Technical Papers
Sep 11, 2023

Samarium (III)–Modified MCM-41 Supported Ionic Liquids as Efficient Heterogeneous Catalysts toward the Fixation of CO2 into Alkynyl Carboxylic Acids

Publication: Journal of Environmental Engineering
Volume 149, Issue 11

Abstract

In this work, a class of transition metal-modified MCM-41 mesoporous silica supported ionic liquids nanocatalysts were constructed and efficiently used as catalysts for the effective carboxylation of terminal alkynes through CO2 utilization. The main factors affecting the catalytic performance of carboxylation and its possible reaction mechanism were sufficiently discussed. The results showed that when the dosage was 0.2 g, the temperature was 40°C and the CO2 pressure was 0.3 MPa, the supported catalyst MCM-41@IL-Sm showed the optimal catalytic efficiency. The novel catalyst proved to be highly efficient for the sustainable synthesis of alkynyl carboxylic acids attributing good to excellent yields of 82%–95% within 7–12 h. Moreover, MCM-41@IL-Sm could be recycled and reused six times without noticeable decrease in catalytic activity from two-phase system under external heterogeneous field. The application of supported ionic liquids in the field of carbon dioxide carboxylation has injected a new power source for the efficient and effective production of value-added chemicals from waste CO2.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (22368001), analysis and testing center of Anshun University and Research Foundation of Hubei Three Gorges Laboratory (SC213010).
Author contributions: Yu Lin Hu and Shuai Shuai Yang contributed to the conception of the study and its design. Material preparation, data collection, and analysis were performed by Yu Lin Hu. The manuscript draft was written by Yu Lin Hu and reviewed by Shuai Shuai Yang.

References

Abunowara, M., M. A. Bustam, S. Sufian, M. Babar, U. Eldemerdash, H. Suleman, R. Bencini, and S. Ullah. 2020. “Characterization of Mukah-Balingian and Merit-Pila coals before and after subcritical CO2 exposure using surface-area techniques.” J. Environ. Eng. 146 (8): 04020087. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001761.
Al-shaikh, H., J. Lasri, and J. G. Knight. 2022. “Bimetallic Ru:Co mesoporous nanoparticles stabilized by PEG and imidazolium ionic liquid based [KIT-6] as an efficient heterogeneous catalyst for Suzuki–Miyaura cross-couplings in H2OEtOH solution.” Catal. Lett. 152 (12): 3761–3771. https://doi.org/10.1007/s10562-022-03951-2.
Alyoshina, N. A., and E. V. Parfenyuk. 2013. “Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study.” J. Solid State Chem. 205 (Sep): 211–216. https://doi.org/10.1016/j.jssc.2013.03.044.
Aprianti, N., M. Faizal, M. Said, and S. Nasir. 2023. “Sorption-enhanced steam gasification of fine coal waste for fuel producing.” J. King Saud Univ. Eng. Sci. https://doi.org/10.1016/j.jksues.2022.08.003.
Asadollahzadeh, M., R. Torkaman, and M. Torab-Mostaedi. 2020. “Recovery of gadolinium ions based on supported ionic liquid membrane: Parametric optimization via central composite design approach.” Int. J. Environ. Sci. Technol. 17 (9): 3983–3996. https://doi.org/10.1007/s13762-020-02743-8.
Azimova, M. A., S. A. Morton III, and P. D. Frymier. 2009. “Comparison of three bacterial toxicity assays for imidazolium-derived ionic liquids.” J. Environ. Eng. 135 (12): 1388–1392. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000092.
Bernardo, S. C., R. Carapito, M. C. Neves, M. G. Freire, and F. Sousa. 2022. “Supported ionic liquids used as chromatographic matrices in bioseparation—An overview.” Molecules 27 (5): 1618. https://doi.org/10.3390/molecules27051618.
Bobadilla, L. F., T. Blasco, and J. A. Odriozola. 2013. “Gold(III) stabilized over ionic liquids grafted on MCM-41 for highly efficient three-component coupling reactions.” Phys. Chem. Chem. Phys. 15 (39): 16927–16934. https://doi.org/10.1039/c3cp52924j.
Bondarenko, G. N., E. G. Dvurechenskaya, E. S. Magommedov, and I. P. Beletskaya. 2017. “Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes.” Catal. Lett. 147 (10): 2570–2580. https://doi.org/10.1007/s10562-017-2127-0.
Caniani, D., et al. 2019. “Toward a new plant-wide experimental and modeling approach for reduction of greenhouse gas emission from wastewater treatment plants.” J. Environ. Eng. 145 (8): 04019043. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001538.
Cauwenbergh, R., V. Goyal, R. Maiti, K. Natte, and S. Das. 2022. “Challenges and recent advancements in the transformation of CO2 into carboxylic acids: Straightforward assembly with homogeneous 3d metals.” Chem. Soc. Rev. 51 (22): 9371–9423. https://doi.org/10.1039/D1CS00921D.
Chaugule, A. A., A. H. Tamboli, and H. Kim. 2017. “CuCl2@Poly-IL catalyzed carboxylation of terminal alkynes through CO2 utilization.” Chem. Eng. J. 326 (Oct): 1009–1019. https://doi.org/10.1016/j.cej.2017.06.011.
Chowdhury, A. H., I. H. Chowdhury, and S. M. Islam. 2020. “One-pot green synthesis of AgNPs@RGO for removal of water pollutant and chemical fixation of CO2 under mild reaction conditions.” J. Inorg. Organomet. Polym. 30 (12): 5270–5282. https://doi.org/10.1007/s10904-020-01643-1.
Das, S. 2020. CO2 as a building block in organic synthesis. Weinheim, Germany: Wiley-VCH.
Endo-Kimura, M., K. Wang, Z. Bielan, M. Janczarek, A. Markowska-Szczupak, and E. Kowalska. 2022. “Antibacterial activity of core-shell CuxO@TiO2 photocatalyst under UV, vis and dark.” Surf. Interfaces 32 (Aug): 102125. https://doi.org/10.1016/j.surfin.2022.102125.
Fehrmann, R., A. Riisager, and M. Haumann. 2014. Supported ionic liquids: Fundamentals and applications. Weinheim, Germany: Wiley-VCH. https://doi.org/10.1002/9783527654789.
Glueck, S. M., S. Gümüs, W. M. F. Fabian, and K. Faber. 2010. “Biocatalytic carboxylation.” Chem. Soc. Rev. 39 (1): 313–328. https://doi.org/10.1039/B807875K.
Guo, C. X., B. Yu, J. N. Xie, and L. N. He. 2015. “Silver tungstate: A single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions.” Green Chem. 17 (1): 474–479. https://doi.org/10.1039/C4GC01638F.
Hosseini, S., G. Moradi, and K. Bahrami. 2022. “Methyl ester production in microchannel using a new grafted basic ionic liquid as the nanocatalyst.” Chem. Pap. 76 (2): 661–679. https://doi.org/10.1007/s11696-021-01885-4.
Innocenzi, P. 2022. Mesoporous ordered silica films: From self-assembly to order. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-89536-5.
Javaherian, M., and S. J. Saghanezhad. 2020. “Synthesis, characterization and applications of dicationic ionic liquids in organic synthesis.” Mini-Rev. Org. Chem. 17 (4): 450–464. https://doi.org/10.2174/1570193X16666190508091231.
Jelmy, E. J., N. Thomas, D. T. Mathew, J. Louis, N. T. Padmanabhan, V. Kumaravel, H. John, and S. C. Pillai. 2021. “Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion.” React. Chem. Eng. 6 (10): 1701–1738. https://doi.org/10.1039/D1RE00214G.
Jiang, T., Y. Xie, L. Dai, Y. Li, and Q. Zhao. 2018. “Alkylation of phenol with tert-butyl alcohol catalyzed by ionic liquid-supported MCM-41 with different pore sizes.” React. Kinet., Mech. Catal. 125 (1): 351–364. https://doi.org/10.1007/s11144-018-1394-0.
Juliá-Hernández, F., M. Gaydou, E. Serrano, M. Gemmeren, and R. Martin. 2016. Vol. 374 of Ni- and Fe-catalyzed carboxylation of unsaturated hydrocarbons with CO2: Topics in current chemistry collections, 45. Cham, Switzerland: Springer. https://doi.org/10.1007/s41061-016-0045-z.
Karimi, B., M. Tavakolian, M. Akbari, and F. Mansouri. 2018. “Ionic liquids in asymmetric synthesis: An overall view from reaction media to supported ionic liquid catalysis.” ChemCatChem 10 (15): 3173–3205. https://doi.org/10.1002/cctc.201701919.
Kaur, P., and H. K. Chopra. 2020. “Exploring the potential of supported ionic liquids as building block systems in catalysis.” ChemistrySelect 5 (39): 12057–12086. https://doi.org/10.1002/slct.202002826.
Kojčinović, A., B. Likozar, and M. Grilc. 2022. “Heterogeneous catalytic materials for carboxylation reactions with CO2 as reactant.” J. CO2 Util. 66 (Dec): 102250. https://doi.org/10.1016/j.jcou.2022.102250.
Li, A., X. Wang, Y. Li, C. Luo, J. Zhang, K. Liu, C. Zhang, and C. Zhou. 2021. “A novel gemini sulfonic ionic liquid immobilized MCM-41 as efficient catalyst for Doebner-Von miller reaction to quinolone.” ChemCatChem 13 (17): 3772–3780. https://doi.org/10.1002/cctc.202100424.
Li, Y., Y. Dong, J. L. Kan, X. Wu, and Y. B. Dong. 2020. “Synthesis and catalytic properties of metal−N–heterocyclic carbene-decorated covalent organic framework.” Org. Lett. 22 (18): 7363–7368. https://doi.org/10.1021/acs.orglett.0c02721.
Liu, Q., L. Wu, R. Jackstell, and M. Beller. 2015. “Using carbon dioxide as a building block in organic synthesis.” Nat. Commun. 6 (1): 5933. https://doi.org/10.1038/ncomms6933.
Mahmoud, M. E., and H. M. Al-bishri. 2012. “Enhanced adsorptive removal of cadmium from water by immobilized hydrophobic ionic liquids on nano-silica sorbents.” J. Environ. Eng. 138 (11): 1138–1145. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000568.
Manukyan, K. V., A. V. Yeghishyan, C. E. Shuck, D. O. Moskovskikh, S. Rouvimov, E. E. Wolf, and A. S. Mukasyan. 2018. “Mesoporous metal–silica materials: Synthesis, catalytic and thermal properties.” Microporous Mesoporous Mater. 257 (Feb): 175–184. https://doi.org/10.1016/j.micromeso.2017.08.044.
Marták, J., T. Liptaj, M. Polakovič, and Š. Schlosser. 2021. “New phosphonium ionic liquid with neodecanoate anion as butyric acid extractant.” Chem. Pap. 75 (8): 3965–3977. https://doi.org/10.1007/s11696-021-01607-w.
Mazloumi, M., and F. Shirini. 2022. “One-pot four-component synthesis of N-aryl-1,8-dioxo-decahydroacridines, N-arylquinolines and spiro[indoline-3,4′-quinolines] catalyzed by a new ionic liquid immobilized on nonporous SiO2.Res. Chem. Intermed. 48 (12): 5113–5131. https://doi.org/10.1007/s11164-022-04851-1.
Mohammad, A., and D. Inamuddin. 2012. Green solvents II: Properties and applications of ionic liquids. New York: Springer. https://doi.org/10.1007/978-94-007-2891-2.
Mohsen, R. A., B. Abbassi, and A. Dutta. 2019. “Assessment of greenhouse gas emissions from Ontario’s solid waste landfills: Assessment of improvement scenarios.” J. Environ. Eng. 145 (8): 05019004. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001557.
Navarro-Jaén, S., M. Virginie, J. Bonin, M. Robert, R. Wojcieszak, and A. Y. Khodakov. 2021. “Highlights and challenges in the selective reduction of carbon dioxide to methanol.” Nat. Rev. Chem. 5 (8): 564–579. https://doi.org/10.1038/s41570-021-00289-y.
Pimparkar, S., A. K. Dalvi, A. Koodan, S. Maiti, S. A. Al-Thabaiti, M. Mokhtar, A. Dutta, Y. R. Lee, and D. Maiti. 2021. “Recent advances in the incorporation of CO2 for C–H and C–C bond functionalization.” Green Chem. 23 (23): 9283–9317. https://doi.org/10.1039/D1GC02737A.
Qiao, C., Y. Cao, and L. N. He. 2018. “Transition metal-catalyzed carboxylation of terminal alkynes with CO2.” Mini-Rev. Org. Chem. 15 (4): 283–290. https://doi.org/10.2174/1570193X15666180101150819.
Qureshi, Z. S., K. M. Deshmukh, and B. M. Bhanage. 2014. “Applications of ionic liquids in organic synthesis and catalysis.” Clean Technol. Environ. Policy 16 Dec: 1487–1513. https://doi.org/10.1007/s10098-013-0660-0.
Rashidi, N. A., S. Yusup, A. Borhan, and L. H. Loong. 2014. “Experimental and modelling studies of carbon dioxide adsorption by porous biomass derived activated carbon.” Clean Technnol. Environ. Policy 16 (7): 1353–1361. https://doi.org/10.1007/s10098-014-0788-6.
Sable, D. A., K. S. Vadagaonkar, A. R. Kapdi, and B. M. Bhanage. 2021. “Carbon dioxide based methodologies for the synthesis of fine chemicals.” Org. Biomol. Chem. 19 (26): 5725–5757. https://doi.org/10.1039/D1OB00755F.
Salminen, E., P. Mäki-Arvela, P. Virtanen, T. Salmi, and J. P. Mikkola. 2014. “Isomerisation of α-pinene oxide to campholenic aldehyde over supported ionic liquid catalysts (SILCAs).” Top. Catal. 57 (17–20): 1533–1538. https://doi.org/10.1007/s11244-014-0330-4.
Sani, R., T. K. Dey, M. Sarkar, P. Basu, and S. M. Islam. 2022. “A study of contemporary progress relating to COF materials for CO2 capture and fixation reactions.” Mater. Adv. 3 (14): 5575–5597. https://doi.org/10.1039/D2MA00143H.
Sarıoğlu, A. O., D. T. Kahraman, A. Köse, and M. Sönmez. 2022. “Synthesis, characterization, photoluminescence properties and cytotoxic activities of Sm(III) complexes of β-diketones.” J. Mol. Struct. 1260 (Jul): 132786. https://doi.org/10.1016/j.molstruc.2022.132786.
Scialdone, O., C. Amatore, A. Galia, and G. Filardo. 2006. “CO2 as a C1-organic building block: Electrocarboxylation of aromatic ketones. A quantitative study of the effect of the concentration of substrate and of carbon dioxide on the selectivity of the process.” J. Electroanal. Chem. 592 (2): 163–174. https://doi.org/10.1016/j.jelechem.2006.04.009.
Shi, G., W. Xu, J. Wang, Y. Yuan, S. Chaemchuen, and F. Verpoort. 2020. “A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions.” J. CO2 Util. 39 (Jul): 101177. https://doi.org/10.1016/j.jcou.2020.101177.
Shi, J., L. Zhang, N. Sun, D. Hu, Q. Shen, F. Mao, Q. Gao, and W. Wei. 2019. “Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions.” ACS Appl. Mater. Interfaces 11 (32): 28858–28867. https://doi.org/10.1021/acsami.9b07991.
Shi, J. B., Q. Bu, B. Y. Liu, B. Dai, and N. Liu. 2021. “Organocatalytic strategy for the fixation of CO2 via carboxylation of terminal alkynes.” J. Org. Chem. 86 (2): 1850–1860. https://doi.org/10.1021/acs.joc.0c02673.
Skoda-Földes, R. 2014. “The use of supported acidic ionic liquids in organic synthesis molecules.” Molecules 19 (7): 8840–8884. https://doi.org/10.3390/molecules19078840.
Sun, Z. H., X. Y. Wang, K. L. Huang, M. Y. He, and S. C. Chen. 2022. “Heterogeneous catalytic carboxylation of terminal alkynes with CO2 over a copper(II)-based metal-organic framework catalyst.” Catal. Commun. 169 (Sep): 106472. https://doi.org/10.1016/j.catcom.2022.106472.
Uthaman, A., S. Thomas, T. Li, and H. Maria. 2022. Advanced functional porous materials: From macro to nano scale lengths. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-85397-6.
Velázquez, H. D., Z. X. Wu, M. Vandichel, and F. Verpoort. 2017. “Inserting CO2 into terminal alkynes via bis-(NHC)-metal complexes.” Catal. Lett. 147 (2): 463–471. https://doi.org/10.1007/s10562-016-1920-5.
Virtanen, P., T. O. Salmi, and J. P. Mikkola. 2010. “Supported ionic liquid catalysts (SILCA) for preparation of organic chemicals.” Top Catal. 53 (15–18): 1096–1103. https://doi.org/10.1007/s11244-010-9540-6.
Vyskočilová, E., D. Šafařík, K. Zítová, E. Vrbková, R. Dimitrov, A. Vagenknechtová, and L. Červený. 2022. “Efficient catalyst based on pyridinium modified MCM-41 for carbon dioxide utilization.” Catal. Lett. 152 (12): 3576–3585. https://doi.org/10.1007/s10562-022-03928-1.
Wang, S., G. Du, and C. Xi. 2016. “Copper-catalyzed carboxylation reactions using carbon dioxide.” Org. Biomol. Chem. 14 (15): 3666–3676. https://doi.org/10.1039/C6OB00199H.
Wang, Y., Z. Gu, W. Liu, Y. Yao, H. Wang, X. F. Xia, and W. Li. 2015. “Conversion of glucose into 5-hydroxymethylfurfural catalyzed by chromium(III) Schiff base complexes and acidic ionic liquids immobilized on mesoporous silica.” RSC Adv. 5 (75): 60736–60744. https://doi.org/10.1039/C5RA08080K.
Wu, X. F., and F. Zheng. 2017. Vol. 375 of Synthesis of carboxylic acids and esters from CO2: Topics in current chemistry collections, 4. Cham, Switzerland: Springer. https://doi.org/10.1007/s41061-016-0091-6.
Xie, J. N., B. Yu, Z. H. Zhou, H. C. Fu, N. Wang, and L. N. He. 2015. “Copper(I)-based ionic liquid-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure.” Tetrahedron Lett. 56 (50): 7059–7062. https://doi.org/10.1016/j.tetlet.2015.11.028.
Xiong, G., B. Yu, J. Dong, Y. Shi, B. Zhao, and L. N. He. 2017. “Cluster-based MOFs with accelerated chemical conversion of CO2 through C–C bond formation.” Chem. Commun. 53 (44): 6013–6016. https://doi.org/10.1039/C7CC01136A.
Yu, B., P. Yang, X. Gao, Z. Yang, Y. Zhao, H. Zhang, and Z. Liu. 2018. “Sequential protocol for C(sp)–H carboxylation with CO2: KOtBu-catalyzed C(sp)–H silylation and KOtBu-mediated carboxylation.” Sci. China Chem. 61 (4): 449–456. https://doi.org/10.1007/s11426-017-9163-2.
Yu, B., P. Yang, X. Gao, Z. Z. Yang, Y. F. Zhao, H. Y. Zhang, and Z. M. Liu. 2017. “CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO2 at room temperature.” New J. Chem. 41 (17): 9250–9255. https://doi.org/10.1039/C7NJ01779K.
Zhang, L., R. Bu, X. Y. Liu, P. F. Mu, and E. Q. Gao. 2021. “Schiff-base molecules and COFs as metal-free catalysts or silver supports for carboxylation of alkynes with CO2.” Green Chem. 23 (19): 7620–7629. https://doi.org/10.1039/D1GC02118D.
Zhang, S. J., and X. M. Lu. 2006. Ionic liquids: From fundamental research to industrial applications. Beijing: Science Press.
Zhang, Y., Y. Li, J. Wu, H. Cao, and L. Zhang. 2023. “La doping of manganese oxide leads to a dramatically promoted catalytic performance for UV–visible-infrared photothermocatalytic ethyl acetate abatement.” Appl. Surf. Sci. 615 (Apr): 156334. https://doi.org/10.1016/j.apsusc.2023.156334.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 11November 2023

History

Received: Mar 1, 2023
Accepted: Jul 21, 2023
Published online: Sep 11, 2023
Published in print: Nov 1, 2023
Discussion open until: Feb 11, 2024

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Yu Lin Hu, Ph.D. [email protected]
Professor, College of Chemistry and Chemical Engineering, Anshun Univ., Anshun 561000, PR China (corresponding author). Email: [email protected]
Shuai Shuai Yang, Ph.D. [email protected]
Assistant Professor, College of Chemistry and Chemical Engineering, Anshun Univ., Anshun 561000, PR China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share