Abstract

In the development of neural networks, many realizations are performed to decide which solution provides the smallest prediction error. Due to the inevitable random errors associated with the data and the randomness related to the network (e.g., initialization of the weight and initial conditions linked to the learning procedure), there is usually not an optimal solution. However, we can advantage of the idea of making several realizations based on resampling methods. Resampling methods are often used to replace theoretical assumptions by repeatedly resampling the original data and making inferences from the resampling. Resampling methods provide us the opportunity to do the interval prediction instead of only one point prediction. Following this idea, we introduce three resampling methods in neural networks, namely Delete-d Jackknife Trials, Delete-1 Jackknife Trials, and Hold-Out Trials. They are discussed and applied to a real coordinate transformation problem. Although the Delete-1 Jackknife Trials offer better results, the choice of resampling method will depend on the dimension of the problem at hand.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code generated used during the study are available in a repository online in accordance with funder data retention policies (Rofatto and Matsuoka 2022).

References

Burman, P. 1989. “A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods.” Biometrika 76 (3): 503–514. https://doi.org/10.1093/biomet/76.3.503.
Efron, B. 1980. The Jackknife, the bootstrap, and other resampling plans. Stanford, CA: Stanford Univ.
Efron, B. 1982. “The Jackknife, the bootstrap and other resampling plans.” Accessed November 4, 2021. https://epubs.siam.org/doi/abs/10.1137/1.9781611970319.
Efron, B. 1992. “Jackknife-after-bootstrap standard errors and influence functions.” J. R. Stat. Soc. Ser. B 54 (1): 83–127.
Farolfi, G., and C. Del Ventisette. 2016. “Contemporary crustal velocity field in alpine Mediterranean area of Italy from new geodetic data.” GPS Solut. 20 (4): 715–722. https://doi.org/10.1007/s10291-015-0481-1.
Gavin, H. P. 2020. The Levenberg-Marquardt algorithm for nonlinear least squares curve-fitting problems. Durham, NC: Duke Univ.
Haykin, S. 1999. Neural networks a comprehensive foundation. 2nd ed. Englewood Cliff, NJ: Prentice Hall.
Kaloop, M. R., and D. Kim. 2014. “Gps-structural health monitoring of a long span bridge using neural network adaptive filter.” Survey Rev. 46 (334): 7–14. https://doi.org/10.1179/1752270613Y.0000000053.
Kavzoglu, T., and M. H. Saka. 2005. “Modelling local gps/levelling geoid undulations using artificial neural networks.” J. Geod. 78 (9): 520–527. https://doi.org/10.1007/s00190-004-0420-3.
Lehmann, R. 2012. “Improved critical values for extreme normalized and studentized residuals in Gauss–Markov models.” J. Geod. 86 (12): 1137–1146. https://doi.org/10.1007/s00190-012-0569-0.
Levenberg, K. 1944. “A method for the solution of certain non-linear problems in least squares.” Q. Appl. Math. 2 (2): 164–168. https://doi.org/10.1090/qam/10666.
Lin, L.-S. 2007. “Application of a back-propagation artificial neural network to regional grid-based geoid model generation using gps and leveling data.” J. Surv. Eng. 133 (2): 81–89. https://doi.org/10.1061/(ASCE)0733-9453(2007)133:2(81).
Liu, X., J. Liang, Z.-Y. Wang, Y.-T. Tsai, C.-C. Lin, and C.-C. Chen. 2020. “Content-based image copy detection using convolutional neural network.” Electronics 9 (12): 2029. https://doi.org/10.3390/electronics9122029.
Madsen, K., N. B. Nielsen, and O. Tinglef. 2004. Methods for nonlinear least squares problems. Lyngby, Denmark: Technical Univ. of Denmark.
Marquardt, D. W. 1963. “An algorithm for least-squares estimation of nonlinear parameters.” J. Soc. Ind. Appl. Math. 11 (2): 431–441. https://doi.org/10.1137/0111030.
McIntosh, A. 2016. “The Jackknife estimation method.” Preprint, submitted June 1, 2016. http://arxiv.org/abs,arXiv:1606.00497.
Miller, R. G. 1974. “The Jackknife—A review.” Biometrika 61 (1): 1–15. https://doi.org/10.2307/2334280.
Mollalo, A., L. Mao, P. Rashidi, and G. E. Glass. 2019. “A gis-based artificial neural network model for spatial distribution of tuberculosis across the continental united states.” Int. J. Environ. Res. Public Health 16 (1): 157. https://doi.org/10.3390/ijerph16010157.
Nguyen, D., and B. Widrow. 1990. “Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights.” In Vol. 3 of Proc., IJCNN Int. Joint Conf. on Neural Networks, 21–26. New York: IEEE.
Pan, L. 1998. “Resampling in neural networks with application to financial time series.” Ph.D. thesis, Faculty of Graduate Studies, Univ. of Guelph.
Quenouille, M. H. 1949. “Approximate tests of correlation in time-series.” J. R. Stat. Soc. Ser. B 11 (1): 68–84.
Reitermanová, Z. 2010. “Data splitting.” In Proc., Contributed Papers, Part I: Mathematics and Computer Sciences, edited by J. Šafránková and J. Pavlȯu. Prague, Czech Republic: MATFYZPRESS.
Rofatto, V., and M. Matsuoka. 2022. “Resampling for coordinate transformation.” Mendeley Data V1. Accessed February 24, 2022. https://doi.org/10.17632/cddjxjyrh4.1.
Rofatto, V. F., M. T. Matsuoka, I. Klein, M. Roberto Veronez, and L. G. da Silveira. 2020. “A Monte Carlo-based outlier diagnosis method for sensitivity analysis.” Remote Sens. 12 (5): 860. https://doi.org/10.3390/rs12050860.
Sothe, C., et al. 2020. “Evaluating a convolutional neural network for feature extraction and tree species classification using uav-hyperspectral images.” ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. V-3-2020: 193–199. https://doi.org/10.5194/isprs-annals-V-3-2020-193-2020.
Stopar, B., T. Ambroi, M. Kuhar, and G. Turk. 2006. “Gps-derived geoid using artificial neural network and least squares collocation.” Surv. Rev. 38 (300): 513–524. https://doi.org/10.1179/sre.2006.38.300.513.
Teunissen, P. 1985. “Zero order design: Generalized inverses, adjustment, the datum problem and s-transformations.” In Optimization and design of geodetic networks, edited by E. W. Grafarend and F. Sansò, 11–55. Berlin: Springer.
Tierra, A., R. Dalazoana, and S. D. Freitas. 2008. “Using an artificial neural network to improve the transformation of coordinates between classical geodetic reference frames.” Comput. Geosci. 34 (3): 181–189. https://doi.org/10.1016/j.cageo.2007.03.011.
Tukey, J. W. 1958. “Bias and confidence in not-quite large samples.” Ann. Math. Stat. 29 (2): 614–623. https://doi.org/10.1214/aoms/1177706647.
Wang, L., Z. Li, and F. Yu. 2022. “Jackknife method for the location of gross errors in weighted total least squares.” Commun. Stat. Simul. Comput. 51 (4): 1946–1966. https://doi.org/10.1080/03610918.2019.1691225.
Wang, L., and F. Yu. 2020. “Jackknife resampling parameter estimation method for weighted total least squares.” Commun. Stat. Theory Methods 49 (23): 5810–5828. https://doi.org/10.1080/03610926.2019.1622725.
Wang, L., and F. Yu. 2021. “Jackknife resample method for precision estimation of weighted total least squares.” Commun. Stat. Simul. Comput. 50 (5): 1272–1289. https://doi.org/10.1080/03610918.2019.1580727.
Wang, L., F. Yu, Z. Li, and C. Zou. 2020. “Jackknife method for variance components estimation of partial eiv model.” J. Surv. Eng. 146 (4): 04020016. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000327.
Wood, M. 2005. “Bootstrapped confidence intervals as an approach to statistical inference.” Organizational Res. Methods 8 (4): 454–470. https://doi.org/10.1177/1094428105280059.
Wujanz, D., M. Avian, D. Krueger, and F. Neitzel. 2018. “Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring.” Earth Surf. Dyn. 6 (2): 303–317. https://doi.org/10.5194/esurf-6-303-2018.
Yang, F., J. Guo, C. Zhang, Y. Li, and J. Li. 2021a. “A regional zenith tropospheric delay (ZTD) model based on GPT3 and ANN.” Remote Sens. 13 (5): 838. https://doi.org/10.3390/rs13050838.
Yang, G., K. C. P. Wang, J. Q. Li, Y. Fei, Y. Liu, K. C. Mahboub, and A. A. Zhang. 2021b. “Automatic pavement type recognition for image-based pavement condition survey using convolutional neural network.” J. Comput. Civ. Eng. 35 (1): 04020060. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000944.
Ziggah, Y. Y., Y. Hu, Y. Issaka, and P. B. Laari. 2019a. “Least squares support vector machine model for coordinate transformation.” Geod. Cartography 45 (5): 16–27. https://doi.org/10.3846/gac.2019.6053.
Ziggah, Y. Y., H. Youjian, A. Tierra, A. A. Konaté, and Z. Hui. 2016. “Performance evaluation of artificial neural networks for planimetric coordinate transformation—A case study, ghana.” Arabian J. Geosci. 9 (17): 698. https://doi.org/10.1007/s12517-016-2729-7.
Ziggah, Y. Y., H. Youjian, A. R. Tierra, and P. B. Laari. 2019b. “Coordinate transformation between global and local datums based on artificial neural network with k-fold cross-validation: A case study, Ghana.” Earth Sci. Res. J. 23 (1): 67–77. https://doi.org/10.15446/esrj.v23n1.63860.

Information & Authors

Information

Published In

Go to Journal of Surveying Engineering
Journal of Surveying Engineering
Volume 149Issue 1February 2023

History

Received: Feb 25, 2022
Accepted: Sep 2, 2022
Published online: Dec 9, 2022
Published in print: Feb 1, 2023
Discussion open until: May 9, 2023

Authors

Affiliations

Professor, Graduate Program in Agriculture and Geospatial Information, Federal Univ. of Uberlandia, Monte Carmelo City, Highway LMG-746, km 1, Monte Carmelo, MG 38500-000, Brazil. ORCID: https://orcid.org/0000-0003-1453-7530. Email: [email protected]
Engineer, Graduate Program in Agriculture and Geospatial Information, Federal Univ. of Uberlandia, Monte Carmelo City, Highway LMG-746, km 1, Monte Carmelo, MG 38500-000, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-3314-3230. Email: [email protected]
Marcelo Tomio Matsuoka [email protected]
Professor, Graduate Program in Agriculture and Geospatial Information, Federal Univ. of Uberlandia, Monte Carmelo City, Highway LMG-746, km 1, Monte Carmelo, MG 38500-000, Brazil. Email: [email protected]
Professor, Dept. of Civil Construction, Federal Institute of Santa Catarina, Florianopolis City, SC 88020-300, Brazil. ORCID: https://orcid.org/0000-0003-4296-592X. Email: [email protected]
Cartographer and Surveyor Engineer, CP Empreendimentos, Araraquara City, São Paulo 14801-150, Brazil. ORCID: https://orcid.org/0000-0001-9257-7701. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share