamic water resources planning under uncertainty.” Water Resour. Res. 56 (2): e24389. https://doi.org/10.1029/2019WR025502.
Howard, J. K., K. A. Fesenmyer, T. E. Grantham, J. H. Viers, P. R. Ode, and P. B. Moyle. 2018. “A freshwater conservation blueprint for California: Prioritizing watersheds for freshwater biodiversity.” Freshwater Sci. 37 (2): 417–431. https://doi.org/10.1086/697996.
Hunt, J. D., A. Nascimento, C. S. Caten, F. M. C. Tomé, P. S. Schneider, and A. L. R. Thomazoni. 2022. “Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow.” Energy 239 (12): 121927. https://doi.org/10.1016/j.energy.2021.121927.
INPE (Instituto Nacional de Pesquisas Espaciais). 2021. “Eta model.” Accessed October 20, 2021. http://etamodel.cptec.inpe.br.
IPCC (Intergovernmental Panel on Climate Change). 2022. “Climate change 2022: Impacts, adaptation, and vulnerability.” In Contribution of Working Group II to the sixth assessment report of the Intergovernmental Panel on Climate Change, edited by H. -O. Pörtner et al., 3056. New York: Cambridge University Press.
Lauri, H., H. de Moel, P. J. Ward, T. A. Räsänen, M. Keskinen, and M. Kummu. 2012. “Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge.” Hydrol. Earth Syst. Sci. 16 (12): 4603–4619. https://doi.org/10.5194/hess-16-4603-2012.
Lempert, R. J., and M. T. Collins. 2007. “Managing the risk of uncertain threshold responses: Comparison of robust, optimum, and precautionary approaches.” Risk Anal. 27 (4): 1009–1026. https://doi.org/10.1111/j.1539-6924.2007.00940.x.
Llopart, M., M. Simões Reboita, and R. Porfírio da Rocha. 2020. “Assessment of multi-model climate projections of water resources over South America CORDEX domain.” Clim. Dyn. 54 (1–2): 99–116. https://doi.org/10.1007/s00382-019-04990-z.
Lund, J., J. Medellin-Azuara, J. Durand, and K. Stone. 2018. “Lessons from California’s 2012–2016 drought.” J. Water Resour. Plann. Manage. 144 (10): 04018067. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000984.
Maraun, D. 2016. “Bias correcting climate change simulations—A critical review.” Curr. Clim. Change Rep. 2 (4): 211–220. https://doi.org/10.1007/s40641-016-0050-x.
Mateus, M. C., and D. Tullos. 2017. “Reliability, sensitivity, and vulnerability of reservoir operations under climate change.” J. Water Resour. Plann. Manage. 143 (4): 04016085. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000742.
Mesinger, F. 1984. “A blocking technique for representation of mountains in atmospheric models.” Rivista Di Meteorologia Aeronautica 44 (1–4): 195–202.
Moyle, P. B., J. V. E. Katz, and R. M. Quiñones. 2011. “Rapid decline of California’s native inland fishes: A status assessment.” Biol. Conserv. 144 (10): 2414–2423. https://doi.org/10.1016/j.biocon.2011.06.002.
Muerth, M. J., B. Gauvin St-Denis, S. Ricard, J. A. Velázquez, J. Schmid, and M. Minville. 2013. “On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff.” Hydrol. Earth Syst. Sci. 17 (3): 1189–1204. https://doi.org/10.5194/hess-17-1189-2013.
Oliveira, A. G., M. T. Baumgartner, L. C. Gomes, R. M. Dias, and A. A. Agostinho. 2018. “Long-term effects of flow regulation by dams simplify fish functional diversity.” Freshwater Biol. 63 (3): 293–305. https://doi.org/10.1111/fwb.13064.
Oliveira, A. G., T. M. Lopes, M. A. Angulo-Valencia, R. M. Dias, H. I. Suzuki, I. C. B. Costa, and A. A. Agostinho. 2020. “Relationship of freshwater fish recruitment with distinct reproductive strategies and flood attributes: A long-term view in the Upper Paraná river floodplain.” Front. Environ. Sci. 8 (8): 577181. https://doi.org/10.3389/fenvs.2020.577181.
Oliveira, A. G., H. I. Suzuki, L. C. Gomes, and A. A. Agostinho. 2015. “Interspecific variation in migratory fish recruitment in the Upper Paraná River: Effects of the duration and timing of floods.” Environ. Biol. Fishes 98 (5): 1327–1337. https://doi.org/10.1007/s10641-014-0361-5.
O’Neil, K., A. Bernstein, S. Steinschneider, A. Polebitski, and R. Palmer. 2013. “Modeling the impact of climate change on hydropower operations in the Connecticut River Basin.” In Proc., World Environmental and Water Resources Congress 2013, 1175–1184. Reston, VA: ASCE.
ONS (Operador Nacional do Sistema Elétrico). 2021. “Avaliação das condiçães de atendimento eletroenergético do sistema interligado nacional—Estudo prospectivo junho a novembro de 2021.” Accessed November 15, 2021. https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/oficio_13_2021_cmse_mme-1.pdf.
Palmer, M., and A. Ruhi. 2019. “Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration.” Science 365 (6459): eaaw2087. https://doi.org/10.1126/science.aaw2087.
Pereira, M. V. F., and L. M. V. G. Pinto. 1985. “Stochastic optimization of a multireservoir hydroelectric system: A decomposition approach.” Water Resour. Res. 21 (6): 779–792. https://doi.org/10.1029/WR021i006p00779.
Pina, J., A. Tilmant, and F. Anctil. 2017. “Horizontal approach to assess the impact of climate change on water resources systems.” J. Water Resour. Plann. Manage. 143 (4): 04016081. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000737.
Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, and B. D. Richter. 1997. “The natural flow regime.” Bioscience 47 (11): 769–784. https://doi.org/10.2307/1313099.
Pontes, P. R. M., F. M. Fan, A. S. Fleischmann, R. C. D. de Paiva, D. C. Buarque, and V. A. Siqueira. 2017. “MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS.” Environ. Modell. Software 94 (3): 1–20. https://doi.org/10.1016/j.envsoft.2017.03.029.
Prudhomme, C., R. L. Wilby, S. Crooks, A. L. Kay, and N. S. Reynard. 2010. “Scenario-neutral approach to climate change impact studies: Application to flood risk.” J. Hydrol. 390 (3–4): 198–209. https://doi.org/10.1016/j.jhydrol.2010.06.043.
Ramos, M.-H., et al. 2019. Improving predictions and management of hydrological extremes. D8.1 Improved hydropower risk assessment: The value of hydro-meteorological predictions. Amsterdam, Netherlands: European Union Horizon 2020 Research and Innovation Programme.
Rheinheimer, D. E., and J. H. Viers. 2015. “Combined effects of reservoir operations and climate warming on the flow regime of hydropower bypass reaches of California’s Sierra Nevada.” River Res. Appl. 31 (3): 269–279. https://doi.org/10.1002/rra.2749.
Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, and G. Fischer. 2011. “RCP 8.5—A scenario of comparatively high greenhouse gas emissions.” Clim. Change 109 (1–2): 33–57. https://doi.org/10.1007/s10584-011-0149-y.
Ribeiro Neto, A., A. R. da Paz, J. A. Marengo, and S. C. Chou. 2016. “Hydrological processes and climate change in hydrographic regions of Brazil.” J. Water Resour. Prot. 8 (12): 1103–1127. https://doi.org/10.4236/jwarp.2016.812087.
Rougé, C., and A. Tilmant. 2016. “Using stochastic dual dynamic programming in problems with multiple near-optimal solutions.” Water Resour. Res. 52 (5): 4151–4163. https://doi.org/10.1002/2016WR018608.
Rugenstein, M., J. Bloch-Johnson, J. Gregory, T. Andrews, T. Mauritsen, and C. Li. 2020. “Equilibrium climate sensitivity estimated by equilibrating climate models.” Geophys. Res. Lett. 47 (4): 83–89. https://doi.org/10.1029/2019GL083898.
Shao, X., Y. Fang, J. W. Jawitz, J. Yan, and B. Cui. 2019. “River network connectivity and fish diversity.” Sci. Total Environ. 689 (19): 21–30. https://doi.org/10.1016/j.scitotenv.2019.06.340.
Shrestha, A., S. Shrestha, T. Tingsanchali, A. Budhathoki, and S. Ninsawat. 2021. “Adapting hydropower production to climate change: A case study of Kulekhani hydropower project in Nepal.” J. Cleaner Prod. 279 (23): 123483. https://doi.org/10.1016/j.jclepro.2020.123483.
Silva, M. V. M., C. Silveira, G. K. Silva, W. H. Pedrosa, A. D. Marcos Júnior, and F. Souza Filho. 2020. “Projections of climate change in streamflow and affluent natural energy in the Brazilian hydroelectric sector of CORDEX models.” Revista Brasileira de Recursos Hídricos 25. https://doi.org/10.1590/2318-0331.252020200020.
Siqueira, V. A., F. M. Fan, R. C. D. Paiva, M. H. Ramos, and W. Collischonn. 2020. “Potential skill of continental-scale, medium-range ensemble streamflow forecasts for flood prediction in South America.” J. Hydrol. 590 (5): 125430. https://doi.org/10.1016/j.jhydrol.2020.125430.
Siqueira, V. A., R. C. D. Paiva, A. S. Fleischmann, F. M. Fan, A. L. Ruhoff, and P. R. M. Pontes. 2018. “Toward continental hydrologic–hydrodynamic modeling in South America.” Hydrol. Earth Syst. Sci. 22 (9): 4815–4842. https://doi.org/10.5194/hess-22-4815-2018.
Sterle, K., L. Jose, S. Coors, L. Singletary, G. Pohll, and S. Rajagopal. 2020. “Collaboratively modeling reservoir reoperation to adapt to earlier snowmelt runoff.” J. Water Resour. Plann. Manage. 146 (1): 05019021. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001136.
Sun, H., D. He, X. Sui, and Y. Chen. 2020. “Predicting impacts of future climate change and hydropower development towards habitats of native and non-native fishes.” Sci. Total Environ. 707 (Mar): 135419. https://doi.org/10.1016/j.scitotenv.2019.135419.
Suzuki, H., A. Agostinho, D. Bailly, M. Gimenes, H. Júlio-Junior, and L. Gomes. 2009. “Inter-annual variations in the abundance of young-of-the-year of migratory fishes in the Upper Paraná River floodplain: Relations with hydrographic attributes.” Braz. J. Biol. 69 (2): 649–660. https://doi.org/10.1590/S1519-69842009000300019.
Tamario, C., J. Sunde, E. Petersson, P. Tibblin, and A. Forsman. 2019. “Ecological and evolutionary consequences of environmental change and management actions for migrating fish.” Front. Ecol. Evol. 7 (Feb): 271. https://doi.org/10.3389/fevo.2019.00271.
Tejada-Guibert, J. A., S. A. Johnson, and J. R. Stedinger. 1993. “Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming.” Water Resour. Res. 29 (12): 3969–3980. https://doi.org/10.1029/93WR02277.
Teutschbein, C., and J. Seibert. 2012. “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods.” J. Hydrol. 456 (5): 12–29. https://doi.org/10.1016/j.jhydrol.2012.05.052.
Thomson, A. M., K. V. Calvin, S. J. Smith, G. P. Kyle, A. Volke, and P. Patel. 2011. “RCP4.5: A pathway for stabilization of radiative forcing by 2100.” Clim. Change 109 (1–2): 77–94. https://doi.org/10.1007/s10584-011-0151-4.
Tilmant, A., and R. Kelman. 2007. “A stochastic approach to analyze trade-offs and risks associated with large-scale water resources systems.” Water Resour. Res. 43 (6): 50–94. https://doi.org/10.1029/2006WR005094.
Tilmant, A., D. Pinte, and Q. Goor. 2008. “Assessing marginal water values in multipurpose multireservoir systems via stochastic programming.” Water Resour. Res. 44 (12): 1–17. https://doi.org/10.1029/2008WR007024.
Tsai, W.-P., F.-J. Chang, L.-C. Chang, and E. E. Herricks. 2015. “AI techniques for optimizing multi-objective reservoir operation upon human and riverine ecosystem demands.” J. Hydrol. 530 (Nov): 634–644. https://doi.org/10.1016/j.jhydrol.2015.10.024.
Vetter, T., J. Reinhardt, M. Flörke, A. van Griensven, F. Hattermann, and S. Huang. 2017. “Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins.” Clim. Change 141 (3): 419–433. https://doi.org/10.1007/s10584-016-1794-y.
Vonk, E., Y. P. Xu, M. J. Booij, X. Zhang, and M. Augustijn. 2014. “Adapting multireservoir operation to shifting patterns of water supply and demand.” Water Resour. Manage. 28 (3): 625–643. https://doi.org/10.1007/s11269-013-0499-5.
Wang, Z., L. Zhang, L. Cheng, K. Liu, A. Ye, and X. Cai. 2020. “Optimizing operating rules for a reservoir system in northern China considering ecological flow requirements and water use priorities.” J. Water Resour. Plann. Manage. 146 (7): 04020051. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001236.
Ward, J. V., F. Malard, and K. Tockner. 2002. “Landscape ecology: A framework for integrating pattern and process in river corridors.” Landscape Ecol. 17 (1): 35–45. https://doi.org/10.1023/A:1015277626224.
Watts, R. J., B. D. Richter, J. J. Opperman, and K. H. Bowmer. 2011. “Dam reoperation in an era of climate change.” Mar. Freshwater Res. 62 (3): 321. https://doi.org/10.1071/MF10047.
Whitfield, A. K., and M. Elliott. 2005. “Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future.” J. Fish Biol. 61 (Sep): 229–250. https://doi.org/10.1111/j.1095-8649.2002.tb01773.x.
World Bank. 2010. Economics of adaptation to climate change: Synthesis report. Washington, DC: World Bank.
Yarnell, S. M., G. E. Petts, J. C. Schmidt, A. A. Whipple, E. E. Beller, and C. N. Dahm. 2015. “Functional flows in modified riverscapes: Hydrographs, habitats and opportunities.” Bioscience 65 (10): 963–972. https://doi.org/10.1093/biosci/biv102.
Zhong, R., T. Zhao, and X. Chen. 2021. “Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?” Energy 237 (12): 121518. https://doi.org/10.1016/j.energy.2021.121518.
Zhou, Y., and S. Guo. 2013. “Incorporating ecological requirement into multipurpose reservoir operating rule curves for adaptation to climate change.” J. Hydrol. 498 (6): 153–164. https://doi.org/10.1016/j.jhydrol.2013.06.028.

Information & Authors

Information

Published In

Go to Journal of Water Resources Planning and Management
Journal of Water Resources Planning and Management
Volume 149Issue 4April 2023

History

Received: Apr 4, 2022
Accepted: Nov 2, 2022
Published online: Jan 25, 2023
Published in print: Apr 1, 2023
Discussion open until: Jun 25, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate and Environmental Engineer, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-9871-7373. Email: [email protected]
João Paulo Lyra Fialho Brêda, Ph.D. https://orcid.org/0000-0002-8360-1308 [email protected]
Researcher, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. ORCID: https://orcid.org/0000-0002-8360-1308. Email: [email protected]
Associate Professor, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. ORCID: https://orcid.org/0000-0003-0543-6279. Email: [email protected]
Professor, Dept. of Civil and Water Engineering, Université Laval, Quebec City, QC, Canada G1V 0A6. ORCID: https://orcid.org/0000-0001-9586-5274. Email: [email protected]
Rodrigo Cauduro Dias de Paiva, Ph.D. https://orcid.org/0000-0003-2918-6681 [email protected]
Associate Professor, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil. ORCID: https://orcid.org/0000-0003-2918-6681. Email: [email protected]
Paulo Yoshio Kubota, Ph.D. [email protected]
Researcher, Instituto Nacional de Pesquisas Espaciais, Centro de Previsão de Tempo e Estudos Climáticos, São Paulo 12630-000, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share