State-of-the-Art Reviews
Feb 9, 2024

Comprehensive Insights into Harmful Algal Blooms: A Review of Chemical, Physical, Biological, and Climatological Influencers with Predictive Modeling Approaches

Publication: Journal of Environmental Engineering
Volume 150, Issue 4

Abstract

Phytoplankton plays an essential role in the biogeochemical cycle because it is at the top of the food chain and is a source of oxygen. Eutrophication causes coastal areas to deteriorate as industrialization accelerates, leading to harmful algal blooms (HABs), severely affecting human and ecological health. The frequency and extent of HAB events potentially may increase due to climate change. HAB outbreaks have led to substantial losses for major coastal economies globally, and therefore have emerged as a critical research focus in environmental sciences. However, the lack of an overview of diverse factors influencing HABs complicates the cause identification and the effective countermeasure development for HAB occurrence, thereby impeding the formulation of targeted strategies for prediction and mitigation. Therefore, this review summarizes the influential factors affecting HABs in coastal areas, including water quality factors (nutrients, salinity, stratification, and biological factors) and climatological factors (temperature, pH and pCO2, and irradiance and light). Recent work with several harmful algae species suggested that warmer temperatures combined with nutrient variation, stronger stratification, and ocean acidification may increase the growth of some toxic dinoflagellate species. Although the effects of factors vary for different species and locations, the intensification of anthropogenic activities and climate change likely will increase the frequency, outbreak scale, and severity of most coastal HABs. Because predicting HABs is crucial for understanding the factors and synergy affecting their growth and minimizing losses for decision makers and stakeholders, we reviewed models for predicting HABs, including process-based models, traditional statistical-empirical models, and data-driven machine learning models. Predicting HABs becomes more challenging as the spatial distribution of harmful algae is influenced by future climate patterns. This review paper presents a comprehensive overview of the various factors impacting HABs in coastal areas, serving as a valuable resource for decision makers and researchers to design targeted research and mitigation strategies.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

We express our gratitude to the anonymous peer reviewers and editors for their valuable feedback, which greatly improved this paper. This work is supported by the United States Environmental Protection Agency under Grant number 02D21822 and by the National Science Foundation under Grant number 2200384.

References

Accoroni, S., P. M. Glibert, S. Pichierri, T. Romagnoli, M. Marini, and C. Totti. 2015. “A conceptual model of annual Ostreopsis cf. ovata blooms in the northern Adriatic Sea based on the synergic effects of hydrodynamics, temperature, and the N:P ratio of water column nutrients.” Harmful Algae 45 (May): 14–25. https://doi.org/10.1016/j.hal.2015.04.002.
Aguilera, A., M. Klemenčič, D. J. Sueldo, P. Rzymski, L. Giannuzzi, and M. V. Martin. 2021. “Cell death in cyanobacteria: Current understanding and recommendations for a consensus on its nomenclature.” Front. Microbiol. 12 (Mar): 631654. https://doi.org/10.3389/fmicb.2021.631654.
Anderson, D. M., et al. 2021. “Marine harmful algal blooms (HABs) in the United States: History, current status and future trends.” Harmful Algae 102 (Feb): 101975. https://doi.org/10.1016/j.hal.2021.101975.
Asnaghi, V., D. Pecorino, E. Ottaviani, A. Pedroncini, R. M. Bertolotto, and M. Chiantore. 2017. “A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas.” Harmful Algae 63 (Mar): 184–192. https://doi.org/10.1016/j.hal.2017.02.003.
Ayache, N., F. Hervé, V. Martin-Jézéquel, Z. Amzil, and A. M. N. Caruana. 2019. “Influence of sudden salinity variation on the physiology and domoic acid production by two strains of Pseudo-nitzschia australis.” J. Phycol. 55 (1): 186–195. https://doi.org/10.1111/jpy.12801.
Ayache, N., N. Lundholm, F. Gai, F. Hervé, Z. Amzil, and A. Caruana. 2021. “Impacts of ocean acidification on growth and toxin content of the marine diatoms Pseudo-nitzschia australis and P. fraudulenta.” Mar. Environ. Res. 169 (Jul): 105380. https://doi.org/10.1016/j.marenvres.2021.105380.
Aydýn, G. S., A. Kocata, and B. Büyükışık. 2009. “Effects of light and temperature on the growth rate of potentially harmful marine diatom: Thalassiosira allenii Takano (Bacillariophyceae).” Afr. J. Biotechnol. 8 (19): 4983–4990.
Baek, S.-S., Y. S. Kwon, J. Pyo, J. Choi, Y. O. Kim, and K. H. Cho. 2021. “Identification of influencing factors of A. catenella bloom using machine learning and numerical simulation.” Harmful Algae 103 (Jun): 102007. https://doi.org/10.1016/j.hal.2021.102007.
Balaji-Prasath, B., Y. Wang, Y. P. Su, D. P. Hamilton, H. Lin, L. Zheng, and Y. Zhang. 2022. “Methods to control harmful algal blooms: A review.” Environ. Chem. Lett. 20 (5): 3133–3152. https://doi.org/10.1007/s10311-022-01457-2.
Basak, R., K. A. Wahid, and A. Dinh. 2021. “Estimation of the Chlorophyll—A concentration of algae species using electrical impedance spectroscopy.” Water 13 (9): 1223. https://doi.org/10.3390/w13091223.
Ben Ezra, T., M. D. Krom, A. Tsemel, I. Berman-Frank, B. Herut, Y. Lehahn, E. Rahav, T. Reich, T. F. Thingstad, and D. Sher. 2021. “Seasonal nutrient dynamics in the P depleted eastern Mediterranean sea.” Deep Sea Res. Part I 176 (Oct): 103607. https://doi.org/10.1016/j.dsr.2021.103607.
Browning, T. J., E. P. Achterberg, I. Rapp, A. Engel, E. M. Bertrand, A. Tagliabue, and C. M. Moore. 2017. “Nutrient co-limitation at the boundary of an oceanic gyre.” Nature 551 (7679): 242–246. https://doi.org/10.1038/nature24063.
Coyne, K. J., L. R. Salvitti, A. M. Mangum, G. Ozbay, C. R. Main, Z. M. Kouhanestani, and M. E. Warner. 2021. “Interactive effects of light, CO2 and temperature on growth and resource partitioning by the mixotrophic dinoflagellate, Karlodinium veneficum.” PLoS One 16 (10): e0259161. https://doi.org/10.1371/journal.pone.0259161.
Dai, X., D. Lu, W. Guan, H. Wang, P. He, P. Xia, and H. Yang. 2014. “Newly recorded Karlodinium veneficum dinoflagellate blooms in stratified water of the East China Sea.” Deep Sea Res. Part II 101 (Mar): 237–243. https://doi.org/10.1016/j.dsr2.2013.01.015.
Deng, T., K.-W. Chau, and H.-F. Duan. 2021. “Machine learning based marine water quality prediction for coastal hydro-environment management.” J. Environ. Manage. 284 (Apr): 112051. https://doi.org/10.1016/j.jenvman.2021.112051.
Doucette, G. J., K. L. King, A. E. Thessen, and Q. Dortch. 2008. “The effect of salinity on domoic acid production by the diatom Pseudo-nitzschia multiseries.” Nova Hedwigia 133 (31): 1439.
Droop, M. R. 1974. “The nutrient status of algal cells in continuous culture.” J. Mar. Biol. Assoc. U. K. 54 (4): 825–855. https://doi.org/10.1017/S002531540005760X.
Dutkiewicz, S., J. J. Morris, M. J. Follows, J. Scott, O. Levitan, S. T. Dyhrman, and I. Berman-Frank. 2015. “Impact of ocean acidification on the structure of future phytoplankton communities.” Nat. Clim. Change 5 (11): 1002–1006. https://doi.org/10.1038/nclimate2722.
Flores-Moya, A., M. Rouco, M. J. García-Sánchez, C. García-Balboa, R. González, E. Costas, and V. López-Rodas. 2012. “Effects of adaptation, chance, and history on the evolution of the toxic dinoflagellate Alexandrium minutum under selection of increased temperature and acidification.” Ecol. Evol. 2 (6): 1251–1259. https://doi.org/10.1002/ece3.198.
Flynn, K. J., and D. J. McGillicuddy. 2018. “Modeling marine harmful algal blooms: Current status and future prospects.” In Harmful algal blooms: A compendium desk reference, 115–134. New York: Wiley.
Flynn, K. J., A. Mitra, P. M. Glibert, and J. M. Burkholder. 2018. “Mixotrophy in harmful algal blooms: By whom, on whom, when, why, and what next.” In Global ecology and oceanography of harmful algal blooms, edited by P. M. Glibert, E. Berdalet, M. A. Burford, G. C. Pitcher, and M. Zhou, 113–132. Berlin: Springer.
Folt, C. L., C. Y. Chen, M. V. Moore, and J. Burnaford. 1999. “Synergism and antagonism among multiple stressors.” Limnol. Oceanogr. 44 (3): 864–877. https://doi.org/10.4319/lo.1999.44.3_part_2.0864.
Fu, F. X., A. O. Tatters, and D. A. Hutchins. 2012. “Global change and the future of harmful algal blooms in the ocean.” Mar. Ecol. Prog. Ser. 470 (Jun): 207–233. https://doi.org/10.3354/meps10047.
Fu, F.-X., A. R. Place, N. S. Garcia, and D. A. Hutchins. 2010. “CO2 and phosphate availability control the toxicity of the harmful bloom dinoflagellate Karlodinium veneficum.” Aquat. Microb. Ecol. 59 (1): 55–65. https://doi.org/10.3354/ame01396.
Fu, F.-X., M. E. Warner, Y. Zhang, Y. Feng, and D. A. Hutchins. 2007. “Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria).” J. Phycol. 43 (3): 485–496. https://doi.org/10.1111/j.1529-8817.2007.00355.x.
Fu, F.-X., Y. Zhang, M. E. Warner, Y. Feng, J. Sun, and D. A. Hutchins. 2008. “A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum.” Harmful Algae 7 (1): 76–90. https://doi.org/10.1016/j.hal.2007.05.006.
Gallardo-Rodríguez, J. J., A. Astuya-Villalón, A. Llanos-Rivera, V. Avello-Fontalba, and V. Ulloa-Jofré. 2019. “A critical review on control methods for harmful algal blooms.” Rev. Aquacult. 11 (3): 661–684. https://doi.org/10.1111/raq.12251.
Gillibrand, P. A., B. Siemering, P. I. Miller, and K. Davidson. 2016. “Individual-based modelling of the development and transport of a Karenia mikimotoi bloom on the North-west European continental shelf.” Harmful Algae 53 (Mar): 118–134. https://doi.org/10.1016/j.hal.2015.11.011.
Glibert, P. M. 2020. “Harmful algae at the complex nexus of eutrophication and climate change.” Harmful Algae 91 (3): 101583. https://doi.org/10.1016/j.hal.2019.03.001.
Gobler, C. J., et al. 2011. “Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics.” Proc. Natl. Acad. Sci. 108 (11): 4352–4357. https://doi.org/10.1073/pnas.1016106108.
Gobler, C. J., A. Burson, F. Koch, Y. Tang, and M. R. Mulholland. 2012. “The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA).” Harmful Algae 17 (May): 64–74. https://doi.org/10.1016/j.hal.2012.03.001.
Gobler, C. J., and W. G. Sunda. 2012. “Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis.” Harmful Algae 14 (Feb): 36–45. https://doi.org/10.1016/j.hal.2011.10.013.
Griffith, A. W., and C. J. Gobler. 2020. “Harmful algal blooms: A climate change co-stressor in marine and freshwater ecosystems.” Harmful Algae 91 (Jun): 101590. https://doi.org/10.1016/j.hal.2019.03.008.
Harrison, P. J., P. A. Thompson, M. Guo, and F. J. R. Taylor. 1993. “Effects of light, temperature and salinity on the growth rate of harmful marine diatoms, Chaetoceros convolutus and C. concavicornis that kill netpen salmon.” J. Appl. Phycol. 5 (2): 259–265. https://doi.org/10.1007/BF00004028.
Heil, C. A., M. Revilla, P. M. Glibert, and S. Murasko. 2007. “Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf.” Limnol. Oceanogr. 52 (3): 1067–1078. https://doi.org/10.4319/lo.2007.52.3.1067.
Hillebrand, H., G. Steinert, M. Boersma, A. Malzahn, C. L. Meunier, C. Plum, and R. Ptacnik. 2013. “Goldman revisited: Faster-growing phytoplankton has lower N : P and lower stoichiometric flexibility.” Limnol. Oceanogr. 58 (6): 2076–2088. https://doi.org/10.4319/lo.2013.58.6.2076.
Hodgkiss, I. J., and K. C. Ho. 1997. “Are changes in N:P ratios in coastal waters the key to increased red tide blooms?” In Proc., Int. Conf. Held in Hong Kong Asia-Pacific Conf. on Science and Management of Coastal Environment, 141–147. Berlin: Springer.
Huang, K., Q. Feng, Y. Zhang, L. Ou, J. Cen, S. Lu, and Y. Qi. 2020. “Comparative uptake and assimilation of nitrate, ammonium, and urea by dinoflagellate Karenia mikimotoi and diatom Skeletonema costatum s.l. in the coastal waters of the East China Sea.” Mar. Pollut. Bull. 155 (Jun): 111200. https://doi.org/10.1016/j.marpolbul.2020.111200.
Huang, T.-H., et al. 2019. “East China Sea increasingly gains limiting nutrient P from South China Sea.” Sci. Rep. 9 (1): 5648. https://doi.org/10.1038/s41598-019-42020-4.
IOC, ICES, and PICES (Intergovernmental Oceanographic Commission, International Council for the Exploration of the Sea, and North Pacific Marine Science Organization). 2021. “What is the harmful algal event database?” Accessed December 18, 2022. http://haedat.iode.org.
Izadi, M., M. Sultan, R. E. Kadiri, A. Ghannadi, and K. Abdelmohsen. 2021. “A remote sensing and machine learning-based approach to forecast the onset of harmful algal bloom.” Remote Sens. 13 (19): 3863. https://doi.org/10.3390/rs13193863.
Jacobs, J., S. K. Moore, K. E. Kunkel, and L. Sun. 2015. “A framework for examining climate-driven changes to the seasonality and geographical range of coastal pathogens and harmful algae.” Clim. Risk Manage. 8 (6): 16–27. https://doi.org/10.1016/j.crm.2015.03.002.
Jensen, M. Ø., and Ø. Moestrup. 1997. “Autecology of the toxic dinoflagellate Alexandrium ostenfeldii: Life history and growth at different temperatures and salinities.” Eur. J. Phycol. 32 (1): 9–18. https://doi.org/10.1080/09541449710001719325.
Jeong, H. J., K. H. Lee, Y. D. Yoo, N. S. Kang, J. Y. Song, T. H. Kim, K. A. Seong, J. S. Kim, and E. Potvin. 2018. “Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense.” Harmful Algae 80 (Sep): 46–54. https://doi.org/10.1016/j.hal.2018.09.005.
Jiang, Z.-P., Y. Tong, M. Tong, J. Yuan, Q. Cao, and Y. Pan. 2021. “The effects of suspended particulate matter, nutrient, and salinity on the growth of Amphidinium carterae under estuary environmental conditions.” Front. Mar. Sci. 8 (Jul): 690764. https://doi.org/10.3389/fmars.2021.690764.
Jordan, M. I., and T. M. Mitchell. 2015. “Machine learning: Trends, perspectives, and prospects.” Science 349 (6245): 255–260. https://doi.org/10.1126/science.aaa8415.
Karlson, B., et al. 2021. “Harmful algal blooms and their effects in coastal seas of Northern Europe.” Harmful Algae 102 (14): 101989. https://doi.org/10.1016/j.hal.2021.101989.
Khan, R. M., B. Salehi, M. Mahdianpari, F. Mohammadimanesh, G. Mountrakis, and L. J. Quackenbush. 2021. “A meta-analysis on harmful algal bloom (HAB) detection and monitoring: A remote sensing perspective.” Remote Sens. 13 (21): 4347. https://doi.org/10.3390/rs13214347.
Killberg-Thoreson, L., S. E. Baer, R. E. Sipler, W. G. Reay, Q. N. Roberts, and D. A. Bronk. 2021. “Seasonal nitrogen uptake dynamics and harmful algal blooms in the York River, Virginia.” Estuaries Coasts 44 (3): 750–768. https://doi.org/10.1007/s12237-020-00802-4.
Kim, D.-I., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y.-H. Yoon, Y. Oshima, N. Imada, and T. Honjo. 2004. “Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae).” J. Plankton Res. 26 (1): 61–66. https://doi.org/10.1093/plankt/fbh001.
Kim, J., D. Seo, and J. R. Jones. 2022. “Harmful algal bloom dynamics in a tidal river influenced by hydraulic control structures.” Ecol. Modell. 467 (Aug): 109931. https://doi.org/10.1016/j.ecolmodel.2022.109931.
King, A. L., S. A. Sañudo-Wilhelmy, K. Leblanc, D. A. Hutchins, and F. Fu. 2011. “CO2 and vitamin B12 interactions determine bioactive trace metal requirements of a subarctic Pacific diatom.” ISME J. 5 (8): 1388–1396. https://doi.org/10.1038/ismej.2010.211.
Kremp, A., A. Godhe, J. Egardt, S. Dupont, S. Suikkanen, S. Casabianca, and A. Penna. 2012. “Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions.” Ecol. Evol. 2 (6): 1195–1207. https://doi.org/10.1002/ece3.245.
Laabir, M., C. Jauzein, B. Genovesi, E. Masseret, D. Grzebyk, P. Cecchi, A. Vaquer, Y. Perrin, and Y. Collos. 2011. “Influence of temperature, salinity and irradiance on the growth and cell yield of the harmful red tide dinoflagellate Alexandrium catenella colonizing Mediterranean waters.” J. Plankton Res. 33 (10): 1550–1563. https://doi.org/10.1093/plankt/fbr050.
Li, H., L. Li, L. Yu, X. Yang, X. Shi, J. Wang, J. Li, and S. Lin. 2021a. “Transcriptome profiling reveals versatile dissolved organic nitrogen utilization, mixotrophy, and N conservation in the dinoflagellate Prorocentrum shikokuense under N deficiency.” Sci. Total Environ. 763 (6): 143013. https://doi.org/10.1016/j.scitotenv.2020.143013.
Li, J., P. M. Glibert, and J. A. Alexander. 2011. “Effects of ambient DIN: DIP ratio on the nitrogen uptake of harmful dinoflagellate Prorocentrum minimum and Prorocentrum donghaiense in turbidistat.” Chin. J. Oceanol. Limnol. 29 (4): 746–761. https://doi.org/10.1007/s00343-011-0504-x.
Li, J., P. M. Glibert, and Y. Gao. 2015. “Temporal and spatial changes in Chesapeake Bay water quality and relationships to Prorocentrum minimum, Karlodinium veneficum, and CyanoHAB events, 1991–2008.” Harmful Algae 42 (11): 1–14. https://doi.org/10.1016/j.hal.2014.11.003.
Li, J., P. M. Glibert, M. Zhou, S. Lu, and D. Lu. 2009. “Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea.” Mar. Ecol. Prog. Ser. 383 (Jun): 11–26. https://doi.org/10.3354/meps07975.
Li, M., Y. Chen, F. Zhang, Y. Song, P. M. Glibert, and D. K. Stoecker. 2022a. “A three-dimensional mixotrophic model of Karlodinium veneficum blooms for a eutrophic estuary.” Harmful Algae 113 (6): 102203. https://doi.org/10.1016/j.hal.2022.102203.
Li, M. F., P. M. Glibert, and V. Lyubchich. 2021b. “Machine learning classification algorithms for predicting Karenia brevis blooms on the West Florida Shelf.” J. Mar. Sci. Eng. 9 (9): 999. https://doi.org/10.3390/jmse9090999.
Li, R., M. Li, and P. M. Glibert. 2022b. “Coupled carbonate chemistry—Harmful algae bloom models for studying effects of ocean acidification on Prorocentrum minimum blooms in a eutrophic estuary.” Front. Mar. Sci. 9 (Jul): 889233. https://doi.org/10.3389/fmars.2022.889233.
Li, X.-Y., R.-C. Yu, A. J. Richardson, C. Sun, R. Eriksen, F.-Z. Kong, Z.-X. Zhou, H.-X. Geng, Q.-C. Zhang, and M.-J. Zhou. 2023. “Marked shifts of harmful algal blooms in the Bohai Sea linked with combined impacts of environmental changes.” Harmful Algae 121 (22): 102370. https://doi.org/10.1016/j.hal.2022.102370.
Li, Z., et al. 2021c. “A new potentially toxic dinoflagellate Fukuyoa koreansis sp. nov. (Gonyaulacales, Dinophyceae) from Korean coastal waters: Morphology, phylogeny, and effects of temperature and salinity on growth.” Harmful Algae 109 (21): 102107. https://doi.org/10.1016/j.hal.2021.102107.
Lim, A. S., H. J. Jeong, J. H. Ok, J. H. You, H. C. Kang, and S. J. Kim. 2019. “Effects of light intensity and temperature on growth and ingestion rates of the mixotrophic dinoflagellate Alexandrium pohangense.” Mar. Biol. 166 (7): 98. https://doi.org/10.1007/s00227-019-3546-9.
Lim, H.-C., S.-T. Teng, C.-P. Leaw, S. B. Kamarudin, and P.-T. Lim. 2012. “Growth response of Pseudo-nitzschia circumpora (Bacillariophyceae) to different salinities.” In Proc., 15th Int. Conf. on Harmful Algae ICHA, 135–136. Changwon, Korea: Gyeongsangnam-do Provincial Government.
Lima, M. J., P. Relvas, and A. B. Barbosa. 2022. “Variability patterns and phenology of harmful phytoplankton blooms off southern Portugal: Looking for region-specific environmental drivers and predictors.” Harmful Algae 116 (4): 102254. https://doi.org/10.1016/j.hal.2022.102254.
Lin, C.-H., K. J. Flynn, A. Mitra, and P. M. Glibert. 2018. “Simulating effects of variable Stoichiometry and temperature on mixotrophy in the harmful dinoflagellate Karlodinium veneficum.” Front. Mar. Sci. 5 (Sep): 320. https://doi.org/10.3389/fmars.2018.00320.
Lin, S., Z. Hu, X. Song, C. J. Gobler, and Y. Z. Tang. 2022. “Vitamin B12-auxotrophy in dinoflagellates caused by incomplete or absent cobalamin-independent methionine synthase genes (metE).” Fundam. Res. 2 (5): 727–737. https://doi.org/10.1016/j.fmre.2021.12.014.
Lin, S., N. Ji, and H. Luo. 2019. “Recent progress in marine harmful algal bloom research.” [In Chinese.] Oceanol. Limnol. Sin. 50 (3): 495–510.
Lohan, M. C., and A. Tagliabue. 2018. “Oceanic micronutrients: Trace metals that are essential for marine life.” Elements 14 (6): 385–390. https://doi.org/10.2138/gselements.14.6.385.
Lü, J.-J., G.-T. Zhang, and Z.-X. Zhao. 2020. “Seawater silicate fertilizer facilitated nitrogen removal via diatom proliferation.” Mar. Pollut. Bull. 157 (20): 111331. https://doi.org/10.1016/j.marpolbul.2020.111331.
Lundberg, S. M., and S.-I. Lee. 2017. “A unified approach to interpreting model predictions.” In Proc., 31st Int. Conf. on Neural Information Processing Systems (NIPS’17), 4768–4777. Red Hook, NY: Curran Associates. https://doi.org/10.5555/3295222.3295230.
Maavara, T., Z. Akbarzadeh, and P. Van Cappellen. 2020. “Global dam-driven changes to riverine N:P:Si ratios delivered to the coastal ocean.” Geophys. Res. Lett. 47 (15): 288–290. https://doi.org/10.1029/2020GL088288.
Maier Brown, A. F., Q. Dortch, F. M. Van Dolah, T. A. Leighfield, W. Morrison, A. E. Thessen, K. Steidinger, B. Richardson, C. A. Moncreiff, and J. R. Pennock. 2006. “Effect of salinity on the distribution, growth, and toxicity of Karenia spp.” Harmful Algae 5 (2): 199–212. https://doi.org/10.1016/j.hal.2005.07.004.
Malone, T. C., and A. Newton. 2020. “The globalization of cultural eutrophication in the coastal ocean: Causes and consequences.” Front. Mar. Sci. 7 (Aug): 670. https://doi.org/10.3389/fmars.2020.00670.
Mardones, J. I., et al. 2021. “Disentangling the environmental processes responsible for the world’s largest farmed fish-killing harmful algal bloom: Chile, 2016.” Sci. Total Environ. 766 (14): 144383. https://doi.org/10.1016/j.scitotenv.2020.144383.
Mardones, J. I., et al. 2023. “Extreme harmful algal blooms, climate change, and potential risk of eutrophication in Patagonian fjords: Insights from an exceptional Heterosigma akashiwo fish-killing event.” Prog. Oceanogr. 210 (Jan): 102921. https://doi.org/10.1016/j.pocean.2022.102921.
Matsubara, T., S. Nagasoe, Y. Yamasaki, T. Shikata, Y. Shimasaki, Y. Oshima, and T. Honjo. 2007. “Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea.” J. Exp. Mar. Biol. Ecol. 342 (2): 226–230. https://doi.org/10.1016/j.jembe.2006.09.013.
Matsubara, T., T. Shikata, S. Sakamoto, H. Ota, T. Mine, and M. Yamaguchi. 2022. “Effects of temperature and salinity on rejuvenation of resting cells and subsequent vegetative growth of the harmful diatom Asteroplanus karianus.” J. Exp. Mar. Biol. Ecol. 550 (15): 151719. https://doi.org/10.1016/j.jembe.2022.151719.
McManus, M. A., A. T. Greer, A. H. V. Timmerman, J. C. Sevadjian, C. B. Woodson, R. Cowen, D. A. Fong, S. Monismith, and O. M. Cheriton. 2021. “Characterization of the biological, physical, and chemical properties of a toxic thin layer in a temperate marine system.” Mar. Ecol. Prog. Ser. 678 (12): 17–35. https://doi.org/10.3354/meps13879.
McQuoid, M. R. 2005. “Influence of salinity on seasonal germination of resting stages and composition of microplankton on the Swedish west coast.” Mar. Ecol. Prog. Ser. 289 (5): 151–163. https://doi.org/10.3354/meps289151.
Medić, N., E. Varga, D. B. Van de Waal, T. O. Larsen, and P. J. Hansen. 2022. “The coupling between irradiance, growth, photosynthesis and Prymnesin cell quota and production in two strains of the bloom-forming haptophyte, Prymnesium parvum.” Harmful Algae 112 (45): 102173. https://doi.org/10.1016/j.hal.2022.102173.
Medina, M., D. Kaplan, E. C. Milbrandt, D. Tomasko, R. Huffaker, and C. Angelini. 2022. “Nitrogen-enriched discharges from a highly managed watershed intensify red tide (Karenia brevis) blooms in southwest Florida.” Sci. Total Environ. 827 (2): 154149. https://doi.org/10.1016/j.scitotenv.2022.154149.
Mertens, K. N., et al. 2023. “An unprecedented bloom of Lingulodinium polyedra on the French Atlantic coast during summer 2021.” Harmful Algae 125 (Apr): 102426. https://doi.org/10.1016/j.hal.2023.102426.
Monod, J. 1942. “Recherches sur la croissance des cultures bactériennes.” In Actualités scientifiques et industrielles. Paris: Hermann & Cie.
Moore, S. K., J. A. Johnstone, N. S. Banas, and E. P. Salathe Jr. 2015. “Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA.” Harmful Algae 48 (8): 1–11. https://doi.org/10.1016/j.hal.2015.06.008.
Morton, S. L., D. R. Norris, and J. W. Bomber. 1992. “Effect of temperature, salinity and light intensity on the growth and seasonality of toxic dinoflagellates associated with ciguatera.” J. Exp. Mar. Biol. Ecol. 157 (1): 79–90. https://doi.org/10.1016/0022-0981(92)90076-M.
Murata, A., Y. Nagashima, and S. Taguchi. 2012. “N:P ratios controlling the growth of the marine dinoflagellate Alexandrium tamarense: Content and composition of paralytic shellfish poison.” Harmful Algae 20 (8): 11–18. https://doi.org/10.1016/j.hal.2012.07.001.
Nagasoe, S., D.-I. Kim, Y. Shimasaki, Y. Oshima, M. Yamaguchi, and T. Honjo. 2006. “Effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee.” Harmful Algae 5 (1): 20–25. https://doi.org/10.1016/j.hal.2005.06.001.
Neves, R. A. F., S. M. Nascimento, and L. N. Santos. 2021. “Harmful algal blooms and shellfish in the marine environment: An overview of the main molluscan responses, toxin dynamics, and risks for human health.” Environ. Sci. Pollut. Res. 28 (40): 55846–55868. https://doi.org/10.1007/s11356-021-16256-5.
Nishikawa, T., and M. Yamaguchi. 2008. “Effect of temperature on light-limited growth of the harmful diatom Coscinodiscus wailesii, A causative organism in the bleaching of aquacultured Porphyra thalli.” Harmful Algae 7 (5): 561–566. https://doi.org/10.1016/j.hal.2007.12.021.
Oduor, N. A., C. N. Munga, H. O. Ong’anda, P. K. Botwe, and N. Moosdorf. 2023. “Nutrients and harmful algal blooms in Kenya’s coastal and marine waters: A review.” Ocean Coastal Manage. 233 (Oct): 106454. https://doi.org/10.1016/j.ocecoaman.2022.106454.
Oh, S. J., H. K. Kwon, I. H. Noh, and H.-S. Yang. 2010. “Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea.” Ocean Sci. J. 45 (3): 171–178. https://doi.org/10.1007/s12601-010-0015-2.
Paerl, H. W., J. T. Scott, M. J. McCarthy, S. E. Newell, W. S. Gardner, K. E. Havens, D. K. Hoffman, S. W. Wilhelm, and W. A. Wurtsbaugh. 2016. “It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems.” Environ. Sci. Technol. 50 (20): 10805–10813. https://doi.org/10.1021/acs.est.6b02575.
Pal, M., P. J. Yesankar, A. Dwivedi, and A. Qureshi. 2020. “Biotic control of harmful algal blooms (HABs): A brief review.” J. Environ. Manage. 268 (6): 110687. https://doi.org/10.1016/j.jenvman.2020.110687.
Parmezan, A. R. S., V. M. A. Souza, and G. E. A. P. A. Batista. 2019. “Evaluation of statistical and machine learning models for time series prediction: Identifying the state-of-the-art and the best conditions for the use of each model.” Inf. Sci. 484 (6): 302–337. https://doi.org/10.1016/j.ins.2019.01.076.
Pednekar, S. M., S. S. Bates, V. Kerkar, and S. G. P. Matondkar. 2018. “Environmental factors affecting the distribution of Pseudo-nitzschia in two monsoonal estuaries of Western India and effects of salinity on growth and Domoic acid production by P. Pungens.” Estuaries Coasts 41 (5): 1448–1462. https://doi.org/10.1007/s12237-018-0366-y.
Pinto, L., M. Mateus, and A. Silva. 2016. “Modeling the transport pathways of harmful algal blooms in the Iberian coast.” Harmful Algae 53 (12): 8–16. https://doi.org/10.1016/j.hal.2015.12.001.
Qin, Q., and J. Shen. 2019. “Physical transport processes affect the origins of harmful algal blooms in estuaries.” Harmful Algae 84 (6): 210–221. https://doi.org/10.1016/j.hal.2019.04.002.
Ralston, D. K., M. L. Brosnahan, S. E. Fox, K. D. Lee, and D. M. Anderson. 2015. “Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset Estuary.” Estuaries Coasts 38 (6): 2240–2258. https://doi.org/10.1007/s12237-015-9949-z.
Ralston, D. K., and S. K. Moore. 2020. “Modeling harmful algal blooms in a changing climate.” Harmful Algae 91 (12): 101729. https://doi.org/10.1016/j.hal.2019.101729.
Rashel, M. R. H. 2020. Influence of water quality and climate variables on growth of the harmful alga, Prymnesium parvum. Lubbock, TX: Texas Tech Univ.
Raven, J. A., C. J. Gobler, and P. J. Hansen. 2020. “Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms.” Harmful Algae 91 (Jun): 101594. https://doi.org/10.1016/j.hal.2019.03.012.
Ravindra, K., P. Rattan, S. Mor, and A. N. Aggarwal. 2019. “Generalized additive models: Building evidence of air pollution, climate change and human health.” Environ. Int. 132 (1): 104987. https://doi.org/10.1016/j.envint.2019.104987.
Ren, L., N. N. Rabalais, and R. E. Turner. 2020. “Effects of Mississippi River water on phytoplankton growth and composition in the upper Barataria estuary, Louisiana.” Hydrobiologia 847 (8): 1831–1850. https://doi.org/10.1007/s10750-020-04214-0.
Robson, J., P. Ortega, and R. Sutton. 2016. “A reversal of climatic trends in the North Atlantic since 2005.” Nat. Geosci. 9 (7): 513–517. https://doi.org/10.1038/ngeo2727.
Schmidt, L., S. Santurkar, D. Tsipras, K. Talwar, and A. Madry. 2018. “Adversarially robust generalization requires more data.” In Proc., 32nd Int. Conf. on Neural Information Processing Systems (NIPS’18), 5019–5031. Red Hook, NY: Curran Associates.
Schoffelen, N. J., W. Mohr, T. G. Ferdelman, S. Littmann, J. Duerschlag, M. V. Zubkov, H. Ploug, and M. M. M. Kuypers. 2018. “Single-cell imaging of phosphorus uptake shows that key harmful algae rely on different phosphorus sources for growth.” Sci. Rep. 8 (1): 17182. https://doi.org/10.1038/s41598-018-35310-w.
Shang, L., Y. Xu, C. P. Leaw, P. T. Lim, J. Wang, J. Chen, Y. Deng, Z. Hu, and Y. Z. Tang. 2021. “Potent allelopathy and non-PSTs, non-spirolides toxicity of the dinoflagellate Alexandrium leei to phytoplankton, finfish and zooplankton observed from laboratory bioassays.” Sci. Total Environ. 780 (Aug): 146484. https://doi.org/10.1016/j.scitotenv.2021.146484.
Shen, A., S. Gao, C. M. Heggerud, H. Wang, Z. Ma, and S. Yuan. 2023. “Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory.” Ecol. Modell. 479 (Sep): 110310. https://doi.org/10.1016/j.ecolmodel.2023.110310.
Shikata, T., T. Matsubara, M. Yoshida, S. Sakamoto, and M. Yamaguchi. 2015. “Effects of temperature, salinity, and photosynthetic photon flux density on the growth of the harmful diatom Asteroplanus karianus in the Ariake Sea, Japan.” Fish. Sci. 81 (6): 1063–1069. https://doi.org/10.1007/s12562-015-0930-3.
Springer, J. J., J. M. Burkholder, P. M. Glibert, and R. E. Reed. 2005. “Use of a real-time remote monitoring network (RTRM) and shipborne sampling to characterize a dinoflagellate bloom in the Neuse Estuary, North Carolina, USA.” Harmful Algae 4 (3): 533–551. https://doi.org/10.1016/j.hal.2004.08.017.
Stocker, T., G.-K. Plattner, and Q. Dahe. 2014. IPCC climate change 2013: The physical science basis-findings and lessons learned, 1535. Cambridge, UK: Cambridge University Press.
Strzepek, R. F., P. W. Boyd, and W. G. Sunda. 2019. “Photosynthetic adaptation to low iron, light, and temperature in Southern Ocean phytoplankton.” Proc. Natl. Acad. Sci. 116 (10): 4388–4393. https://doi.org/10.1073/pnas.1810886116.
Sun, J., D. A. Hutchins, Y. Feng, E. L. Seubert, D. A. Caron, and F.-X. Fu. 2011. “Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries.” Limnol. Oceanogr. 56 (3): 829–840. https://doi.org/10.4319/lo.2011.56.3.0829.
Tang, Y. Z., H. Gu, Z. Wang, D. Liu, Y. Wang, D. Lu, Z. Hu, Y. Deng, L. Shang, and Y. Qi. 2021. “Exploration of resting cysts (stages) and their relevance for possibly HABs-causing species in China.” Harmful Algae 107 (21): 102050. https://doi.org/10.1016/j.hal.2021.102050.
Tatters, A. O., F.-X. Fu, and D. A. Hutchins. 2012. “High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta.” PLoS One 7 (2): e32116. https://doi.org/10.1371/journal.pone.0032116.
Thangaraj, S., H. Liu, I.-N. Kim, and J. Sun. 2022. “Acclimation traits determine the macromolecular basis of harmful dinoflagellate Alexandrium minutum in response to changing climate conditions.” Harmful Algae 118 (2): 102313. https://doi.org/10.1016/j.hal.2022.102313.
Thorel, M., J. Fauchot, J. Morelle, V. Raimbault, B. Le Roy, C. Miossec, V. Kientz-Bouchart, and P. Claquin. 2014. “Interactive effects of irradiance and temperature on growth and domoic acid production of the toxic diatom Pseudo-nitzschia australis (Bacillariophyceae).” Harmful Algae 39 (Oct): 232–241. https://doi.org/10.1016/j.hal.2014.07.010.
Tian, R., J. Chen, X. Sun, D. Li, C. Liu, and H. Weng. 2018. “Algae explosive growth mechanism enabling weather-like forecast of harmful algal blooms.” Sci. Rep. 8 (1): 9923. https://doi.org/10.1038/s41598-018-28104-7.
Townsend, D. W., D. J. McGillicuddy Jr., M. A. Thomas, and N. D. Rebuck. 2014. “Nutrients and water masses in the Gulf of Maine–Georges Bank region: Variability and importance to blooms of the toxic dinoflagellate Alexandrium fundyense.” Deep Sea Res. Part II 103 (3): 238–263. https://doi.org/10.1016/j.dsr2.2013.08.003.
Trainer, V. L., S. K. Moore, G. Hallegraeff, R. M. Kudela, A. Clement, J. I. Mardones, and W. P. Cochlan. 2020. “Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes.” Harmful Algae 91 (9): 101591. https://doi.org/10.1016/j.hal.2019.03.009.
Turner, J. T. 2006. “Harmful algae interactions with marine planktonic grazers.” In Ecological harmful algae, 259–270. Berlin: Springer.
Usup, G., A. Ahmad, K. Matsuoka, P. T. Lim, and C. P. Leaw. 2012. “Biology, ecology and bloom dynamics of the toxic marine dinoflagellate Pyrodinium bahamense.” Harmful Algae 14 (Feb): 301–312. https://doi.org/10.1016/j.hal.2011.10.026.
Valbi, E., F. Ricci, S. Capellacci, S. Casabianca, M. Scardi, and A. Penna. 2019. “A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea.” Sci. Rep. 9 (1): 4166. https://doi.org/10.1038/s41598-019-40664-w.
Vellojin, J. P., J. I. Mardones, V. Vargas, P. P. Leal, A. Corredor-Acosta, and J. L. Iriarte. 2023. “Potential effects of climate change on the growth response of the toxic dinoflagellate Karenia selliformis from Patagonian waters of Chile.” Prog. Oceanogr. 211 (Jun): 102956. https://doi.org/10.1016/j.pocean.2022.102956.
Vilas, L. G., E. Spyrakos, J. M. Torres Palenzuela, and Y. Pazos. 2014. “Support vector machine-based method for predicting Pseudo-nitzschia spp. Blooms in coastal waters (Galician rias, NW Spain).” Prog. Oceanogr. 124 (May): 66–77. https://doi.org/10.1016/j.pocean.2014.03.003.
Wang, D., S. Zhang, H. Zhang, and S. Lin. 2021a. “Omics study of harmful algal blooms in China: Current status, challenges, and future perspectives.” Harmful Algae 107 (Jul): 102079. https://doi.org/10.1016/j.hal.2021.102079.
Wang, J., et al. 2021b. “Harmful algal blooms in Chinese coastal waters will persist due to perturbed nutrient ratios.” Environ. Sci. Technol. Lett. 8 (3): 276–284. https://doi.org/10.1021/acs.estlett.1c00012.
Wang, Q., L. Zhu, and D. Wang. 2014. “A numerical model study on multi-species harmful algal blooms coupled with background ecological fields.” Acta Oceanolog. Sin. 33 (8): 95–105. https://doi.org/10.1007/s13131-014-0459-9.
Weber, C., A. K. J. Olesen, B. Krock, and N. Lundholm. 2021. “Salinity, A climate-change factor affecting growth, domoic acid and isodomoic acid C content in the diatom Pseudo-nitzschia seriata (Bacillariophyceae).” Phycologia 60 (6): 619–630. https://doi.org/10.1080/00318884.2021.1973789.
Weisberg, R. H., L. Zheng, Y. Liu, A. A. Corcoran, C. Lembke, C. Hu, J. M. Lenes, and J. J. Walsh. 2016. “Karenia brevis blooms on the West Florida Shelf: A comparative study of the robust 2012 bloom and the nearly null 2013 event.” Cont. Shelf Res. 120 (Jun): 106–121. https://doi.org/10.1016/j.csr.2016.03.011.
Wells, M. L., et al. 2015. “Harmful algal blooms and climate change: Learning from the past and present to forecast the future.” Harmful Algae 49 (Nov): 68–93. https://doi.org/10.1016/j.hal.2015.07.009.
Wells, M. L., et al. 2020. “Future HAB science: Directions and challenges in a changing climate.” Harmful Algae 91 (Jan): 101632. https://doi.org/10.1016/j.hal.2019.101632.
Wu, G., W. Cao, Z. Huang, C.-M. Kao, C.-T. Chang, P.-C. Chiang, and F. Wang. 2017. “Decadal changes in nutrient fluxes and environmental effects in the Jiulong River Estuary.” Mar. Pollut. Bull. 124 (2): 871–877. https://doi.org/10.1016/j.marpolbul.2017.01.071.
Wurtsbaugh, W. A., H. W. Paerl, and W. K. Dodds. 2019. “Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum.” WIREs Water 6 (5): e1373. https://doi.org/10.1002/wat2.1373.
Xia, R., et al. 2020. “River algal blooms are well predicted by antecedent environmental conditions.” Water Res. 185 (Oct): 116221. https://doi.org/10.1016/j.watres.2020.116221.
Xiao, W., X. Liu, A. J. Irwin, E. A. Laws, L. Wang, B. Chen, Y. Zeng, and B. Huang. 2018. “Warming and eutrophication combine to restructure diatoms and dinoflagellates.” Water Res. 128 (Jan): 206–216. https://doi.org/10.1016/j.watres.2017.10.051.
Xiao, Z., A. X. Tan, V. Xu, Y.-S. Jun, and Y. J. Tang. 2022. “Mineral-hydrogel composites for mitigating harmful algal bloom and supplying phosphorous for photo-biorefineries.” Sci. Total Environ. 847 (Nov): 157533. https://doi.org/10.1016/j.scitotenv.2022.157533.
Xin, M., B. Wang, L. Xie, X. Sun, Q. Wei, S. Liang, and K. Chen. 2019. “Long-term changes in nutrient regimes and their ecological effects in the Bohai Sea, China.” Mar. Pollut. Bull. 146 (Sep): 562–573. https://doi.org/10.1016/j.marpolbul.2019.07.011.
Yamaguchi, M., S. Itakura, and T. Uchida. 2001. “Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures of the ‘novel red tide’ dinoflagellate Heterocapsa circularisquama (Dinophyceae).” Phycologia 40 (3): 313–318. https://doi.org/10.2216/i0031-8884-40-3-313.1.
Yang, F., H. Wang, A. F. Bouwman, A. H. W. Beusen, X. Liu, J. Wang, Z. Yu, and Q. Yao. 2023. “Nitrogen from agriculture and temperature as the major drivers of deoxygenation in the central Bohai Sea.” Sci. Total Environ. 893 (Jun): 164614. https://doi.org/10.1016/j.scitotenv.2023.164614.
Yang, H., Z. Hu, N. Xu, and Y. Z. Tang. 2019. “A comparative study on the allelopathy and toxicity of four strains of Karlodinium veneficum with different culturing histories.” J. Plankton Res. 41 (1): 17–29. https://doi.org/10.1093/plankt/fby047.
Yñiguez, A. T., et al. 2018. “Insights into the dynamics of harmful algal blooms in a tropical estuary through an integrated hydrodynamic-Pyrodinium-shellfish model.” Harmful Algae 80 (Dec): 1–14. https://doi.org/10.1016/j.hal.2018.08.010.
Yu, P., R. Gao, D. Zhang, and Z.-P. Liu. 2021. “Predicting coastal algal blooms with environmental factors by machine learning methods.” Ecol. Indic. 123 (Apr): 107334. https://doi.org/10.1016/j.ecolind.2020.107334.
Zhang, P., C. Peng, J. Zhang, J. Zhang, J. Chen, and H. Zhao. 2022. “Long-term harmful algal blooms and nutrients patterns affected by climate change and anthropogenic pressures in the Zhanjiang Bay, China.” Front. Mar. Sci. 9 (Apr): 4. https://doi.org/10.3389/fmars.2022.849819.
Zhang, Y., X. Lin, X. Shi, L. Lin, H. Luo, L. Li, and S. Lin. 2019. “Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom.” Front. Microbiol. 10 (Mar): 590. https://doi.org/10.3389/fmicb.2019.00590.
Zheng, B., A. J. Lucas, P. J. S. Franks, T. L. Schlosser, C. R. Anderson, U. Send, K. Davis, A. D. Barton, and H. M. Sosik. 2023. “Dinoflagellate vertical migration fuels an intense red tide.” Proc. Natl. Acad. Sci. 120 (36): e2304590120. https://doi.org/10.1073/pnas.2304590120.
Zhou, Y., W. Yan, and W. Wei. 2021. “Effect of sea surface temperature and precipitation on annual frequency of harmful algal blooms in the East China Sea over the past decades.” Environ. Pollut. 270 (Jul): 116224. https://doi.org/10.1016/j.envpol.2020.116224.
Zhou, Y., Y. Zhang, F. Li, L. Tan, and J. Wang. 2017. “Nutrients structure changes impact the competition and succession between diatom and dinoflagellate in the East China Sea.” Sci. Total Environ. 574 (Jan): 499–508. https://doi.org/10.1016/j.scitotenv.2016.09.092.
Zhou, Z.-X., R.-C. Yu, C. Sun, M. Feng, and M.-J. Zhou. 2019. “Impacts of Changjiang River discharge and Kuroshio intrusion on the diatom and dinoflagellate blooms in the East China Sea.” J. Geophys. Res.: Oceans 124 (7): 5244–5257. https://doi.org/10.1029/2019JC015158.
Zhu, Z., P. Qu, F. Fu, N. Tennenbaum, A. O. Tatters, and D. A. Hutchins. 2017. “Understanding the blob bloom: Warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters.” Harmful Algae 67 (Jul): 36–43. https://doi.org/10.1016/j.hal.2017.06.004.
Zhuang, Y., H. Zhang, and S. Lin. 2013. “Cyclin B gene and its cell cycle-dependent differential expression in the toxic dinoflagellate Alexandrium fundyense Atama Group I/Clade I.” Harmful Algae 26 (4): 71–79. https://doi.org/10.1016/j.hal.2013.04.002.
Zohdi, E., and M. Abbaspour. 2019. “Harmful algal blooms (red tide): A review of causes, impacts and approaches to monitoring and prediction.” Int. J. Environ. Sci. Technol. 16 (3): 1789–1806. https://doi.org/10.1007/s13762-018-2108-x.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 150Issue 4April 2024

History

Published online: Feb 9, 2024
Published in print: Apr 1, 2024
Discussion open until: Jul 9, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Florida A&M Univ.-Florida State Univ. (FAMU-FSU) College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310. ORCID: https://orcid.org/0000-0001-7613-2809
Postdoctoral Researcher, Dept. of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 1753 W Paul Dirac Dr., Tallahassee, FL 32310. ORCID: https://orcid.org/0000-0003-3583-2475
Assistant Professor, Dept. of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 1753 W Paul Dirac Dr., Tallahassee, FL 32310 (corresponding author). ORCID: https://orcid.org/0000-0003-4102-6613. Email: [email protected]
Mohammad Reza Nikoo
Asssociate Professor, Dept. of Civil and Environmental Engineering, Sultan Qaboos Univ., Muscat, Oman.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share