Technical Papers
May 30, 2024

Growth Characteristics of Atmospheric Fine Particles in Turbulent Water Vapor Environment

Publication: Journal of Environmental Engineering
Volume 150, Issue 8

Abstract

A heterogeneous condensation process facilitates the growth of fine particulate matter, making it more easily removable. The aim of this study was to effectively eliminate pre-existing fine particles in the atmosphere by investigating the growth characteristics of particles in turbulent water vapor environments using experimental and numerical methods. The results reveal that the presence of soluble and hydrophilic particles in atmospheric fine particulate matter enhances their growth compared to coal particles. Increasing temperature differences, reducing particle number concentrations, and elevating the proportion of soluble particle components contribute to particle growth. When the temperature difference is below 10K, particle growth is less effective. The beneficial impact of particle collision and coagulation, partly offsetting water vapor competition, was observed with an increase in particle number concentration. The addition of soluble and hydrophilic components promoted particle activation, further fostering particle growth. The region near the wall exhibited more significant particle growth due to higher supersaturation and lower flow velocity. These findings theoretically support the application of heterogeneous condensation processes in atmospheric purification.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51876038).

References

Basnet, S., S. B. Thapa, A. Maskey, and R. Khanal. 2022. “Effect of negatively biased electrode on two ion species plasma–wall transition, ion drag force, and levitation of dust particle.” Phys. Plasmas 29 (11): 1–11. https://doi.org/10.1063/5.0099842.
Chen, S. R., L. Xu, Y. X. Zhang, B. Chen, X. F. Wang, X. Y. Zhang, M. Zheng, J. M. Chen, W. X. Wang, and Y. L. Sun. 2017. “Direct observations of organic aerosols in common wintertime hazes in north China: Insights into direct emissions from Chinese residential stoves.” Atmos. Chem. Phys. 17 (2): 1259–1270. https://doi.org/10.5194/acp-17-1259-2017.
Cheng, J. C., C. Yang, M. Jiang, Q. Li, and Z. S. Mao. 2017. “Simulation of antisolvent crystallization in impinging jets with coupled multiphase flow-micromixing-PBE.” Chem. Eng. Sci. 171 (1): 500–512. https://doi.org/10.1016/j.ces.2017.06.011.
China, M. O. E. 2012. “Emission standard of air pollutants for steel smelt industry.” Accessed April 4, 2023. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/201207/W020120731564166023244.pdf.
China, M. O. E. 2022. “Emission standard of air pollutants for printing industry.” Accessed April 4, 2023. https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/dqhjbh/dqgdwrywrwpfbz/202211/W020221117627656874791.pdf.
Clement, C. F. 1985. “Aerosol formation from heat and mass-transfer in vapor gas-mixtures.” Proc. R. Soc. London Math. 398 (1815): 307–339. https://doi.org/10.1098/rspa.1985.0037.
Cui, K., X. Pang, Z. Zhou, and Z. Ren. 2021. “Efficient capture of fine particulate matters by ultrasonic atomization.” J. Environ. Chem. Eng. 9 (5): 106307. https://doi.org/10.1016/j.jece.2021.106307.
Duan, M., L. Wang, X. Meng, L. Fu, Y. Wang, W. Liang, and L. Liu. 2021. “Negative ion purifier effects on indoor particulate dosage to small airways.” Int. J. Environ. Res. Public Health 19 (1): 264. https://doi.org/10.3390/ijerph19010264.
Ebert, F., and S. Heidenreich. 1995. “Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases.” Chem. Eng. Process. 34 (3): 235–244. https://doi.org/10.1016/0255-2701(95)80012-3.
Fan, F. X., S. H. Zhang, Z. B. Peng, J. Chen, M. X. Su, B. Moghtaderi, and E. Doroodchi. 2019. “Numerical investigation of heterogeneous nucleation of water vapour on PM for particulate abatement.” Can. J. Chem. Eng. 97 (4): 930–939. https://doi.org/10.1002/cjce.23230.
Farias, L. F. I., J. A. de Souza, R. D. Braatz, and C. A. da Rosa. 2019. “Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM.” Comput. Chem. Eng. 123 (Apr): 246–256. https://doi.org/10.1016/j.compchemeng.2019.01.009.
Fletcher, N. H. 1958. “Size effect in heterogeneous nucleation.” J. Chem. Phys. 29 (3): 572. https://doi.org/10.1063/1.1744540.
Fu, X. Y., D. J. Zhang, S. J. Xu, B. Yu, K. K. Zhang, S. Rohani, and J. B. Gong. 2018. “Effect of mixing on the particle size distribution of paracetamol continuous cooling crystallization products using a computational fluid dynamics-population balance equation simulation.” Cryst. Growth Des. 18 (5): 2851–2863. https://doi.org/10.1021/acs.cgd.7b01671.
Gang, Z., L. Rulin, L. Shuailong, M. Yu, L. Yongwei, and H. Yating. 2022. “The effects of filter characteristics of single-filter cartridge on dust removal performance with simulation and experimental analysis.” Environ. Sci. Pollut. Res. Int. 29 (45): 67875–67893. https://doi.org/10.1007/s11356-022-20332-9.
Hang, D., L. Yuanyuan, S. Guoliang, W. Feng, Z. H. Mike, and L. Tiantian. 2022. “Associations between source-specific fine particulate matter and mortality and hospital admissions in Beijing, China.” Environ. Sci. Technol. 56 (2): 1174–1182. https://doi.org/10.1021/acs.est.1c07290.
Heidenreich, U. V., and F. Ebert. 2000. “A novel process to separate submicron particles from gases-a cascade of packed columns.” Chem. Eng. Sci. 55 (15): 2895–2905. https://doi.org/10.1016/S0009-2509(99)00554-0.
Hess, C. F., and C. W. Miller. 1979. “Natural convection in a vertical cylinder subject to constant heat flux.” Int. J. Heat Mass Transfer 22 (3): 421–430. https://doi.org/10.1016/0017-9310(79)90008-5.
Hienola, A. I., P. M. Winkler, P. E. Wagner, H. Vehkamäki, A. Lauri, I. Napari, and M. Kulmala. 2007. “Estimation of line tension and contact angle from heterogeneous nucleation experimental data.” J. Chem. Phys. 126 (9): 094705. https://doi.org/10.1063/1.2565769.
Housiadas, C., E. Papanicolaou, and Y. Drossinos. 2002. “Combined heat and mass transfer in laminar flow diffusion nucleation chambers.” J. Aerosol Sci. 33 (5): 797–816. https://doi.org/10.1016/S0021-8502(01)00214-2.
Hu, B., Y. Yi, C. Liang, Z. L. Yuan, S. Roszak, and L. J. Yang. 2018. “Experimental study on particles agglomeration by chemical and turbulent agglomeration before electrostatic precipitators.” Powder Technol. 335 (Jul): 211–221. https://doi.org/10.1016/j.powtec.2018.05.014.
Junchao, X., Z. Huaying, S. Yunlan, L. Hongming, and Z. Zhimin. 2020a. “Heterogeneous condensation for electric arc furnaces fine particles removal.” Powder Technol. 374 (Sep): 323–329. https://doi.org/10.1016/j.powtec.2020.07.027.
Junchao, X., Z. Jun, and L. Hongming. 2020b. “Direct observation of heterogeneous condensation on micron particles with uniform surface.” Powder Technol. 376 (Oct): 199–208. https://doi.org/10.1016/j.powtec.2020.08.021.
Kaige, W., G. Hailin, Z. Guangxue, L. Kun, Z. Qiyao, C. Guobiao, Z. Mingxiu, and C. Zuohe. 2023. “A novel fire smoke removal technology using electric agglomeration: The concept, experimental verification and mechanisms.” J. Hazards Mater. 441 (Jan): 129950. https://doi.org/10.1016/j.jhazmat.2022.129950.
Kilchhofer, K., F. Mahrt, and Z. A. Kanji. 2021. “The role of cloud processing for the ice nucleating ability of organic aerosol and coal fly ash particles.” J. Geophys. Res. Atmos. 126 (10): 033338. https://doi.org/10.1029/2020JD033338.
Kim, J. K. J. 2020. “Efficient removal of indoor particulate matter using water microdroplets generated by a MHz-frequency ultrasonic atomizer.” Build. Environ. 175 (May): 106797. https://doi.org/10.1016/j.buildenv.2020.106797.
Kui, G., Y. Junwen, L. Jingwen, S. Pengxiang, C. Lin, and D. Yong. 2022. “Promoting fine particle agglomeration through organic agglomeration solutions with charged atomization.” Fuel 328 (Nov): 125342. https://doi.org/10.1016/j.fuel.2022.125342.
Kuldinow, D., A. Przybylak, Y. Li, L. J. Perez-Lorenzo, D. Oberreit, and J. Fernandez de la Mora. 2022. “Heterogeneous nucleation measurements in a sheathed planar diffusive condensation particle counter.” J. Colloid Interface Sci. 605 (Jan): 556–570. https://doi.org/10.1016/j.jcis.2021.07.049.
Lathem, T. L., and A. Nenes. 2011. “Water vapor depletion in the DMT continuous-flow CCN chamber: Effects on supersaturation and droplet growth.” Aerosol. Sci. Tech. 45 (5): 604–615. https://doi.org/10.1080/02786826.2010.551146.
Li, H. Y., Q. Zhang, Q. Zhang, C. R. Chen, L. T. Wang, Z. Wei, S. Zhou, C. Parworth, B. Zheng, and F. Canonaco. 2017. “Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: Significant contribution from coal and biomass combustion.” Atmos. Chem. Phys. 17 (7): 4751–4768. https://doi.org/10.5194/acp-17-4751-2017.
Li, Q., X. Yuan, M. Zhang, W. Xu, L. Huo, and Q. Mu. 2022a. “A modified agglomeration kernel model used for particle agglomeration.” Adv. Powder Technol. 33 (1): 103349. https://doi.org/10.1016/j.apt.2021.11.001.
Li, T.-Q., C.-Y. Wang, J. M. Zheng, and H. Wang. 2005. “Formation of MCMB through heterogeneous nucleation and the development of their structures.” Xinxing Tan Cailiao 19 (4): 281–288.
Li, Z., Y. Zhu, S. Wang, J. Xing, B. Zhao, S. Long, M. Li, W. Yang, R. Huang, and Y. Chen. 2022b. “Source contribution analysis of PM2.5 using response surface model and particulate source apportionment technology over the PRD region, China.” Sci. Total Environ. 818 (Apr): 151757. https://doi.org/10.1016/j.scitotenv.2021.151757.
Lichun Xiao, X. Z. Y. 2023. “Experimental study on humidification coagulation and removal of fine particles using an electrostatic precipitator.” Polymers 15 (9): 2065. https://doi.org/10.3390/polym15092065.
Liu, W., H. J. Tang, and D. Y. Liu. 2023. “Combining density functional theory and CFD-PBM model to predict TiO nanoparticle evolution during chemical vapor deposition.” Chem. Eng. J. 454 (2): 140174. https://doi.org/10.1016/j.cej.2022.140174.
Luo, X., Y. Fan, F. Qin, H. Gui, and J. Liu. 2014. “A kinetic model for heterogeneous condensation of vapor on an insoluble spherical particle.” J. Chem. Phys. 140 (2): 024708. https://doi.org/10.1063/1.4861892.
Lv, L., A. W. Dai, X. H. Ye, J. Yin, J. C. Xu, and J. Zhang. 2022. “Visualization and numerical investigations on heterogeneous nucleation of water vapor on the surface of SiO2, Fe2O3 and CaSO4 particles.” Aerosol. Sci. Tech. 56 (5): 461–472. https://doi.org/10.1080/02786826.2022.2044448.
Lv, L., J. Zhang, J. C. Xu, and J. Yin. 2021. “Effects of surface topography of SiO particles on the heterogeneous condensation process observed by environmental scanning electron microscopy.” Aerosol. Sci. Tech. 55 (8): 920–929. https://doi.org/10.1080/02786826.2021.1905147.
Mizuki, S., and M. Shuji. 2021. “Agglomeration and dispersion related to particle charging in electric fields.” Kona Powder Part. J. 38 (Jan): 82–93. https://doi.org/10.14356/kona.2021016.
Peter, J. W. 2023. “Heterogeneous nucleation of supersaturated water vapor onto sub-10 nm nanoplastic particles.” Environ. Sci. Technol. 57 (4): 1584–1591. https://doi.org/10.1021/acs.est.2c07643.
Popov, V. N. 2023. “Modeling the heterogeneous nucleation in a melt modified with spherical nanoparticles.” Thermophys. Aeromech. 30 (1): 163–174. https://doi.org/10.1134/S0869864323010183.
Sabry, A., and E. Ashraf Mimi. 2020. “Parametric study on vehicle fuel economy and optimization criteria of the pleated air filter designs to improve the performance of an I.C diesel engine: Experimental and CFD approaches.” Sep. Purif. Technol. 241 (Jun): 116680. https://doi.org/10.1016/j.seppur.2020.116680.
Song, Y., Y. Zhang, Y. Liu, W. Long, K. Tao, and K. Vafai. 2023. “Numerical simulation of the collection efficiency of welding fume particles in electrostatic precipitator.” Powder Technol. 415 (Feb): 118173. https://doi.org/10.1016/j.powtec.2022.118173.
Tammaro, M., F. Di Natale, and A. Salluzzo. 2012. “Heterogeneous condensation of submicron particles in a growth tube.” Chem. Eng. Sci. 74 (1): 124–134. https://doi.org/10.1016/j.ces.2012.02.023.
Wang, X. T., B. Y. Cui, D. Z. Wei, Z. G. Song, Y. He, and A. E. Bayly. 2022. “CFD-PBM modelling of tailings flocculation in a lab-scale gravity thickener.” Powder Technol. 396 (Jan): 139–151. https://doi.org/10.1016/j.powtec.2021.10.054.
Xi, C., M. Yanjun, F. Chaonan, W. Yucheng, G. Shaocheng, and R. Yi. 2021. “Experimental investigation on filtration characteristic with different filter material of bag dust collector for dust removal.” Int. J. Coal Prep. Util. 42 (12): 1–16. https://doi.org/10.1080/19392699.2021.1975686.
Xu, J. C., J. Zhang, Y. Yu, Q. Meng, and H. Zhong. 2016. “Characteristics of vapor condensation on coal-fired fine particles.” Energy Fuels 30 (3): 1822–1828. https://doi.org/10.1021/acs.energyfuels.5b02200.
Xu, J. C., Y. F. Zhang, J. Zhang, H. X. Liu, Q. N. Shao, and H. Q. Chu. 2023. “Progress in the heterogeneous condensation of water vapor for PM2.5 removal.” Powder Technol. 427 (Jun): 118701. https://doi.org/10.1016/j.powtec.2023.118701.
Xu, J. C., H. Y. Zhao, Y. L. Sun, H. M. Long, and Z. M. Zheng. 2020. “Heterogeneous condensation for electric arc furnaces fine particles removal.” Powder Technol. 374 (Sep): 323–329. https://doi.org/10.1016/j.powtec.2020.07.027.
Xuan, L., Z. Xin, L. Sumei, L. Junjie, and C. Qingyan. 2021. “Optimization of multi-V filter design for airliner environmental control system using an empirical model.” Sep. Purif. Technol. 257 (Feb): 117966. https://doi.org/10.1016/j.seppur.2020.117966.
Yan, Y., Z. Jun, and X. Chengwei. 2021. “Numerical simulation on the growth of polydisperse fine SiO2 particles by water vapor condensation.” Powder Technol. 385 (Jun): 160–169. https://doi.org/10.1016/j.powtec.2021.02.075.
Yen, P. H., W. H. Chen, C. S. Yuan, Y. L. Tseng, J. S. Lee, and C. C. Wu. 2021. “Exploratory investigation on the suppression efficiency of fugitive dust emitted from coal stockpile: Comparison of innovative atomizing and traditional spraying technologies.” Process Saf. Environ. 154 (Oct): 348–359. https://doi.org/10.1016/j.psep.2021.08.026.
Yin, J., J. Zhang, L. Lv, and H. Zhong. 2022. “Effect of CO2 on the heterogeneous condensation of water vapor on insoluble fine particles.” Powder Technol. 408 (Aug): 117728. https://doi.org/10.1016/j.powtec.2022.117728.
Yu, Y., J. Zhang, and H. Zhong. 2019. “Heterogeneous condensation of magnetized water vapor on fine SiO2 particles.” Environ. Res. 169 (Feb): 173–179. https://doi.org/10.1016/j.envres.2018.11.010.
Yu-Mei, K., H. Sheng-Hsiu, L. Wen-Yinn, H. Mei-Fang, and C. Chih-Chieh. 2010. “Filtration and loading characteristics of granular bed filters.” J. Aerosol. Sci. 41 (2): 223–229. https://doi.org/10.1016/j.jaerosci.2009.09.011.
Zhang, Y., G. Yu, R. Jin, Y. Zhang, K. Dong, T. Cheng, and B. Wang. 2022. “Water vapor distribution and particle condensation growth in turbulent pipe flow.” Powder Technol. 403 (May): 117401. https://doi.org/10.1016/j.powtec.2022.117401.
Zheng, J. L. Y. 2020. “Analytical study on turbulent agglomeration in turbulence agglomerator.” J. Chem. Eng. Jpn. 53 (Jun): 100–112. https://doi.org/10.1252/jcej.19we019.
Zhong, H., et al. 2020. “Seasonal variations in the sources of organic aerosol in Xi’an, northwest China: The importance of biomass burning and secondary formation.” Sci. Total Environ. 737 (Oct): 139666. https://doi.org/10.1016/j.scitotenv.2020.139666.
Zhou, L. 2015. Experimental research on the characteristics of growth by vapor condensation of coal ash particles. Dhaka, Bangladesh: Southeast Univ.
Zhou, L., J. Zhang, X. Liu, H. Wu, Q. Guan, G. Zeng, and L. Yang. 2022. “Improving the electrostatic precipitation removal efficiency on fine particles by adding wetting agent during the chemical agglomeration process.” Fuel Process. Technol. 230 (Jun): 107202. https://doi.org/10.1016/j.fuproc.2022.107202.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 150Issue 8August 2024

History

Received: Aug 23, 2023
Accepted: Jan 17, 2024
Published online: May 30, 2024
Published in print: Aug 1, 2024
Discussion open until: Oct 30, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Anwen Dai, Ph.D., S.M.ASCE [email protected]
Postgraduate Student, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast Univ., Nanjing 210096, PR China. Email: [email protected]
Professor, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast Univ., Nanjing 210096, PR China (corresponding author). Email: [email protected]
Postgraduate Student, Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast Univ., Nanjing 210096, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share