State-of-the-Art Reviews
May 27, 2023

Pavement Monitoring Using Unmanned Aerial Vehicles: An Overview

Publication: Journal of Transportation Engineering, Part B: Pavements
Volume 149, Issue 3

Abstract

Pavement monitoring involves periodic damage detection and condition assessment of pavements for efficient pavement management. Unmanned aerial vehicle (UAV)-based pavement monitoring requires multidisciplinary knowledge of pavement distress, drone type, payload, flight parameters, drone deployment, and image processing. Owing to the availability of various UAVs, data sensing devices, operating ecosystems, and post-processing tools, selecting an appropriate combination of these systems is crucial. Therefore, the primary objective of this study is to provide essential knowledge on the prevalent challenges of existing monitoring techniques and discuss the potential advantages of UAVs over conventional pavement monitoring practice. A state-of-the-art review emphasizing UAV technicalities in the context of image-based pavement monitoring is presented. A detailed workflow and checklist for drone deployment is drafted for novice users to ensure safe and high-quality data acquisition. Finally, the present challenges and future scope of UAV-based pavement monitoring is discussed. Overall, this study aims to provide inclusive and comprehensive information on UAV-based pavement monitoring to beginner researchers.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants for the Brain Pool Projects (2021H1D3A2A02044785 and 2022H1D3A2A01096145). The authors sincerely thank the anonymous reviewers for helping improve the quality of this manuscript.

References

Ader, M., and D. Axelsson. 2017. “Drones in arctic environments.” Accessed April 5, 2022. https://kth.diva-portal.org/smash/get/diva2:1158400/FULLTEXT01.pdf.
Ahmed, A., F. Outay, S. O. R. Zaidi, M. Adnan, and D. Ngoduy. 2021. “Examining queue-jumping phenomenon in heterogeneous traffic stream at signalized intersection using UAV-based data.” Pers. Ubiquitous Comput. 25 (1): 93–108. https://doi.org/10.1007/s00779-020-01434-y.
Alladi, T., V. Chamola, N. Sahu, and M. Guizani. 2020. “Applications of blockchain in unmanned aerial vehicles: A review.” Veh. Commun. 23 (Jun): 100249. https://doi.org/10.1016/j.vehcom.2020.100249.
Al-Qadi, I. L., and S. Lahouar. 2005. “Measuring layer thicknesses with GPR—Theory to practice.” Constr. Build. Mater. 19 (10): 763–772. https://doi.org/10.1016/j.conbuildmat.2005.06.005.
Amin, M. S. R., and L. E. Amador-Jiménez. 2016. “Pavement management with dynamic traffic and artificial neural network: A case study of Montreal.” Can. J. Civ. Eng. 43 (3): 241–251. https://doi.org/10.1139/cjce-2015-0299.
Arndt, R. W. 2010. “Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering.” Infrared Phys. Technol. 53 (4): 246–253. https://doi.org/10.1016/j.infrared.2010.03.002.
ASTM. 2014. Standard test method for detecting delaminations in bridge decks using infrared thermography. West Conshohocken, PA: ASTM International.
ASTM. 2020. Standard practice for roads and parking lots pavement condition index surveys. ASTM 994. West Conshohocken, PA: ASTM International.
Atencio, E., F. Plaza-Muñoz, F. Muñoz-La Rivera, and J. A. Lozano-Galant. 2022. “Calibration of UAV flight parameters for pavement pothole detection using orthogonal arrays.” Autom. Constr. 143 (Nov): 104545. https://doi.org/10.1016/j.autcon.2022.104545.
Barmpounakis, E., and N. Geroliminis. 2020. “On the new era of urban traffic monitoring with massive drone data: The pneuma large-scale field experiment.” Transp. Res. Part C Emerging Technol. 111 (Feb): 50–71. https://doi.org/10.1016/j.trc.2019.11.023.
Barmpounakis, E. N., E. I. Vlahogianni, and J. C. Golias. 2016. “Unmanned aerial aircraft systems for transportation engineering: Current practice and future challenges.” Int. J. Transp. Sci. Technol. 5 (3): 111–122. https://doi.org/10.1016/j.ijtst.2017.02.001.
Blyenburgh, P. V. 2010. Overview of the European UAS Community. 2010–2011 UAS Yearbook—UAS: The global perspective, 120–138. 8th ed. Paris: Blyenburgh & Co.
Branco, L. H. C., and P. C. L. Segantine. 2015. “MaNIAC-UAV-a methodology for automatic pavement defects detection using images obtained by Unmanned Aerial Vehicles.” J. Phys. Conf. Ser. 633 (1): 012122.
Bu, T., J. Zhu, and T. Ma. 2022. “A UAV photography–based detection method for defective road marking.” J. Perform. Constr. Facil. 36 (5): 04022035. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001748.
CAAC (Civil Aviation Administration of China). 2015. “Operational rules for civil unmanned aircraft.” Accessed January 5, 2022. https://www.hlmediacomms.com/2016/01/21/china-launches-first-operational-rules-for-civil-unmanned-aircraft.
CAA (Civil Aviation Authority). 2002. “Unmanned Aerial Vehicle Operations in the U.K. Airspace—Guidance.” CAP 722, Directorate of Airspace Policy. Accessed January 23, 2023. https://www.icao.int/safety/acp/ACPWGF/ACP-WG-F-10/WP10-13Att.pdf.
CAA (Civil Aviation Authority). 2020. “Unmanned aerial vehicle operations in the U.K. Airspace—Guidance.” CAP 722, Ninth Edition Amendment 1, Safety and Airspace Regulation Group. Accessed January 23, 2023. https://publicapps.caa.co.uk/docs/33/CAP722_Edition_9.1%20(1).pdf.
Caroff, G., P. Joubert, F. Prudhomme, and G. Soussain. 1989. “Classification of pavement distresses by image processing (macadam system).” In Proc., 1st Int. Conf. Application of Advanced Technologies in Transportation Engineering, 46–51. San Diego: ASCE.
Casola, V., M. Esposito, F. Flammini, N. Mazzocca, and C. Pragliola. 2013. “Performance evaluation of video analytics for surveillance on-board trains.” In Proc., Int. Conf. on Advanced Concepts for Intelligent Vision Systems, 414–425. Cham, Switzerland: Springer.
Ceylan, H., M. B. Bayrak, and K. Gopalakrishnan. 2014. “Neural networks applications in pavement engineering: A recent survey.” Int. J. Pavement Res. Technol. 7 (6): 434–444. https://doi.org/10.6135/ijprt.org.tw/2014.7(6).434.
Chai, M., G. Li, W. Ma, D. Chen, Q. Du, Y. Zhou, S. Qi, L. Tang, and H. Jia. 2022. “Damage characteristics of the Qinghai-Tibet Highway in permafrost regions based on UAV imagery.” Int. J. Pavement Eng. 2022 (Feb): 1–12. https://doi.org/10.1080/10298436.2022.2038381.
Chen, D. H., and T. Scullion. 2008. “Forensic investigations of roadway pavement failures.” J. Perform. Constr. Facil. 22 (1): 35–44. https://doi.org/10.1061/(ASCE)0887-3828(2008)22:1(35).
Congress, S. S. C. 2018. “Novel infrastructure monitoring using multifaceted unmanned aerial vehicle systems-close range photogrammetry (UAV-CRP) data analysis.” Accessed January 5, 2023. https://rc.library.uta.edu/uta-ir/handle/10106/27746.
Congress, S. S. C., and A. J. Puppala. 2020. “Evaluation of UAV–CRP data for monitoring transportation infrastructure constructed over expansive soils.” Indian Geotech. J. 50 (2): 159–171. https://doi.org/10.1007/s40098-019-00384-4.
Congress, S. S. C., A. J. Puppala, P. Kumar, and U. D. Patil. 2021. “Assessment of pavement geometric characteristics using UAV-CRP data.” In Proc., Int. Conf. on Transportation and Development 2021, 332–343. Reston, VA: ASCE. https://doi.org/10.1061/9780784483534.029.
da Silveira, F., F. H. Lermen, and F. G. Amaral. 2021. “An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages.” Comput. Electron. Agric. 189 (Oct): 106405. https://doi.org/10.1016/j.compag.2021.106405.
Davis, B. J. 2016. “Development of the MASW method for pavement evaluation.” Theses and dissertations, Dept. of Civil Engineering, Univ. of Arkansas.
Department of Defense. 2011. “Unmanned aircraft system airspace integration plan.” Accessed January 5, 2022. https://www.nasa.gov/sites/default/files/atoms/files/fs-075-afrc-07-19.pdf.
DGCA (Directorate General of Civil Aviation). 2021. “Drone Rules and Regulations in India.” Accessed January 5, 2022. https://www.civilaviation.gov.in/sites/default/files/Draft_Drones_Rules_14_Jul_2021.pdf.
Díaz-Vilariño, L., H. González-Jorge, M. Bueno, P. Arias, and I. Puente. 2016. “Automatic classification of urban pavements using mobile LiDAR data and roughness descriptors.” Constr. Build. Mater. 102 (Part 1): 208–215. https://doi.org/10.1016/j.conbuildmat.2015.10.199.
Dick, K., L. Russell, Y. Souley Dosso, F. Kwamena, and J. R. Green. 2019. “Deep learning for critical infrastructure resilience.” J. Infrastruct. Syst. 25 (2): 05019003. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000477.
Dobson, R. J., C. Brooks, C. Roussi, and T. Colling. 2013. “Developing an unpaved road assessment system for practical deployment with high-resolution optical data collection using a helicopter UAV.” In Proc., Int. Conf. on Unmanned Aircraft Systems (ICUAS) 2013, 235–243. New York: IEEE.
Du Tertre, A. 2010. “Non-destructive evaluation of asphalt pavement joints using LWD and MASW tests.” Master’s thesis, Dept. of Civil Engineering, Univ. of Waterloo.
Earth Radar. 2018. “PaveScout.” Accessed April 5, 2022. https://earthradar.com.au/technology/pavescout.
Elghaish, F., S. Talebi, E. Abdellatef, S. T. Matarneh, M. R. Hosseini, S. Wu, M. Mayouf, A. Hajirasouli, and T. Nguyen. 2021. “Developing a new deep learning CNN model to detect and classify highway cracks.” J. Eng. Des. Technol. 20 (4): 993–1014. https://doi.org/10.1108/JEDT-04-2021-0192.
Eltner, A., and G. Sofia. 2020. “Structure from motion photogrammetric technique.” In Developments in earth surface processes, 23. Amsterdam, Netherlands: Elsevier.
Famili, A., W. A. Sarasua, A. Shams, W. J. Davis, and J. H. Ogle. 2021. “Application of mobile terrestrial LiDAR scanning systems for identification of potential pavement rutting locations.” Transp. Res. Rec. 2675 (9): 1063–1075. https://doi.org/10.1177/03611981211005777.
Foorginejad, A., and K. Khalili. 2014. “Umbrella curvature: A new curvature estimation method for point clouds.” Procedia Technol. 12 (Jan): 347–352. https://doi.org/10.1016/j.protcy.2013.12.497.
Fugro. 2018. “Automatic road analyzer (ARAN).” Accessed April 6, 2022. https://www.fugro.com/our-services/asset-integrity/roadware/equipment-and-software.
Gabrlik, P. 2015. “The use of direct georeferencing in aerial photogrammetry with micro UAV.” IFAC-PapersOnLine 48 (4): 380–385. https://doi.org/10.1016/j.ifacol.2015.07.064.
Gao, J., D. Yuan, Z. Tong, J. Yang, and D. Yu. 2020. “Autonomous pavement distress detection using ground penetrating radar and region-based deep learning.” Measurement 164 (Nov): 108077. https://doi.org/10.1016/j.measurement.2020.108077.
Gao, M., C. H. Hugenholtz, T. A. Fox, M. Kucharczyk, T. E. Barchyn, and P. R. Nesbit. 2021. “Weather constraints on global drone flyability.” Sci. Rep. 11 (1): 1–13. https://doi.org/10.1038/s41598-021-91325-w.
Georgopoulos, A., A. Loizos, and A. Flouda. 1995. “’Digital image processing as a tool for pavement distress evaluation.” ISPRS J. Photogramm. Remote Sens. 50 (1): 23–33. https://doi.org/10.1016/0924-2716(95)91844-A.
German, S., J. S. Jeon, Z. Zhu, C. Bearman, I. Brilakis, R. DesRoches, and L. Lowes. 2013. “Machine vision-enhanced post-earthquake inspection.” J. Comput. Civ. Eng. 27 (6): 622–634. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000333.
Goktepe, A. B., E. Agar, and A. H. Lav. 2006. “Advances in back calculating the mechanical properties of flexible pavements.” Adv. Eng. Software 37 (7): 421–431. https://doi.org/10.1016/j.advengsoft.2005.10.001.
Golrokh, A. J., X. Gu, and Y. Lu. 2021. “Real-time thermal imaging-based system for asphalt pavement surface distress inspection and 3D crack profiling.” J. Perform. Constr. Facil. 35 (1): 04020143. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001557.
Golrokh, A. J., and Y. Lu. 2021. “An experimental study of the effects of climate conditions on thermography and pavement assessment.” Int. J. Pavement Eng. 22 (8): 1030–1041. https://doi.org/10.1080/10298436.2019.1656809.
Gopalakrishnan, K., H. Gholami, A. Vidyadharan, A. Choudhary, and A. Agrawal. 2018. “Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model.” Int. J. Traffic Transp. Eng. 8 (1): 1–14. https://doi.org/10.7708/ijtte.2018.8(1).01.
Gu, F., X. Luo, Y. Zhang, Y. Chen, R. Luo, and R. L. Lytton. 2018. “Prediction of geogrid-reinforced flexible pavement performance using artificial neural network approach.” Road Mater. Pavement Des. 19 (5): 1147–1163. https://doi.org/10.1080/14680629.2017.1302357.
Gu, X., M. Abdel-Aty, Q. Xiang, Q. Cai, and J. Yuan. 2019. “Utilizing UAV video data for in-depth analysis of drivers’ crash risk at interchange merging areas.” Accid. Anal. Prev. 123 (Feb): 159–169. https://doi.org/10.1016/j.aap.2018.11.010.
Gucunski, N., S. Nazarian, A. Imani, and H. Azari. 2014. “Performance of NDT technologies in detection and characterization of reinforced concrete deck deterioration.” In Geo-congress 2014: Geo-characterization and modeling for sustainability, 2436–2449. Reston, VA: ASCE.
Gucunski, N., F. A. Romero, P. Shokouhi, and J. Makresias. 2005. “Complementary impact echo and ground penetrating radar evaluation of bridge decks on I-84 interchange in Connecticut.” In Earthquake engineering and soil dynamics, 1–10. Reston, VA: ASCE.
Hadjidemetriou, G. M., and S. E. Christodoulou. 2019. “Vision-and entropy-based detection of distressed areas for integrated pavement condition assessment.” J. Comput. Civ. Eng. 33 (3): 04019020. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000836.
Hamdi, H., S. Hadiwardoyo, G. A. Correia, and P. Pereira. 2017. “Pavement maintenance optimization strategies for national road network in Indonesia applying genetic algorithm.” Procedia Eng. 210: 253–260. https://doi.org/10.1016/j.proeng.2017.11.074.
Hartmann, W., M. Havlena, and K. Schindler. 2016. “Recent developments in large-scale tie-point matching.” ISPRS J. Photogramm. Remote Sens. 115 (May): 47–62. https://doi.org/10.1016/j.isprsjprs.2015.09.005.
Hassanalian, M., and A. Abdelkefi. 2017. “Classifications, applications, and design challenges of drones: A review.” Prog. Aerosp. Sci. 91 (May): 99–131. https://doi.org/10.1016/j.paerosci.2017.04.003.
He, K., X. Zhang, S. Ren, and J. Sun. 2015. “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.” In Proc., IEEE Int. Conf. on Computer Vision, 1026–1034. New York: IEEE.
Hoang, N. D. 2019. “Automatic detection of asphalt pavement raveling using image texture based texture-based feature extraction and stochastic gradient descent logistic regression.” Autom. Constr. 105 (Sep): 102843. https://doi.org/10.1016/j.autcon.2019.102843.
Holgado-Barco, A., D. Gonzalez-Aguilera, P. Arias-Sanchez, and J. Martinez-Sanchez. 2014. “An automated approach to vertical road characterisation using mobile LiDAR systems: Longitudinal profiles and cross-sections.” ISPRS J. Photogramm. Remote Sens. 96 (Oct): 28–37. https://doi.org/10.1016/j.isprsjprs.2014.06.017.
Hong, F., and D. Chen. 2016. “Evaluation of asphalt overlay permanent deformation based on ground-penetrating radar technology.” J. Test. Eval. 44 (4): 1716–1723. https://doi.org/10.1520/JTE20130241.
Hong, Z., et al. 2021. “Highway crack segmentation from unmanned aerial vehicle images using deep learning.” IEEE Geosci. Remote Sens. Lett. 18 (11): 1–5. https://doi.org/10.1109/LGRS.2020.3011973.
Ibragimov, E., H. J. Lee, J. J. Lee, and N. Kim. 2022. “Automated pavement distress detection using region based convolutional neural networks.” Int. J. Pavement Eng. 23 (6): 1981–1992. https://doi.org/10.1080/10298436.2020.1833204.
Inzerillo, L., F. Acuto, G. Di Mino, and M. Z. Uddin. 2022. “Super-resolution images methodology applied to UAV datasets to road pavement monitoring.” Drones 6 (7): 171. https://doi.org/10.3390/drones6070171.
Inzerillo, L., G. Di Mino, and R. Roberts. 2018. “Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress.” Autom. Constr. 96 (Dec): 457–469. https://doi.org/10.1016/j.autcon.2018.10.010.
Jaakkola, A., J. Hyyppä, H. Hyyppä, and A. Kukko. 2008. “Retrieval algorithms for road surface modelling using laser-based mobile mapping.” Sensors 8 (9): 5238–5249. https://doi.org/10.3390/s8095238.
Janani, L., R. K. Dixit, V. Sunitha, and S. Mathew. 2020. “Prioritisation of pavement maintenance sections deploying functional characteristics of pavements.” Int. J. Pavement Eng. 21 (14): 1815–1822. https://doi.org/10.1080/10298436.2019.1567923.
Karak, A., and K. Abdelghany. 2019. “The hybrid vehicle-drone routing problem for pick-up and delivery services.” Transp. Res. Part C Emerging Technol. 102 (May): 427–449. https://doi.org/10.1016/j.trc.2019.03.021.
Kee, S. H., T. Oh, J. S. Popovics, R. W. Arndt, and J. Zhu. 2012. “Non-destructive bridge deck testing with air-coupled impact-echo and infrared thermography.” J. Bridge Eng. 17 (6): 928–939. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000350.
Kersten, T. P., and M. Lindstaedt. 2012. “Automatic 3D object reconstruction from multiple images for architectural, cultural heritage and archaeological applications using open-source software and web services.” Photogramm. Fernerkundung Geoinf. 2012 (6): 727–740. https://doi.org/10.1127/1432-8364/2012/0152.
Khamzin, A. K., A. V. Varnavina, E. V. Torgashov, N. L. Anderson, and L. H. Sneed. 2017. “Utilization of air-launched ground penetrating radar (GPR) for pavement condition assessment.” Constr. Build. Mater. 141 (Jun): 130–139. https://doi.org/10.1016/j.conbuildmat.2017.02.105.
Knyaz, V. A., and A. G. Chibunichev. 2016. “Photogrammetric techniques for road surface analysis.” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B5 (B5): 515–520. https://doi.org/10.5194/isprs-archives-XLI-B5-515-2016.
KOCA (Korea Office of Civil Aviation). 2021. “Drones regulations, South Korea.” Accessed January 6, 2022. http://www.koca.go.kr/.
Koch, C., K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth. 2015. “A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure.” Adv. Eng. Inf. 29 (2): 196–210. https://doi.org/10.1016/j.aei.2015.01.008.
Kulkarni, N. N., S. Dabetwar, J. Benoit, T. Yu, and A. Sabato. 2022. “Comparative analysis of infrared thermography processing techniques for roadways’ sub-pavement voids detection.” NDT & E Int. 129 (Jul): 102652. https://doi.org/10.1016/j.ndteint.2022.102652.
Laurent, J., R. Fox-Ivey, and B. Petitclerc. 2020. “High resolution multi-lane road surface mapping using 3D laser profilers for 3D paving and milling projects.” In Proc., 7th Eurasphalt and Eurobitume Congress. Brussels, Belgium: European Asphalt Pavement Association.
Lee, J. K. 2019. “UAV-based pothole identification: A photogrammetric approach.” Master’s thesis, Dept. of Geoinformatics and Geospatial Intelligence, George Mason Univ.
Lee, S., J. Ha, M. Zokhirova, H. Moon, and J. Lee. 2018. “Background information of deep learning for structural engineering.” Arch. Comput. Methods Eng. 25 (1): 121–129. https://doi.org/10.1007/s11831-017-9237-0.
Leonardi, G., V. Barrile, R. Palamara, F. Suraci, and G. Candela. 2019. “3D mapping of pavement distresses using an unmanned aerial vehicle (UAV) system.” In Proc., Smart Innovation, Systems and Technologies Int. Symp. on New Metropolitan Perspectives, 164–171. Cham, Switzerland: Springer.
Li, Y., C. Liu, G. Yue, Q. Gao, and Y. Du. 2022. “Deep learning-based pavement subsurface distress detection via ground penetrating radar data.” Autom. Constr. 142 (Oct): 104516. https://doi.org/10.1016/j.autcon.2022.104516.
Lin, S., J. Ashlock, R. C. Williams, H. D. Lee, and Y. Wang. 2018. “Evaluation of three nondestructive testing techniques for quality assessment of asphalt pavements.” Nondestruct. Test. Eval. 33 (4): 361–375. https://doi.org/10.1080/10589759.2018.1484921.
Lin, Z., H. Wang, and S. Li. 2022. “Pavement anomaly detection based on transformer and self-supervised learning.” Autom. Constr. 143 (Nov): 104544. https://doi.org/10.1016/j.autcon.2022.104544.
Liu, F., J. Liu, and L. Wang. 2022. “Deep learning and infrared thermography for asphalt pavement crack severity classification.” Autom. Constr. 140 (Aug): 104383. https://doi.org/10.1016/j.autcon.2022.104383.
Loizos, A., and C. Plati. 2007. “Accuracy of pavement thicknesses estimation using different ground penetrating radar analysis approaches.” NDT & E Int. 40 (2): 147–157. https://doi.org/10.1016/j.ndteint.2006.09.001.
Loures, L. L. A., and E. R. Azar. 2023. “Condition assessment of unpaved roads using low-cost computer vision–based solutions.” J. Transp. Eng. Part B Pavements 149 (1): 04022066. https://doi.org/10.1061/JPEODX.PVENG-1006.
Lu, Y., A. J. Golrokh, and M. D. Islam. 2017. “Concrete pavement service condition assessment using infrared thermography.” Adv. Mater. Sci. Eng. 2017 (Jul): 1–8. https://doi.org/10.1155/2017/3829340.
Ma, D., H. Fang, N. Wang, C. Zhang, J. Dong, and H. Hu. 2022. “Automatic detection and counting system for pavement cracks based on PCGAN and YOLO-MF.” IEEE Trans. Intell. Transp. Syst. 23 (11): 22166–22178. https://doi.org/10.1109/TITS.2022.3161960.
Mallela, J., A. Mitchell, J. Gustafson, M. Olsen, C. Parrish, D. Gillins, M. Kumpula, and G. Roe. 2017. “Effective use of geospatial tools in highway construction.” Accessed April 7, 2022. https://research.transportation.org/wpcontent/plugins/AASHTO_RAC/download_file.php?fileid=571.
Marks, P., C. Cautillo, K. K. Tam, and S. McInnis. 2009. “Enhancing longitudinal joint performance in flexible pavements.” In Proc., 54th Annual Conf. of the Canadian Technical Asphalt Association (CTAA), 323–346. Ottawa: Transportation Association of Canada.
Millian, J. D. R. 2019. “Towards the application of UAS for road maintenance at the Norvik Port.” Accessed April 5, 2022. https://kth.diva-portal.org/smash/get/diva2:1329881/FULLTEXT01.pdf.
Miśkiewicz, M., K. Daszkiewicz, J. Lachowicz, P. Tysiac, P. Jaskula, and K. Wilde. 2021. “Nondestructive methods complemented by FEM calculations in diagnostics of cracks in bridge approach pavement.” Autom. Constr. 128 (Aug): 103753. https://doi.org/10.1016/j.autcon.2021.103753.
Mohajeri, M. J. H., and P. J. Manning. 1991. Aria (trademark): An operating system of pavement distress diagnosis by image processing. Washington, DC: TRB, National Research Council.
Mokhtarzade, M., and M. J. V. Zoej. 2007. “Road detection from high-resolution satellite images using artificial neural networks.” Int. J. Appl. Earth Obs. Geoinf. 9 (1): 32–40. https://doi.org/10.1016/j.jag.2006.05.001.
Moropoulou, A., N. P. Avdelidis, M. Koui, A. Aggelopoulos, and P. Karmis. 2002. “Infrared thermography and ground penetrating radar for airport pavements assessment.” Nondestruct. Test. Eval. 18 (1): 37–42. https://doi.org/10.1080/10589750290026574.
Mraz, A., M. Gunaratne, A. Nazef, and B. Choubane. 2006. “Experimental evaluation of a pavement imaging system: Florida Department of Transportation’s multipurpose survey vehicle.” Transp. Res. Rec. 1974 (1): 97–106. https://doi.org/10.1177/0361198106197400112.
Nappo, N., O. Mavrouli, F. Nex, C. van Westen, R. Gambillara, and A. M. Michetti. 2021. “Use of UAV-based photogrammetry products for semi-automatic detection and classification of asphalt road damage in landslide-affected areas.” Eng. Geol. 294 (Dec): 106363. https://doi.org/10.1016/j.enggeo.2021.106363.
Outay, F., H. A. Mengash, and M. Adnan. 2020. “Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges.” Transp. Res. Part A Policy Pract. 141 (Nov): 116–129. https://doi.org/10.1016/j.tra.2020.09.018.
Pan, Y., X. Chen, Q. Sun, and X. Zhang. 2021. “Monitoring asphalt pavement aging and damage conditions from low-altitude UAV imagery based on a CNN approach.” Can. J. Remote Sens. 47 (3): 432–449. https://doi.org/10.1080/07038992.2020.1870217.
Pan, Y., X. Zhang, G. Cervone, and L. Yang. 2018. “Detection of asphalt pavement potholes and cracks based on the unmanned aerial vehicle multispectral imagery.” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11 (10): 3701–3712. https://doi.org/10.1109/JSTARS.2018.2865528.
Peddinti, P. R. T., and B. Kim. 2022. “Efficient pavement monitoring for South Korea using unmanned aerial vehicles.” In Proc., Int. Conf. on Transportation and Development 2022, 61–72. Reston, VA: ASCE. https://doi.org/10.1061/9780784484357.006.
Plati, C., P. Georgiou, and A. Loizos. 2014. “Use of infrared thermography for assessing HMA paving and compaction.” Transp. Res. Part C Emerging Technol. 46 (Sep): 192–208. https://doi.org/10.1016/j.trc.2014.05.013.
Plati, C., P. Georgiou, and V. Papavasiliou. 2016. “Simulating pavement structural condition using artificial neural networks.” Struct. Infrastruct. Eng. 12 (9): 1127–1136. https://doi.org/10.1080/15732479.2015.1086384.
Prosser-Contreras, M., E. Atencio, F. Muñoz La Rivera, and R. F. Herrera. 2020. “Use of unmanned aerial vehicles (UAVs) and photogrammetry to obtain the International Roughness Index (IRI) on roads.” Appl. Sci. 10 (24): 8788. https://doi.org/10.3390/app10248788.
Qurishee, M. A. 2019. “Low-cost deep learning UAV and Raspberry Pi solution to real time pavement condition assessment.” Master’s thesis, Dept. of Civil and Chemical Engineering, Univ. of Chattanooga.
Ragnoli, A., M. R. De Blasiis, and A. Di Benedetto. 2018. “Pavement distress detection methods: A review.” Infrastructures 3 (4): 58. https://doi.org/10.3390/infrastructures3040058.
Raj, A., and B. Sah. 2019. “Analyzing critical success factors for implementation of drones in the logistics sector using grey-DEMATEL based approach.” Comput. Ind. Eng. 138 (Dec): 106118. https://doi.org/10.1016/j.cie.2019.106118.
Rakesh, N., A. K. Jain, M. A. Reddy, and K. S. Reddy. 2006. “Artificial neural networks–Genetic algorithm based model for back calculation of pavement layer moduli.” Int. J. Pavement Eng. 7 (3): 221–230. https://doi.org/10.1080/10298430500495113.
Rao, B., A. G. Gopi, and R. Maione. 2016. “The societal impact of commercial drones.” Technol. Soc. 45 (May): 83–90. https://doi.org/10.1016/j.techsoc.2016.02.009.
Remondino, F., S. D. Del Pizzo, T. P. Kersten, and S. Troisi. 2012. “Low-cost and open-source solutions for automated image orientation—A critical overview.” In Proc., Lecture Notes in Computer Science Euro-Mediterranean Conf., 40–54. Berlin: Springer.
Remondino, F., E. Nocerino, I. Toschi, and F. Menna. 2017. “A critical review of automated photogrammetric processing of large datasets.” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2 (W5): 591–599. https://doi.org/10.5194/isprs-archives-XLII-2-W5-591-2017.
Remondino, F., M. G. Spera, E. Nocerino, F. Menna, and F. Nex. 2014. “State of the art in high density image matching.” Photogramm. Rec. 29 (146): 144–166. https://doi.org/10.1111/phor.12063.
Roberts, R., G. Giancontieri, L. Inzerillo, and G. Di Mino. 2020a. “Towards low-cost pavement condition health monitoring and analysis using deep learning.” Appl. Sci. 10 (1): 319. https://doi.org/10.3390/app10010319.
Roberts, R., L. Inzerillo, and G. Di Mino. 2020b. “Using UAV based 3D modelling to provide smart monitoring of road pavement conditions.” Information 11 (12): 568. https://doi.org/10.3390/info11120568.
Romero-Chambi, E., S. Villarroel-Quezada, E. Atencio, and F. Muñoz-La Rivera. 2020. “Analysis of optimal flight parameters of unmanned aerial vehicles (UAVs) for detecting potholes in pavements.” Appl. Sci. 10 (12): 4157. https://doi.org/10.3390/app10124157.
Roy, T. 2017. “Algorithm development for real-time infrastructure damage detection and analysis.” Doctoral dissertation, Dept. of Mechanical Engineering, Purdue Univ.
Saad, A. M., and K. N. Tahar. 2019. “Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV).” Measurement 137 (Apr): 647–654. https://doi.org/10.1016/j.measurement.2019.01.093.
Schonberger, J. L., and J. M. Frahm. 2016. “Structure-from-motion revisited.” In Proc., IEEE Conf. on Computer Vision and Pattern Recognition, 4104–4113. New York: IEEE. https://doi.org/10.1109/CVPR.2016.445.
Serhani, M. A., T. T. Ng, A. Al Falasi, M. Al Saedi, F. Al Nuaimi, and H. Al Shamsi. 2019. “Drone-assisted inspection for automated accident damage estimation: A deep learning approach.” In Proc., Eleventh Int. Conf. on Ubiquitous and Future Networks (ICUFN) 2019, 682–687. New York: IEEE.
Shaghlil, N., and A. Khalafallah. 2018. “Automating highway infrastructure maintenance using unmanned aerial vehicles.” In Proc., Construction Research Congress 2018, 486–495. Reston, VA: ASCE. https://doi.org/10.1061/9780784481295.049.
Silva, L. A., H. Sanchez San Blas, D. Peral García, A. Sales Mendes, and G. Villarubia González. 2020. “An architectural multi-agent system for a pavement monitoring system with pothole recognition in UAV images.” Sensors 20 (21): 6205. https://doi.org/10.3390/s20216205.
Singh, A. P., A. Sharma, R. Mishra, M. Wagle, and A. K. Sarkar. 2018. “Pavement condition assessment using soft computing techniques.” Int. J. Pavement Res. Technol. 11 (6): 564–581. https://doi.org/10.1016/j.ijprt.2017.12.006.
Skorput, P., S. Mandzuka, and H. Vojvodic. 2016. “The use of unmanned aerial vehicles for forest fire monitoring.” In Proc., Int. Symp. ELMAR 2016, 93–96. New York: IEEE.
Smith, B. C., and B. K. Diefenderfer. 2008. “Comparison of nuclear and nonnuclear pavement density testing devices.” Transp. Res. Rec. 2081 (1): 121–129. https://doi.org/10.3141/2081-13.
Solla, M., S. Lagüela, H. González-Jorge, and P. Arias. 2014. “Approach to identify cracking in asphalt pavement using GPR and infrared thermographic methods: Preliminary findings.” NDT & E Int. 62 (Mar): 55–65. https://doi.org/10.1016/j.ndteint.2013.11.006.
Sollazzo, G., T. F. Fwa, and G. Bosurgi. 2017. “An ANN model to correlate roughness and structural performance in asphalt pavements.” Constr. Build. Mater. 134 (Mar): 684–693. https://doi.org/10.1016/j.conbuildmat.2016.12.186.
Souleyrette, R., S. Hallmark, S. Pattnaik, M. O’Brien, and D. Veneziano. 2003. Grade and cross slope estimation from LiDAR-based surface models (No. MTC Project 2001-02), 2001–2002. Ames, IA: Midwest Transportation Consortium.
Sourav, M. A. A., M. Mahedi, H. Ceylan, S. Kim, C. Brooks, D. Peshkin, R. Dobson, and M. Brynick. 2023. “Evaluation of small uncrewed aircraft systems data in airfield pavement crack detection and rating.” Transp. Res. Rec. 2677 (1): 653–668. https://doi.org/10.1177/03611981221101030.
Tan, Y., and Y. Li. 2019. “UAV photogrammetry-based 3D road distress detection.” ISPRS Int. J. Geo-Inf. 8 (9): 409. https://doi.org/10.3390/ijgi8090409.
Terzi, S. 2007. “Modeling the pavement serviceability ratio of flexible highway pavements by artificial neural networks.” Constr. Build. Mater. 21 (3): 590–593. https://doi.org/10.1016/j.conbuildmat.2005.11.001.
Tiong, P. L. Y., M. Mustaffar, and M. R. Hainin. 2012. “Road surface assessment of pothole severity by close range digital photogrammetry method.” World Appl. Sci. J. 19 (6): 867–873.
Tong, Z., D. Yuan, J. Gao, Y. Wei, and H. Dou. 2020. “Pavement-distress detection using ground-penetrating radar and network in networks.” Constr. Build. Mater. 233 (Feb): 117352. https://doi.org/10.1016/j.conbuildmat.2019.117352.
Torija, A. J., Z. Li, and R. H. Self. 2020. “Effects of a hovering unmanned aerial vehicle on urban soundscapes perception.” Transp. Res. Part D Transp. Environ. 78 (Jan): 102195. https://doi.org/10.1016/j.trd.2019.11.024.
Tsai, Y., C. Ai, Z. Wang, and E. Pitts. 2013. “Mobile cross-slope measurement method using lidar technology.” Transp. Res. Rec. 2367 (1): 53–59. https://doi.org/10.3141/2367-06.
Tsai, Y., J. Wu, Z. Wang, and Z. Hu. 2010. “Horizontal roadway curvature computation algorithm using vision technology.” Comput.-Aided Civ. Infrastruct. Eng. 25 (2): 78–88. https://doi.org/10.1111/j.1467-8667.2009.00622.x.
Vaghefi, K., H. Melo e Silva, D. Harris, and R. Ahlborn. 2011. “Application of thermal IR imagery for concrete bridge inspection.” In Proc., PCI National Bridge Conf., PCI/NBC, 1–12. Chicago: Precast Prestressed Concrete Institute.
Verhoeven, G., W. Karel, S. Štuhec, M. Doneus, I. Trinks, and N. Pfeifer. 2015. “Mind your grey tones: Examining the influence of decolourization methods on interest point extraction and matching for architectural image-based modelling.” In International archives of the photogrammetry, remote sensing and spatial information sciences: 3D virtual reconstruction and visualization of complex architectures, 307–314. Göttingen, Germany: Copernicus Publications. https://doi.org/10.5194/isprsarchives-XL-5-W4-307-2015.
Vyas, V., V. J. Patil, A. P. Singh, and A. Srivastava. 2019. “Application of infrared thermography for debonding detection in asphalt pavements.” J. Civ. Struct. Health Monit. 9 (3): 325–337. https://doi.org/10.1007/s13349-019-00337-8.
Wang, K. C. P. 2000. “Designs and implementations of automated systems for pavement surface distress survey.” J. Infrastruct. Syst. 6 (1): 24–32. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:1(24).
Wang, S., I. L. Al-Qadi, and Q. Cao. 2020. “Factors impacting monitoring asphalt pavement density by ground penetrating radar.” NDT & E Int. 115 (Oct): 102296. https://doi.org/10.1016/j.ndteint.2020.102296.
Wang, Y., B. Yu, X. Zhang, and J. Liang. 2022. “Automatic extraction and evaluation of pavement three-dimensional surface texture using laser scanning technology.” Autom. Constr. 141 (Sep): 104410. https://doi.org/10.1016/j.autcon.2022.104410.
Watts, A. C., V. G. Ambrosia, and E. A. Hinkley. 2012. “Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use.” Remote Sens. 4 (6): 1671–1692. https://doi.org/10.3390/rs4061671.
Wiecek, B. 2006. “Review on thermal image processing for passive and active thermography.” In Proc., 2005 IEEE Engineering in Medicine and Biology 27th Annual Conf., 686–689. New York: IEEE.
Wu, D., D. I. Arkhipov, M. Kim, C. L. Talcott, A. C. Regan, J. A. McCann, and N. Venkatasubramanian. 2017. “ADDSEN: Adaptive data processing and dissemination for drone swarms in urban sensing.” IEEE Trans. Comput. 66 (2): 183–198. https://doi.org/10.1109/TC.2016.2584061.
Wu, W., M. A. Qurishee, J. Owino, I. Fomunung, M. Onyango, and B. Atolagbe. 2018. “Coupling deep learning and UAV for infrastructure condition assessment automation.” In Proc., IEEE Int. Smart Cities Conf. (ISC2) 2018, 1–7. New York: IEEE.
Xu, B., and C. Liu. 2022. “Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples.” Measurement 196 (Jun): 111219. https://doi.org/10.1016/j.measurement.2022.111219.
Zantalis, F., G. Koulouras, S. Karabetsos, and D. Kandris. 2019. “A review of machine learning and IoT in smart transportation.” Future Internet 11 (4): 94. https://doi.org/10.3390/fi11040094.
Zhang, C. 2008. “Development of a UAV-based remote sensing system for unpaved road condition assessment.” In Proc., American Society for Photogrammetry and Remote Sensing Annual Conf. 2018. Portland, OR: American Society for Photogrammetry and Remote Sensing.
Zhang, C., and A. Elaksher. 2012. “An unmanned aerial vehicle-based imaging system for 3D measurement of unpaved road surface distresses 1.” Comput.-Aided Civ. Infrastruct. Eng. 27 (2): 118–129. https://doi.org/10.1111/j.1467-8667.2011.00727.x.
Zhang, L., W. Xu, L. Zhu, X. Yuan, and C. Zhang. 2019. “Study on pavement defect detection based on image processing utilizing UAV.” J. Phys. Conf. Ser. 1168 (4): 042011. https://doi.org/10.1088/1742-6596/1168/4/042011.
Zhang, Y., Z. Zuo, X. Xu, J. Wu, J. Zhu, H. Zhang, J. Wang, and Y. Tian. 2022. “Road damage detection using UAV images based on multi-level attention mechanism.” Autom. Constr. 144 (Dec): 104613. https://doi.org/10.1016/j.autcon.2022.104613.
Zhao, S., I. L. Al-Qadi, and S. Wang. 2018. “Prediction of thin asphalt concrete overlay thickness and density using nonlinear optimization of GPR data.” NDT & E Int. 100 (Dec): 20–30. https://doi.org/10.1016/j.ndteint.2018.08.001.
Zhao, Y., H. Wang, and R. Yan. 2012. “Unstructured road edge detection and initial positioning approach based on monocular vision.” In Vol. 1 of Proc., AASRI Conf. on Computational Intelligence and Bioinformatics, 486–491. Amsterdam, Netherlands: Elsevier. https://doi.org/10.1016/j.aasri.2012.06.076.
Zhong, J., J. Zhu, J. Huyan, T. Ma, and W. Zhang. 2022. “Multi-scale feature fusion network for pixel-level pavement distress detection.” Autom. Constr. 141 (Sep): 104436. https://doi.org/10.1016/j.autcon.2022.104436.
Zhu, J., J. Zhong, T. Ma, X. Huang, W. Zhang, and Y. Zhou. 2022. “Pavement distress detection using convolutional neural networks with images captured via UAV.” Autom. Constr. 133 (Jan): 103991. https://doi.org/10.1016/j.autcon.2021.103991.
Zhu, Z., and I. Brilakis. 2010. “Machine vision-based concrete surface quality assessment.” J. Constr. Eng. Manage. 136 (2): 210–218. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000126.

Information & Authors

Information

Published In

Go to Journal of Transportation Engineering, Part B: Pavements
Journal of Transportation Engineering, Part B: Pavements
Volume 149Issue 3September 2023

History

Published online: May 27, 2023
Published in print: Sep 1, 2023
Discussion open until: Oct 27, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Pranav R. T. Peddinti, Ph.D., A.M.ASCE https://orcid.org/0000-0002-7397-4899 [email protected]
Research Assistant Professor, Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea; Assistant Professor, Dept. of Civil Engineering, School of Technology, Pandit Deendayal Energy Univ., Raisan, Gujarat 382007, India. ORCID: https://orcid.org/0000-0002-7397-4899. Email: [email protected]
Harish Puppala, Ph.D. [email protected]
Assistant Professor, Dept. of Civil Engineering, SRM Univ. AP, Amaravati, Guntur, Andhra Pradesh 522502, India. Email: [email protected]
Associate Professor, Dept. of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulju-gun, Ulsan 44919, Republic of Korea (corresponding author). ORCID: https://orcid.org/0000-0002-3290-7163. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Strong Electromagnetic Interference and Protection in UAVs, Electronics, 10.3390/electronics13020393, 13, 2, (393), (2024).
  • Automated pavement marking integrity assessment using a UAV platform – a test case of public parking, Journal of Asian Architecture and Building Engineering, 10.1080/13467581.2024.2329358, (1-12), (2024).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share