State-of-the-Art Reviews
Jun 25, 2024

Application of Real-Time Control and Source Control Solutions to Reduce Combined Sewer Overflows: A Review of Approaches and Performances

Publication: Journal of Sustainable Water in the Built Environment
Volume 10, Issue 4

Abstract

Real-time control (RTC) and source control solutions (SCSs) can be cost-effective and reliable ways to improve the performance and mitigate the negative impacts of urban drainage systems. In this paper, we review and discuss different approaches to applying RTC and SCSs for combined sewer overflow management. Applications of RTC and SCSs have been classified into three main categories in previous studies: (1) RTC applied individually to a sewer system, (2) RTC applied to a sewer system in addition to passive SCSs, and (3) RTC applied directly to SCSs. In this paper, we compare the RTC techniques and strategies typically employed within each category. We highlight the benefits and point out major gaps and issues that have not been investigated previously with the aim of promoting the long-term implementation of RTC for urban drainage systems. The findings indicate that RTC of urban drainage systems has been widely applied in different contexts and with different control objectives, but few studies have implemented RTC and SCSs in combination. Significant improvements have been observed in terms of both water quality and quantity when RTC and SCSs are integrated; however, more studies are required in order to resolve some technical issues and to investigate the cost effectiveness of individual and combined solutions.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors would like to gratefully acknowledge the support provided by the National Research Council of Canada under the Climate Resilient Built Environment (CRBE) initiative, funded by Infrastructure Canada.

References

Abbasi, H., A. Zeynolabedin, and G. Nabi Bidhendi. 2021. “Assessment of combined sewer overflows impacts under flooding in coastal cities.” J. Water Clim. Change 12 (6): 2460–2478. https://doi.org/10.2166/wcc.2021.322.
Altobelli, M., S. S. Cipolla, and M. Maglionico. 2020. “Combined application of real-time control and green technologies to urban drainage systems.” Water 12 (12): 3432. https://doi.org/10.3390/w12123432.
Botturi, A., E. G. Ozbayram, K. Tondera, N. I. Gilbert, P. Rouault, N. Caradot, O. Gutierrez, S. Daneshgar, N. Frison, and Ç. Akyol. 2021. “Combined sewer overflows: A critical review on best practice and innovative solutions to mitigate impacts on environment and human health.” Crit. Rev. Environ. Sci. Technol. 51 (15): 1585–1618. https://doi.org/10.1080/10643389.2020.1757957.
Brasil, J., M. Macedo, C. Lago, T. Oliveira, M. Júnior, T. Oliveira, and E. Mendiondo. 2021. “Nature-based solutions and real-time control: Challenges and opportunities.” Water 13 (5): 651. https://doi.org/10.3390/w13050651.
Bryant, S., and B. M. Wadzuk. 2017. “Modeling of a real-time controlled green roof.” In Proc., World Environmental and Water Resources Congress 2017. Reston, VA: ASCE.
Campisano, A., J. Cabot Ple, D. Muschalla, M. Pleau, and P. A. Vanrolleghem. 2013. “Potential and limitations of modern equipment for real time control of urban wastewater systems.” Urban Water J. 10 (5): 300–311. https://doi.org/10.1080/1573062X.2013.763996.
Carbone, M., G. Garofalo, and P. Piro. 2014. “Decentralized real time control in combined sewer system by using smart objects.” Procedia Eng. 89 (Jan): 473–478. https://doi.org/10.1016/j.proeng.2014.11.237.
Cembellín, A., M. Francisco, and P. Vega. 2020. “Distributed model predictive control applied to a sewer system.” Processes 8 (12): 1595.
Cettner, A., R. Ashley, M. Viklander, and K. Nilsson. 2013. “Stormwater management and urban planning: Lessons from 40 years of innovation.” J. Environ. Plann. Manage. 56 (6): 786–801. https://doi.org/10.1080/09640568.2012.706216.
Chui, T. F. M., X. Liu, and W. Zhan. 2016. “Assessing cost-effectiveness of specific LID practice designs in response to large storm events.” J. Hydrol. 533 (Feb): 353–364. https://doi.org/10.1016/j.jhydrol.2015.12.011.
Davis, A. P. 2005. Green engineering principles promote low-impact development. London: ACS Publications.
Dirckx, G., M. Schütze, S. Kroll, C. Thoeye, G. De Gueldre, and B. Van De Steene. 2011. “RTC versus static solutions to mitigate CSO’s impact.” In Proc., 12th Int. Conf. on Urban Drainage. Porto Alegre, Brazil: International Water Association.
EPA. 2001. Implementation and enforcement of the combined sewer overflow control policy. Washington, DC: USEPA.
EPA. 2004. Report to congress: Impacts and control of CSOs and SSOs. Washington, DC: USEPA.
EPA. 2006. Real time control of urban drainage networks. Washington, DC: USEPA.
EPA. 2018. Smart data infrastructure for wet weather control and decision support. Washington, DC: USEPA.
Eulogi, M., S. Ostojin, P. Skipworth, S. Kroll, J. Shucksmith, and A. Schellart. 2022. “Comparing methods to place adaptive local RTC actuators for spill volume reduction from multiple CSOs.” J. Hydroinf. 24 (1): 78–92. https://doi.org/10.2166/hydro.2021.085.
Eulogi, M., S. Ostojin, P. Skipworth, J. Shucksmith, and A. Schellart. 2021. “Hydraulic optimisation of multiple flow control locations for the design of local real time control systems.” Urban Water J. 18 (2): 91–100. https://doi.org/10.1080/1573062X.2020.1860238.
Field, R., J. Curtis, and R. Bowden. 1976. “Urban runoff and combined sewer overflow.” J. Water Pollut. Control Fed. 48 (6): 1191–1206.
Fletcher, T. D., A. Deletic, V. G. Mitchell, and B. E. Hatt. 2008. “Reuse of urban runoff in Australia: A review of recent advances and remaining challenges.” J. Environ. Qual. 37 (S5): S-116–S-127. https://doi.org/10.2134/jeq2007.0411.
Fletcher, T. D., W. Shuster, W. F. Hunt, R. Ashley, D. Butler, S. Arthur, S. Trowsdale, S. Barraud, A. Semadeni-Davies, and J.-L. Bertrand-Krajewski. 2015. “SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage.” Urban Water J. 12 (7): 525–542. https://doi.org/10.1080/1573062X.2014.916314.
Fu, X., H. Goddard, X. Wang, and M. E. Hopton. 2019. “Development of a scenario-based stormwater management planning support system for reducing combined sewer overflows (CSOs).” J. Environ. Manage. 236 (Apr): 571–580. https://doi.org/10.1016/j.jenvman.2018.12.089.
García, L., J. Barreiro-Gomez, E. Escobar, D. Téllez, N. Quijano, and C. Ocampo-Martínez. 2015. “Modeling and real-time control of urban drainage systems: A review.” Adv. Water Resour. 85 (Nov): 120–132. https://doi.org/10.1016/j.advwatres.2015.08.007.
Garofalo, G., A. Giordano, P. Piro, G. Spezzano, and A. Vinci. 2017. “A distributed real-time approach for mitigating CSO and flooding in urban drainage systems.” J. Netw. Comput. Appl. 78 (Jan): 30–42. https://doi.org/10.1016/j.jnca.2016.11.004.
Gonçalves, R., and Á. Nascimento. 2010. “The momentum for network separation: A guide for regulators.” Telecommun. Policy 34 (7): 355–365. https://doi.org/10.1016/j.telpol.2010.05.008.
Hamel, P., E. Daly, and T. D. Fletcher. 2013. “Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: A review.” J. Hydrol. 485 (Apr): 201–211. https://doi.org/10.1016/j.jhydrol.2013.01.001.
Hammond, M. J., A. S. Chen, S. Djordjević, D. Butler, and O. Mark. 2015. “Urban flood impact assessment: A state-of-the-art review.” Urban Water J. 12 (1): 14–29. https://doi.org/10.1080/1573062X.2013.857421.
Hamouz, V., P. Møller-Pedersen, and T. M. Muthanna. 2020. “Modelling runoff reduction through implementation of green and grey roofs in urban catchments using PCSWMM.” Urban Water J. 17 (9): 813–826. https://doi.org/10.1080/1573062X.2020.1828500.
Jayasooriya, V., and A. Ng. 2014. “Tools for modeling of stormwater management and economics of green infrastructure practices: A review.” Water Air Soil Pollut. 225 (8): 1–20. https://doi.org/10.1007/s11270-014-2055-1.
Jean, M. È., C. Morin, S. Duchesne, G. Pelletier, and M. Pleau. 2021. “Optimization of real-time control with green and gray infrastructure design for a cost-effective mitigation of combined sewer overflows.” Water Resour. Res. 57 (12): e2021WR030282. https://doi.org/10.1029/2021WR030282.
Jean, M. È., C. Morin, S. Duchesne, G. Pelletier, and M. Pleau. 2022. “Real-time model predictive and rule-based control with green infrastructures to reduce combined sewer overflows.” Water Res. 221 (Aug): 118753. https://doi.org/10.1016/j.watres.2022.118753.
Kändler, N., I. Annus, and A. Vassiljev. 2022. “Controlling peak runoff from plots by coupling street storage with distributed real time control.” Urban Water J. 19 (1): 97–108. https://doi.org/10.1080/1573062X.2021.1958235.
Karamouz, M., H. Abbasi, M. Fereshtehpour, and G. R. N. Bidhendi. 2015. “Multicriteria evaluation of combined sewer overflow impacts in coastal cities.” In Proc., EWRA Conf. Athens, Greece: European Water Resources Association.
Kroll, S. 2019. “Design of real-time control strategies for combined sewer networks.” Ph.D. dissertation, Katholieke Universiteit Leuven. https://www.researchgate.net/publication/336770979_Design_of_Real-Time_Control_Strategies_for_Combined_Sewer_Networks.
Kroll, S., M. Weemaes, J. Van Impe, and P. Willems. 2018. “A methodology for the design of RTC strategies for combined sewer networks.” Water 10 (11): 1675. https://doi.org/10.3390/w10111675.
Liang, R., M. A. Thyer, H. R. Maier, G. C. Dandy, and M. Di Matteo. 2021. “Optimising the design and real-time operation of systems of distributed stormwater storages to reduce urban flooding at the catchment scale.” J. Hydrol. 602 (Nov): 126787. https://doi.org/10.1016/j.jhydrol.2021.126787.
Lund, N. S. V., M. Borup, H. Madsen, O. Mark, K. Arnbjerg-Nielsen, and P. S. Mikkelsen. 2019. “Integrated stormwater inflow control for sewers and green structures in urban landscapes.” Nat. Sustainability 2 (11): 1003–1010. https://doi.org/10.1038/s41893-019-0392-1.
Lund, N. S. V., A. K. V. Falk, M. Borup, H. Madsen, and P. Steen Mikkelsen. 2018. “Model predictive control of urban drainage systems: A review and perspective towards smart real-time water management.” Crit. Rev. Environ. Sci. Technol. 48 (3): 279–339. https://doi.org/10.1080/10643389.2018.1455484.
Ly, D. K., T. Maruéjouls, G. Binet, and J.-L. Bertrand-Krajewski. 2019. “Application of stormwater mass–volume curve prediction for water quality-based real-time control in sewer systems.” Urban Water J. 16 (1): 11–20. https://doi.org/10.1080/1573062X.2019.1611885.
Mailhot, A., G. Talbot, and B. Lavallée. 2015. “Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences.” J. Hydrol. 523 (Apr): 602–609. https://doi.org/10.1016/j.jhydrol.2015.01.063.
Maiolo, M., S. A. Palermo, A. C. Brusco, B. Pirouz, M. Turco, A. Vinci, G. Spezzano, and P. Piro. 2020. “On the use of a real-time control approach for urban stormwater management.” Water 12 (10): 2842. https://doi.org/10.3390/w12102842.
Mounce, S., W. Shepherd, S. Ostojin, M. Abdel-Aal, A. Schellart, J. Shucksmith, and S. Tait. 2020. “Optimisation of a fuzzy logic-based local real-time control system for mitigation of sewer flooding using genetic algorithms.” J. Hydroinf. 22 (2): 281–295. https://doi.org/10.2166/hydro.2019.058.
Oberascher, M., A. Dastgir, J. Li, S. Hesarkazzazi, M. Hajibabaei, W. Rauch, and R. Sitzenfrei. 2021a. “Revealing the challenges of smart rainwater harvesting for integrated and digital resilience of urban water infrastructure.” Water 13 (14): 1902. https://doi.org/10.3390/w13141902.
Oberascher, M., C. Kinzel, U. Kastlunger, M. Kleidorfer, C. Zingerle, W. Rauch, and R. Sitzenfrei. 2021b. “Integrated urban water management with micro storages developed as an IoT-based solution—The smart rain barrel.” Environ. Modell. Software 139: 105028.
Oberascher, M., W. Rauch, and R. Sitzenfrei. 2021c. “Efficient integration of IoT-based micro storages to improve urban drainage performance through advanced control strategies.” Water Sci. Technol. 83 (11): 2678–2690. https://doi.org/10.2166/wst.2021.159.
Oberascher, M., W. Rauch, and R. Sitzenfrei. 2022. “Towards a smart water city: A comprehensive review of applications, data requirements, and communication technologies for integrated management.” Sustainable Cities Soc. 76 (Jan): 103442. https://doi.org/10.1016/j.scs.2021.103442.
Oberascher, M., J. Zischg, S. A. Palermo, C. Kinzel, W. Rauch, and R. Sitzenfrei. 2019. “Smart rain barrels: Advanced LID management through measurement and control.” In New Trends in Urban Drainage Modelling: UDM 2018 11. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-99867-1_134.
Oral, H. V., et al. 2020. “A review of nature-based solutions for urban water management in European circular cities: A critical assessment based on case studies and literature.” Blue-Green Syst. 2 (1): 112–136. https://doi.org/10.2166/bgs.2020.932.
Passerat, J., N. K. Ouattara, J.-M. Mouchel, V. Rocher, and P. Servais. 2011. “Impact of an intense combined sewer overflow event on the microbiological water quality of the Seine River.” Water Res. 45 (2): 893–903. https://doi.org/10.1016/j.watres.2010.09.024.
Persaud, P. P., A. A. Akin, B. Kerkez, D. T. McCarthy, and J. M. Hathaway. 2019. “Real time control schemes for improving water quality from bioretention cells.” Blue-Green Syst. 1 (1): 55–71.
Pleau, M., H. Colas, P. Lavallée, G. Pelletier, and R. Bonin. 2005. “Global optimal real-time control of the Quebec urban drainage system.” Environ. Modell. Software 20 (4): 401–413. https://doi.org/10.1016/j.envsoft.2004.02.009.
Pleau, M., G. Pelletier, H. Colas, P. Lavallee, and R. Bonin. 2001. “Global predictive real-time control of Quebec urban community’s westerly sewer network.” Water Sci. Technol. 43 (7): 123–130.
Quaranta, E., S. Fuchs, H. J. Liefting, A. Schellart, and A. Pistocchi. 2022. “Costs and benefits of combined sewer overflow management strategies at the European scale.” J. Environ. Manage. 318 (Sep): 115629. https://doi.org/10.1016/j.jenvman.2022.115629.
Ramírez-Agudelo, N. A., R. Porcar Anento, M. Villares, and E. Roca. 2020. “Nature-based solutions for water management in peri-urban areas: Barriers and lessons learned from implementation experiences.” Sustainability 12 (23): 9799. https://doi.org/10.3390/su12239799.
Rossman, L. 2015. Storm water management model user’s manual version 5.1—Manual. Washington, DC: USEPA.
Rossman, L. A., and W. C. Huber. 2016. Storm water management model reference manual volume III—Water quality. Cincinnati, OH: US EPA National Risk Management Research Laboratory.
Sadler, J. M., J. L. Goodall, M. Behl, B. D. Bowes, and M. M. Morsy. 2020. “Exploring real-time control of stormwater systems for mitigating flood risk due to sea level rise.” J. Hydrol. 583 (Apr): 124571. https://doi.org/10.1016/j.jhydrol.2020.124571.
Schilling, W., B. Andersson, U. Nyberg, H. Aspegren, W. Rauch, and P. Harremoës. 1996. “Real time control of wastewater systems.” J. Hydraul. Res. 34 (6): 785–797. https://doi.org/10.1080/00221689609498450.
Schuetze, M., V. Erbe, U. Haas, M. Scheer, and M. Weyand. 2008. “Sewer system real-time control supported by the M180 guideline document.” Urban Water J. 5 (1): 69–78.
Schütze, M., A. Campisano, H. Colas, W. Schilling, and P. A. Vanrolleghem. 2004. “Real time control of urban wastewater systems—Where do we stand today?” J. Hydrol. 299 (3–4): 335–348. https://doi.org/10.1016/j.jhydrol.2004.08.010.
Schütze, M., A. Wriege-Bechtold, T. Zinati, H. Söbke, I. Wißmann, M. Schulz, S. Veser, J. Londong, M. Barjenbruch, and J. Alex. 2019. “Simulation and visualization of material flows in sanitation systems for streamlined sustainability assessment.” Water Sci. Technol. 79 (10): 1966–1976. https://doi.org/10.2166/wst.2019.199.
Seggelke, K., R. Löwe, T. Beeneken, and L. Fuchs. 2013. “Implementation of an integrated real-time control system of sewer system and waste water treatment plant in the city of Wilhelmshaven.” Urban Water J. 10 (5): 330–341. https://doi.org/10.1080/1573062X.2013.820331.
Shishegar, S., S. Duchesne, and G. Pelletier. 2018. “Optimization methods applied to stormwater management problems: A review.” Urban Water J. 15 (3): 276–286. https://doi.org/10.1080/1573062X.2018.1439976.
Spraakman, S., T. Van Seters, J. Drake, and E. Passeport. 2020. “How has it changed? A comparative field evaluation of bioretention infiltration and treatment performance post-construction and at maturity.” Ecol. Eng. 158 (Dec): 106036. https://doi.org/10.1016/j.ecoleng.2020.106036.
Sun, C., J. Lorenz Svensen, M. Borup, V. Puig, G. Cembrano, and L. Vezzaro. 2020. “An MPC-enabled SWMM implementation of the Astlingen RTC benchmarking network.” Water 12 (4): 1034. https://doi.org/10.3390/w12041034.
Thorndahl, S., K. Schaarup-Jensen, and M. R. Rasmussen. 2015. “On hydraulic and pollution effects of converting combined sewer catchments to separate sewer catchments.” Urban Water J. 12 (2): 120–130. https://doi.org/10.1080/1573062X.2013.831915.
Tian, W., Z. Liao, G. Zhi, Z. Zhang, and X. Wang. 2022. “Combined sewer overflow and flooding mitigation through a reliable real-time control based on multi-reinforcement learning and model predictive control.” Water Resour. Res. 58 (7): e2021WR030703.
UN-Water. 2018. 2018 UN world water development report, nature-based solutions for water. Paris: UNESCO.
van der Werf, J. A., Z. Kapelan, and J. Langeveld. 2021. “Quantifying the true potential of real time control in urban drainage systems.” Urban Water J. 18 (10): 873–884. https://doi.org/10.1080/1573062X.2021.1943460.
van der Werf, J. A., Z. Kapelan, and J. Langeveld. 2022. “Towards the long term implementation of real time control of combined sewer systems: A review of performance and influencing factors.” Water Sci. Technol 85 (4): 1295–1320.
van der Werf, J. A., Z. Kapelan, and J. G. Langeveld. 2023. “The impact of blue-green infrastructure and urban area densification on the performance of real-time control of sewer networks.” Water Resour. Res. 59 (6): e2022WR033591. https://doi.org/10.1029/2022WR033591.
Wang, J. 2014. “Combined sewer overflows (CSOs) impact on water quality and environmental ecosystem in the Harlem River.” J. Environ. Protect. 5 (13): 1373. https://doi.org/10.4236/jep.2014.513131.
Wang, M., D. Zhang, A. Adhityan, W. J. Ng, J. Dong, and S. K. Tan. 2016. “Assessing cost-effectiveness of bioretention on stormwater in response to climate change and urbanization for future scenarios.” J. Hydrol. 543 (Part B): 423–432. https://doi.org/10.1016/j.jhydrol.2016.10.019.
Water-Europe. 2018. Opportunities for hybrid gray and green infrastructure in water management challenges. Brussels, Belgium: Water Europe.
Webber, J. L., T. Fletcher, R. Farmani, D. Butler, and P. Melville-Shreeve. 2022. “Moving to a future of smart stormwater management: A review and framework for terminology, research, and future perspectives.” Water Res. 218 (Jun): 118409. https://doi.org/10.1016/j.watres.2022.118409.
Weyand, M. 2002. “Real-time control in combined sewer systems in Germany––some case studies.” Urban Water 4 (4): 347–354. https://doi.org/10.1016/S1462-0758(02)00031-6.
Wong, T. H. 2006. “Water sensitive urban design-the journey thus far.” Australas. J. Water Resour. 10 (3): 213–222. https://doi.org/10.1080/13241583.2006.11465296.
Xu, W. D., M. J. Burns, F. Cherqui, and T. D. Fletcher. 2021. “Enhancing stormwater control measures using real-time control technology: A review.” Urban Water J. 18 (2): 101–114. https://doi.org/10.1080/1573062X.2020.1857797.
Yang, F., F. Dafang, C. Zevenbergen, F. C. Boogaard, and R. J. Singh. 2024. “Time-varying characteristics of saturated hydraulic conductivity in grassed swales based on the ensemble Kalman filter algorithm—A case study of two long-running swales in Netherlands.” J. Environ. Manage. 351 (Feb): 119760. https://doi.org/10.1016/j.jenvman.2023.119760.

Information & Authors

Information

Published In

Go to Journal of Sustainable Water in the Built Environment
Journal of Sustainable Water in the Built Environment
Volume 10Issue 4November 2024

History

Published online: Jun 25, 2024
Published in print: Nov 1, 2024
Discussion open until: Nov 25, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Helieh Abasi, Ph.D., S.M.ASCE [email protected]
Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, QC, Canada G1K 9A9; National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6 (corresponding author). Email: [email protected]
Marie-Eve Jean, Ph.D. [email protected]
Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, QC, Canada G1K 9A9. Email: [email protected]
Hamidreza Shirkhani [email protected]
Professor, National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6. Email: [email protected]
Professor, Centre Eau Terre Environnement, Institut national de la recherche scientifique, 490 rue de la Couronne, Québec, QC, Canada G1K 9A9. ORCID: https://orcid.org/0000-0002-5619-0849. Email: [email protected]
Professor, Département de génie civil et de génie des eaux, Université Laval, 1065 Ave. de la Médecine, Québec, QC, Canada G1V 0A6. ORCID: https://orcid.org/0000-0003-1744-1550. Email: [email protected]
Yehuda Kleiner [email protected]
Research Officer, National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6. Email: [email protected]
Andrew Colombo [email protected]
Research Officer, National Research Council Canada, 1200 Montreal Rd., Ottawa, ON, Canada K1A 0R6. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share