Technical Papers
Apr 7, 2023

Improved Cadmium Removal Induced by Interaction of Nanoscale Zero-Valent Iron and Microplastics Debris

Publication: Journal of Environmental Engineering
Volume 149, Issue 6

Abstract

Nanoscale zero-valent iron (nZVI) is one of the most prevalently used engineered nanomaterials for heavy metals removal. Microplastics (MPs) have been detected extensively in the environment, such as soil, surface water, groundwater, and water treatment plant. PVC MPs and Cd coexist in a variety of environment, and Cd compounds are often used as stabilizers in PVC production, which increases the likelihood of their coexistence. In this work, the influence of aged PVC MPs on Cd2+ removal with nZVI was evaluated. Spent nZVI after reaction with Cd2+ with and without MPs was characterized with scanning transmission electron microscopy (STEM), energy-dispersive spectroscopy (EDS), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrometer (FTIR), and Brunauer-Emmett-Teller (BET). The results showed that when MPs coexisted, the removal rate of Cd2+ with nZVI increased by up to 73.4%. Spent nZVI has more extensive oxidation, and has looser structure and higher specific surface area in a mixed contamination solution with trace MPs, resulting in high removal efficiency of Cd2+. Interaction between PVC MPs and nZVI shows positive promotion toward removal of Cd2+ with nZVI; thus, nZVI may have great potential for remediation of Cd in the water environment rich in PVC MPs.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published paper.

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 22176147), the National Outstanding Youth Science Fund Project of the National Natural Science Foundation of China (No. 21822607), the Central University Basic Research Fund of China (No. 22120200178), and the State Key Laboratory for Pollution Control is acknowledged.

References

Abbasi, S., F. Moore, B. Keshavarzi, P. K. Hopke, R. Naidu, M. M. Rahman, P. Oleszczuk, and J. Karimi. 2020. “PET-microplastics as a vector for heavy metals in a simulated plant rhizosphere zone.” Sci. Total Environ. 744 (Nov): 140984. https://doi.org/10.1016/j.scitotenv.2020.140984.
Andrady, A. L. 2011. “Microplastics in the marine environment.” Mar. Pollut. Bull. 62 (8): 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030.
Barnes, D. K., F. Galgani, R. C. Thompson, and M. Barlaz. 2009. “Accumulation and fragmentation of plastic debris in global environments.” Philos. Trans. R. Soc. London, Ser. B. Biol. Sci. 364 (1526): 1985–1998. https://doi.org/10.1098/rstb.2008.0205.
Boots, B., C. W. Russell, and D. S. Green. 2019. “Effects of microplastics in soil ecosystems: Above and below ground.” Environ. Sci. Technol. 53 (19): 11496–11506. https://doi.org/10.1021/acs.est.9b03304.
Boparai, H. K., M. Joseph, and D. M. O’Carroll. 2011. “Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.” J. Hazard Mater. 186 (1): 458–465. https://doi.org/10.1016/j.jhazmat.2010.11.029.
Boparai, H. K., M. Joseph, and D. M. O’Carroll. 2013. “Cadmium (Cd2+) removal by nano zerovalent iron: Surface analysis, effects of solution chemistry and surface complexation modeling.” Environ. Sci. Pollut. Res. Int. 20 (9): 6210–6221. https://doi.org/10.1007/s11356-013-1651-8.
Brennecke, D., B. Duarte, F. Paiva, I. Caçador, and J. Canning-Clode. 2016. “Microplastics as vector for heavy metal contamination from the marine environment.” Estuarine Coastal Shelf Sci. 178 (Sep): 189–195. https://doi.org/10.1016/j.ecss.2015.12.003.
Chalastara, K., and G. P. Demopoulos. 2022. “Mechanism of galvanic reduction of selenate oxyanions and surface immobilization by nano zero-valent iron aggregates under anaerobic condition: Towards high electron efficiency.” Environ. Sci. Water Res. Technol. 8 (9): 1910–1922. https://doi.org/10.1039/D2EW00321J.
Chen, R., H. Liu, M. Tong, L. Zhao, P. Zhang, D. Liu, and S. Yuan. 2018. “Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction.” Sci. Total Environ. 639 (Oct): 1007–1014. https://doi.org/10.1016/j.scitotenv.2018.05.241.
Diao, Z. H., L. Yan, F. X. Dong, W. Qian, Q. H. Deng, L. J. Kong, J. W. Yang, Z. X. Lei, J. J. Du, and W. Chu. 2020. “Degradation of 2,4-dichlorophenol by a novel iron based system and its synergism with Cd(II) immobilization in a contaminated soil.” Chem. Eng. J. 379 (Jan): 122313. https://doi.org/10.1016/j.cej.2019.122313.
Dong, H., C. Zhang, J. Deng, Z. Jiang, L. Zhang, Y. Cheng, K. Hou, L. Tang, and G. Zeng. 2018a. “Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.” Water Res. 135 (May): 1–10. https://doi.org/10.1016/j.watres.2018.02.017.
Dong, H. R., Z. Jiang, J. M. Deng, C. Zhang, Y. J. Cheng, K. J. Hou, L. H. Zhang, L. Tang, and G. M. Zeng. 2018b. “Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal.” Water Res. 129 (Feb): 51–57. https://doi.org/10.1016/j.watres.2017.11.002.
Feng, K., S. Mu, J. Bai, and Q. Li. 2021. “Microwave-enhanced iron–carbon-activated hydrogen peroxide process for the advanced treatment of semi-aerobic aged refuse biofilter effluent.” Environ. Sci. Water Res. Technol. 7 (12): 2321–2334. https://doi.org/10.1039/D1EW00577D.
Filella, M., and A. Turner. 2018. “Observational study unveils the extensive presence of hazardous elements in beached plastics from Lake Geneva.” Front. Environ. Sci. 6 (Feb): 1. https://doi.org/10.3389/fenvs.2018.00001.
Flyhammar, P. 1995. “Analysis of the cadmium flux in Sweden with special emphasis on landfill leachate.” J. Environ. Qual. 24 (4): 612–621. https://doi.org/10.2134/jeq1995.00472425002400040010x.
Fu, H., H. He, R. Zhu, L. Ling, W. Zhang, and Q. Chen. 2021. “Phosphate modified magnetite@ferrihydrite as an magnetic adsorbent for Cd(II) removal from water, soil, and sediment.” Sci. Total Environ. 764 (Apr): 142846. https://doi.org/10.1016/j.scitotenv.2020.142846.
Fu, R., Y. Yang, Z. Xu, X. Zhang, X. Guo, and D. Bi. 2015. “The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).” Chemosphere 138 (Nov): 726–734. https://doi.org/10.1016/j.chemosphere.2015.07.051.
Gao, F., J. Li, C. Sun, L. Zhang, F. Jiang, W. Cao, and L. Zheng. 2019. “Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment.” Mar. Pollut. Bull. 144 (Jul): 61–67. https://doi.org/10.1016/j.marpolbul.2019.04.039.
He, Y. T., J. Wan, and T. Tokunaga. 2008. “Kinetic stability of hematite nanoparticles: The effect of particle sizes.” J. Nanopart. Res. 10 (Feb): 321–332. https://doi.org/10.1007/s11051-007-9255-1.
Horton, A. A., A. Walton, D. J. Spurgeon, E. Lahive, and C. Svendsen. 2017. “Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities.” Sci. Total Environ. 586 (May): 127–141. https://doi.org/10.1016/j.scitotenv.2017.01.190.
Jarup, L. 2003. “Hazards of heavy metal contamination.” Br. Med. Bull. 68 (1): 167–182. https://doi.org/10.1093/bmb/ldg032.
Kalliopi, N. F., and K. K. Hrissi. 2012. “Surface properties of beached plastic pellets.” Mar. Environ. Res. 81 (Oct): 70–77. https://doi.org/10.1016/j.marenvres.2012.08.010.
Lee, G., M. Cui, Y. Yoon, J. Khim, and M. Jang. 2018. “Passive treatment of arsenic and heavy metals contaminated circumneutral mine drainage using granular polyurethane impregnated by coal mine drainage sludge.” J. Cleaner Prod. 186 (Jun): 282–292. https://doi.org/10.1016/j.jclepro.2018.03.156.
Lefevre, E., N. Bossa, M. R. Wiesner, and C. K. Gunsch. 2016. “A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.” Sci. Total Environ. 565 (Sep): 889–901. https://doi.org/10.1016/j.scitotenv.2016.02.003.
Li, L., Z. Li, D. Liu, and K. Song. 2020a. “Evaluation of partial nitrification efficiency as a response to cadmium concentration and microplastic polyvinylchloride abundance during landfill leachate treatment.” Chemosphere 247 (May): 125903. https://doi.org/10.1016/j.chemosphere.2020.125903.
Li, X. Q., and W. X. Zhang. 2007. “Sequestration of metal cations with zerovalent iron nanoparticles—A study with high resolution X-ray photoelectron spectroscopy (HR-XPS).” J. Phys. Chem. C 111 (19): 6939–6946. https://doi.org/10.1021/jp0702189.
Li, X.-Q., D. W. Elliott, and W.-X. Zhang. 2006. “Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects.” Crit. Rev. Solid State Mater. Sci. 31 (4): 111–122. https://doi.org/10.1080/10408430601057611.
Li, Z., X. Hu, L. Qin, and D. Yin. 2020b. “Evaluating the effect of different modified microplastics on the availability of polycyclic aromatic hydrocarbons.” Water Res. 170 (Mar): 115290. https://doi.org/10.1016/j.watres.2019.115290.
Li, Z., L. Wang, J. Meng, X. Liu, J. Xu, F. Wang, and P. Brookes. 2018. “Zeolite-supported nanoscale zero-valent iron: New findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil.” J. Hazard Mater. 344 (Feb): 1–11. https://doi.org/10.1016/j.jhazmat.2017.09.036.
Liang, L., X. Li, Z. Lin, C. Tian, and Y. Guo. 2020. “The removal of Cd by sulfidated nanoscale zero-valent iron: The structural, chemical bonding evolution and the reaction kinetics.” Chem. Eng. J. 382 (Feb): 122933. https://doi.org/10.1016/j.cej.2019.122933.
Lin, J., B. Su, M. Sun, B. Chen, and Z. Chen. 2018. “Biosynthesized iron oxide nanoparticles used for optimized removal of cadmium with response surface methodology.” Sci. Total Environ. 627 (Jun): 314–321. https://doi.org/10.1016/j.scitotenv.2018.01.170.
Ling, L., X. Y. Huang, M. R. Li, and W. X. Zhang. 2017. “Mapping the reactions in a single zero-valent iron nanoparticle.” Environ. Sci. Technol. 51 (24): 14293–14300. https://doi.org/10.1021/acs.est.7b02233.
Ling, L., X. Y. Huang, and W. X. Zhang. 2018. “Enrichment of precious metals from wastewater with core-shell nanoparticles of iron.” Adv. Mater. 30 (17): 1705703. https://doi.org/10.1002/adma.201705703.
Ling, L., and W. X. Zhang. 2017. “Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle.” Environ. Sci. Technol. 51 (4): 2288–2294. https://doi.org/10.1021/acs.est.6b04315.
Liu, A., J. Liu, J. Han, and W. X. Zhang. 2017. “Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides.” J. Hazard Mater. 322 (Jan): 129–135. https://doi.org/10.1016/j.jhazmat.2015.12.070.
Liu, J., R. Li, Y. Yao, and A. Liu. 2019. “Fate and mechanistic insights into the transformation of aged nanoscale zerovalent iron (nZVIA) reacted with Cr(VI): Impact of aging time in oxic water.” ACS Earth Space Chem. 3 (7): 1288–1295. https://doi.org/10.1021/acsearthspacechem.9b00095.
Liu, J., R. Zhu, L. Ma, H. Fu, X. Lin, S. C. Parker, and M. Molinari. 2021. “Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite.” Geoderma 383 (Feb): 114799. https://doi.org/10.1016/j.geoderma.2020.114799.
Liu, K., F. Li, J. Cui, S. Yang, and L. Fang. 2020. “Simultaneous removal of Cd(II) and As(III) by graphene-like biochar-supported zero-valent iron from irrigation waters under aerobic conditions: Synergistic effects and mechanisms.” J. Hazard Mater. 395 (Aug): 122623. https://doi.org/10.1016/j.jhazmat.2020.122623.
Luo, P., F. Wang, S. W. Krasner, C. Fang, S. Chen, and W. Chu. 2020. “Emerging investigator series: Formation of brominated haloacetamides from trihalomethanes during zero-valent iron reduction and subsequent booster chlorination in drinking water distribution.” Environ. Sci. Water Res. Technol. 6 (5): 1244–1255. https://doi.org/10.1039/C9EW00977A.
Luo, Z., J. Zhu, L. Yu, and K. Yin. 2021. “Heavy metal remediation by nano zero-valent iron in the presence of microplastics in groundwater: Inhibition and induced promotion on aging effects.” Environ. Pollut. 287 (Oct): 117628. https://doi.org/10.1016/j.envpol.2021.117628.
Ma, B., W. Xue, C. Hu, H. Liu, J. Qu, and L. Li. 2019. “Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment.” Chem. Eng. J. 359 (Mar): 159–167. https://doi.org/10.1016/j.cej.2018.11.155.
Massos, A., and A. Turner. 2017. “Cadmium, lead and bromine in beached microplastics.” Environ. Pollut. 227 (Aug): 139–145. https://doi.org/10.1016/j.envpol.2017.04.034.
Mintenig, S. M., M. G. J. Loder, S. Primpke, and G. Gerdts. 2019. “Low numbers of microplastics detected in drinking water from ground water sources.” Sci. Total Environ. 648 (Jan): 631–635. https://doi.org/10.1016/j.scitotenv.2018.08.178.
Popuri, S. R., Y. Vijaya, V. M. Boddu, and K. Abburi. 2009. “Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads.” Bioresour. Technol. 100 (1): 194–199. https://doi.org/10.1016/j.biortech.2008.05.041.
Qasim, G. H., S. Lee, G. Lee, W. Lee, Y. Hong, and S. Han. 2018. “Dissolved oxygen and nitrate effects on the reduction and removal of divalent mercury by pumice supported nanoscale zero-valent iron.” Environ. Sci. Water Res. Technol. 4 (10): 1651–1661. https://doi.org/10.1039/C8EW00326B.
Qian, W., J. Y. Liang, W. X. Zhang, S. T. Huang, and Z. H. Diao. 2022. “A porous biochar supported nanoscale zero-valent iron material highly efficient for the simultaneous remediation of cadmium and lead contaminated soil.” J. Environ. Sci. 113 (Mar): 231–241. https://doi.org/10.1016/j.jes.2021.06.014.
Ratpukdi, T., K. Intarasuwan, P. Jutaporn, and E. Khan. 2021. “Interactions between natural organic matter fractions and nanoscale zero-valent iron.” Sci. Total Environ. 796 (Nov): 148954. https://doi.org/10.1016/j.scitotenv.2021.148954.
Rochman, C. M., B. T. Hentschel, and S. J. Teh. 2014. “Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments.” PLoS One 9 (1): e85433. https://doi.org/10.1371/journal.pone.0085433.
Rodriguez-Navarro, C., A. Burgos Cara, K. Elert, C. V. Putnis, and E. Ruiz-Agudo. 2016. “Direct nanoscale imaging reveals the growth of calcite crystals via amorphous nanoparticles.” Cryst. Growth Des. 16 (4): 1850–1860. https://doi.org/10.1021/acs.cgd.5b01180.
Shad, S., M.-F. Belinga-Desaunay-Nault, N. Bashir, and I. Lynch. 2020. “Removal of contaminants from canal water using microwave synthesized zero valent iron nanoparticles.” Environ. Sci. Water Res. Technol. 6 (11): 3057–3065. https://doi.org/10.1039/D0EW00157K.
Sheng, J., H. Fu, W. Wang, W. Zhang, and L. Ling. 2020. “Research progress on the characterization and modification of nanoscale zero-valent iron for applications.” Environ. Chem. 39 (11): 2959–2978. https://doi.org/10.7524/j.issn.0254-6108.2020070803.
Shi, Z., D. Fan, R. L. Johnson, P. G. Tratnyek, J. T. Nurmi, Y. Wu, and K. H. Williams. 2015. “Methods for characterizing the fate and effects of nano zerovalent iron during groundwater remediation.” J. Contam. Hydrol. 181 (Oct): 17–35. https://doi.org/10.1016/j.jconhyd.2015.03.004.
Su, Y., A. S. Adeleye, A. A. Keller, Y. Huang, C. Dai, X. Zhou, and Y. Zhang. 2015. “Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.” Water Res. 74 (May): 47–57. https://doi.org/10.1016/j.watres.2015.02.004.
Tarekegn, M. M., A. M. Hiruy, and A. H. Dekebo. 2021. “Nano zero valent iron (nZVI) particles for the removal of heavy metals (Cd2+, Cu2+ and Pb2+) from aqueous solutions.” RSC Adv. 11 (30): 18539–18551. https://doi.org/10.1039/D1RA01427G.
Turner, A., and L. A. Holmes. 2015. “Adsorption of trace metals by microplastic pellets in fresh water.” Environ. Chem. 12 (5): 600–610. https://doi.org/10.1071/EN14143.
Vasistha, P., and R. Ganguly. 2020. “Water quality assessment of natural lakes and its importance: An overview.” Mater. Today: Proc. 32 (Jan): 544–552. https://doi.org/10.1016/j.matpr.2020.02.092.
Waldschlager, K., M. Born, W. Cowger, A. Gray, and H. Schuttrumpf. 2020. “Settling and rising velocities of environmentally weathered micro- and macroplastic particles.” Environ. Res. 191 (Dec): 110192. https://doi.org/10.1016/j.envres.2020.110192.
Wang, C. B., and W. X. Zhang. 1997. “Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs.” Environ. Sci. Technol. 31 (7): 2154–2156. https://doi.org/10.1021/es970039c.
Wang, J., Z. Tan, J. Peng, Q. Qiu, and M. Li. 2016. “The behaviors of microplastics in the marine environment.” Mar. Environ. Res. 113 (Feb): 7–17. https://doi.org/10.1016/j.marenvres.2015.10.014.
Wang, L., W. M. Wu, N. S. Bolan, D. C. W. Tsang, Y. Li, M. Qin, and D. Hou. 2021. “Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives.” J. Hazard Mater. 401 (Jan): 123415. https://doi.org/10.1016/j.jhazmat.2020.123415.
Wang, Y., Y. Liu, K. Yang, and D. Lin. 2020a. “Reciprocal interference of clay minerals and nanoparticulate zero-valent iron on their interfacial interaction with dissolved organic matter.” Sci. Total Environ. 739 (Oct): 140372. https://doi.org/10.1016/j.scitotenv.2020.140372.
Wang, Y., K. Yang, and D. Lin. 2020b. “Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability.” Environ. Sci. Nano. 7 (6): 1818–1830. https://doi.org/10.1039/D0EN00197J.
Wei, W., Q. S. Huang, J. Sun, J. Y. Wang, S. L. Wu, and B. J. Ni. 2019. “Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A.” Environ. Sci. Technol. 53 (5): 2509–2517. https://doi.org/10.1021/acs.est.8b07069.
Wei, X. T., Q. Liu, H. S. Zhang, J. Y. Liu, R. R. Chen, R. M. Li, Z. S. Li, P. L. Liu, and J. Wang. 2018. “Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.” J. Colloid Interfaces Sci. 511 (Feb): 1–11. https://doi.org/10.1016/j.jcis.2017.09.054.
Wen, X., et al. 2018. “Microplastic pollution in surface sediments of urban water areas in Changsha, China: Abundance, composition, surface textures.” Mar. Pollut. Bull. 136 (Nov): 414–423. https://doi.org/10.1016/j.marpolbul.2018.09.043.
Wu, L. M., L. B. Liao, G. C. Lv, F. X. Qin, Y. J. He, and X. Y. Wang. 2013. “Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.” J. Hazard Mater. 254 (Jun): 277–283. https://doi.org/10.1016/j.jhazmat.2013.03.009.
Xia, X., Y. Hua, X. Huang, L. Ling, and W. Zhang. 2017. “Removal of arsenic and selenium with nanoscale zero-valent iron (nZVI).” Acta Chim. Sin. 75 (6): 594–601. https://doi.org/10.6023/A17030099.
Yang, D., L. Wang, Z. Li, X. Tang, M. He, S. Yang, X. Liu, and J. Xu. 2020. “Simultaneous adsorption of Cd(II) and As(III)by a novel biochar-supported nanoscale zero-valent iron in aqueous systems.” Sci. Total Environ. 708 (Mar): 134823. https://doi.org/10.1016/j.scitotenv.2019.134823.
Yang, W. Q., Q. Zhuo, Q. Chen, and Z. Chen. 2019. “Effect of iron nanoparticles on passivation of cadmium in the pig manure aerobic composting process.” Sci. Total Environ. 690 (Nov): 900–910. https://doi.org/10.1016/j.scitotenv.2019.07.090.
Yu, Z., J. Huang, L. Hu, W. Zhang, and I. M. C. Lo. 2019. “Effects of geochemical conditions, surface modification, and arsenic (As) loadings on as release from as-loaded nano zero-valent iron in simulated groundwater.” Environ. Sci. Water Res. Technol. 5 (1): 28–38. https://doi.org/10.1039/C8EW00757H.
Zhu, L., L. Tong, N. Zhao, J. Li, and Y. Lv. 2019. “Coupling interaction between porous biochar and nano zero valent iron/nano alpha-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.” Chemosphere 219 (Mar): 493–503. https://doi.org/10.1016/j.chemosphere.2018.12.013.
Zhu, S., S.-H. Ho, X. Huang, D. Wang, F. Yang, L. Wang, C. Wang, X. Cao, and F. Ma. 2017. “Magnetic nanoscale zerovalent iron assisted biochar: Interfacial chemical behaviors and heavy metals remediation performance.” ACS Sustainable Chem. Eng. 5 (11): 9673–9682. https://doi.org/10.1021/acssuschemeng.7b00542.
Zou, Y., X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, and X. Wang. 2016. “Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review.” Environ. Sci. Technol. 50 (14): 7290–7304. https://doi.org/10.1021/acs.est.6b01897.

Information & Authors

Information

Published In

Go to Journal of Environmental Engineering
Journal of Environmental Engineering
Volume 149Issue 6June 2023

History

Received: Aug 21, 2022
Accepted: Jan 16, 2023
Published online: Apr 7, 2023
Published in print: Jun 1, 2023
Discussion open until: Sep 7, 2023

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Wenbo Zhu
Graduate Student, State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji Univ., Shanghai 200092, China.
Xin Qiao
Graduate Student, State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji Univ., Shanghai 200092, China.
Full Professor, State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji Univ., Shanghai 200092, China (corresponding author). ORCID: https://orcid.org/0000-0001-7348-4657. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share