Abstract

Construction activities are generating substantial amounts of construction waste due to the rapid increase in economic growth and infrastructure developments. A series of laboratory model tests were conducted to investigate the feasibility of using recycled aggregate as backfills to construct the rammed stone columns. Recycled aggregates and gravel aggregates with the same particle size distributions were used to construct the rammed stone columns. The direct shear test results showed that the recycled aggregate exhibits similar behavior of initial compression but more significant expansion compared to those of the gravel aggregate. The critical bearing capacity of the rammed stone column using recycled aggregate as backfills was 6.2%–6.5% lower than that using the gravel aggregate as backfill, but was 36.1% higher than that of the traditional stone column. The rammed stone column was failed in bulging failure mode with the maximum bulging position of approximately 2d from the column head. The critical bearing capacity of the rammed stone columns could be estimated according to that of the traditional stone column by considering the effects of the tamping energy.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52171273, 52108335), Tianjin Science and Technology Plan Project (20JCJQJC00220), and the Technology Development Program of Tianjin Municipal Transportation Commission (2021-15).

References

Abdullah, C. H., and T. B. Edil. 2007. “Behaviour of geogrid-reinforced load transfer platforms for embankment on rammed aggregate piers.” Geosynth. Int. 14 (3): 141–153. https://doi.org/10.1680/gein.2007.14.3.141.
Afshar, T., M. M. Disfani, A. Arulrajah, G. A. Narsilio, and S. Emam. 2017. “Impact of particle shape on breakage of recycled construction and demolition aggregates.” Powder Technol. 308 (Feb): 1–12. https://doi.org/10.1016/j.powtec.2016.11.043.
Afshar, T., M. M. Disfani, G. A. Narsilio, and A. Arulrajah. 2018. “Post-breakage changes in particle properties using synchrotron tomography.” Powder Technol. 325 (Feb): 530–544. https://doi.org/10.1016/j.powtec.2017.11.039.
Align, H. M., and V. Gumus. 2018. “3D FE analysis on settlement of footing supported with rammed aggregate pier group.” Int. J. Geomech. 18 (8): 04018095. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001189.
Alkhorshid, N. R., G. L. Araujo, E. M. Palmeira, and J. G. Zornberg. 2019. “Large-scale load capacity tests on a geosynthetic encased column.” Geotext. Geomembr. 47 (5): 632–641. https://doi.org/10.1016/j.geotexmem.2019.103458.
Ayothiraman, R., and S. Soumya. 2015. “Model tests on the use of tyre chips as aggregate in stone columns.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 187–193. https://doi.org/10.1680/grim.13.00006.
Baghban, H., A. Arulrajah, G. A. Narsilio, and S. Horpibulsuk. 2022. “Evaluating the effective thermal conductivity of geothermal pavements constructed using demolition wastes by DEM and 3D printing techniques.” Acta Geotech. 17 (5): 1681–1697. https://doi.org/10.1007/s11440-021-01320-8.
Branco, F. C., M. Quinta-Ferreira, and I. Fernandes. 2019. “Characteristics of aggregates used in road construction in Portugal, complying with the requirements of European Conformity (CE marking).” Bull. Eng. Geol. Environ. 78 (2): 803–815. https://doi.org/10.1007/s10064-017-1066-8.
Castro, J., M. Karstunen, and N. Sivasithamparam. 2014. “Influence of stone column installation on settlement reduction.” Comput. Geotech. 59 (Jun): 87–97. https://doi.org/10.1016/j.compgeo.2014.03.003.
Chen, J., J. Han, S. Oztoprak, and X. Yang. 2009. “Behavior of single rammed aggregate piers considering installation effects.” Comput. Geotech. 36 (7): 1191–1199. https://doi.org/10.1016/j.compgeo.2009.05.007.
Demir, S., P. Özener, and M. Kirkit. 2017. “Experimental and numerical investigations of behavior of rammed aggregate piers.” Geotech. Test. J. 40 (3): 411–425. https://doi.org/10.1520/GTJ20150195.
Dheerendra, B. M. R., S. Nayak, and R. Shivashankar. 2013. “A critical review of construction, analysis and behaviour of stone columns.” Geotech. Geol. Eng. 31 (1): 1–22. https://doi.org/10.1007/s10706-012-9555-9.
Fořt, J., and R. Černý. 2020. “Transition to circular economy in the construction industry: Environmental aspects of waste brick recycling scenarios.” Waste Manage. 118 (Dec): 510–520. https://doi.org/10.1016/j.wasman.2020.09.004.
Ghaaowd, I., J. S. McCartney, S. S. Thielmann, M. J. Sanders, and P. J. Fox. 2017. “Shearing behavior of tire-derived aggregate with large particle size. I: Internal and concrete interface direct shear.” J. Geotech. Geoenviron. Eng. 143 (10): 04017078. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001775.
Ghazavi, M., and J. N. Afshar. 2013. “Bearing capacity of geosynthetic encased stone columns.” Geotext. Geomembr. 38 (Jun): 26–36. https://doi.org/10.1016/j.geotexmem.2013.04.003.
Ghorbani, B., E. Yaghoubi, A. Arulrajah, and S. Fragomeni. 2023. “Long-term performance analysis of demolition waste blends in pavement bases using experimental and machine learning techniques.” Int. J. Geomech. 23 (6): 04023058. https://doi.org/10.1061/IJGNAI.GMENG-7291.
Guo, W., X. Wang, Y. Ren, Y. Kang, K. Yu, H. Xu, and C. Yu. 2023. “Experimental study on underwater rammed stone column.” Appl. Ocean. Res. 140 (Nov): 103740. https://doi.org/10.1016/j.apor.2023.103740.
Guo, Y., J. Xie, Z. Fan, V. Markine, D. P. Connolly, and G. Jing. 2022. “Railway ballast material selection and evaluation: A review.” Constr. Build. Mater. 344 (Aug): 128218. https://doi.org/10.1016/j.conbuildmat.2022.128218.
Hajitaheriha, M. M., M. Majidi, F. Kalantary, and A. H. Motlag. 2022. “Sensitivity analysis of a scaled rammed aggregate pier (geopier) bearing capacity.” Indian Geotech. J. 52 (6): 1435–1449. https://doi.org/10.1007/s40098-022-00637-9.
Halabian, A. M., and P. J. Hamsabadi. 2014. “Numerical modeling of the RAP construction process and its effects on RAP behavior.” Int. J. Geomech. 15 (5): 04014085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000429.
Hoang, N. H., T. Ishigaki, R. Kubota, T. K. Tong, T. T. Nguyen, H. G. Nguyen, M. Yamada, and K. Kawamoto. 2020. “Waste generation, composition, and handling in building-related construction and demolition in Hanoi, Vietnam.” Waste Manage. 117 (Nov): 32–41. https://doi.org/10.1016/j.wasman.2020.08.006.
Hong, Y., C. Wu, and Y. Yu. 2016. “Model tests on geotextile-encased granular columns under 1-g and undrained conditions.” Geotext. Geomembr. 44 (1): 13–27. https://doi.org/10.1016/j.geotexmem.2015.06.006.
Huang, Y., J. Wang, M. Ying, J. Ni, and M. Li. 2021. “Effect of particle-size gradation on cyclic shear properties of recycled concrete aggregate.” Constr. Build. Mater. 301 (Sep): 124143. https://doi.org/10.1016/j.conbuildmat.2021.124143.
Indraratna, B., Q. D. Sun, and S. Nimbalkar. 2015. “Observed and predicted behaviour of rail ballast under monotonic loading capturing particle breakage.” Can. Geotech. J. 52 (1): 73–86. https://doi.org/10.1139/cgj-2013-0361.
Jia, M., J. Cheng, B. Liu, and G. Ma. 2021. “Model tests of the influence of ground water level on dynamic compaction.” Bull. Eng. Geol. Environ. 80 (4): 3065–3078. https://doi.org/10.1007/s10064-021-02110-y.
Katz, A., and H. Baum. 2011. “A novel methodology to estimate the evolution of construction waste in construction sites.” Waste Manage. 31 (2): 353–358. https://doi.org/10.1016/j.wasman.2010.01.008.
Kazmi, D., M. Serati, D. J. Williams, S. Q. Olaya, S. Qasim, Y. P. Cheng, and J. A. H. Carraro. 2022. “Kaolin clay reinforced with a granular column containing crushed waste glass or traditional construction sands.” Int. J. Geomech. 22 (4): 04022030. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002322.
Kim, J. 2022. “Influence of quality of recycled aggregates on the mechanical properties of recycled aggregate concretes: An overview.” Constr. Build. Mater. 328 (Apr): 127071. https://doi.org/10.1016/j.conbuildmat.2022.127071.
Koshiro, Y., and K. Ichise. 2014. “Application of entire concrete waste reuse model to produce recycled aggregate class H.” Constr. Build. Mater. 67 (Sep): 308–314. https://doi.org/10.1016/j.conbuildmat.2014.05.072.
Mendoza, A., J. Guaje, C. Enciso, and G. Beltrán. 2022. “Mechanical behavior assessment of tire-reinforced recycled aggregates for low traffic road construction.” Transp. Geotech. 33 (Mar): 100730. https://doi.org/10.1016/j.trgeo.2022.100730.
Miranda, M., J. Fernández-Ruiz, and J. Castro. 2021. “Critical length of encased stone columns.” Geotext. Geomembr. 49 (5): 1312–1323. https://doi.org/10.1016/j.geotexmem.2021.05.003.
Muir, W. D., W. Hu, and D. F. T. Nash. 2000. “Group effects in stone column foundations: Model tests.” Géotechnique 50 (6): 689–698. https://doi.org/10.1680/geot.2000.50.6.689.
Oskooei, P. R., A. Mohammadinia, A. Arulrajah, and S. Horpibulsuk. 2021. “DEM modeling and experimental analysis of the breakage behavior of recycled crushed brick particles.” Transp. Geotech. 30 (Sep): 100586. https://doi.org/10.1016/j.trgeo.2021.100586.
Ou Yang, F., J. J. Zhang, W. M. Liao, J. W. Han, Y. L. Tang, and J. B. Bi. 2017. “Characteristics of the stress and deformation of geosynthetic-encased stone column composite ground based on large-scale model tests.” Geosynth. Int. 24 (3): 1–13. https://doi.org/10.1680/jgein.16.00028.
Pandey, B. K., S. Rajesh, and S. Chandra. 2021. “Performance enhancement of encased stone column with conductive natural geotextile under k0 stress condition.” Geotext. Geomembr. 49 (5): 1095–1106. https://doi.org/10.1016/j.geotexmem.2021.03.004.
Pham, H. T. V., and D. J. White. 2007. “Support mechanisms of rammed aggregate piers. II: Numerical analyses.” J. Geotech. Geoenviron. Eng. 133 (12): 1512–1521. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1512).
Rahardjo, H., V. A. Santoso, E. C. Leong, Y. S. Ng, C. P. H. Tam, and A. Satyanaga. 2013. “Use of recycled crushed concrete and Secudrain in capillary barriers for slope stabilization.” Can. Geotech. J. 50 (6): 662–673. https://doi.org/10.1139/cgj-2012-0035.
Rahman, M. A., M. Imteaz, A. Arulrajah, and M. M. Disfani. 2014. “Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials.” J. Cleaner Prod. 66 (Mar): 75–84. https://doi.org/10.1016/j.jclepro.2013.11.005.
Rao, A., K. N. Jha, and S. Misra. 2007. “Use of aggregates from recycled construction and demolition waste in concrete.” Resour. Conserv. Recycl. 50 (1): 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010.
Rathod, D., M. S. Abid, and S. K. Vanapalli. 2021. “Performance of polypropylene textile encased stone columns.” Geotext. Geomembr. 49 (1): 222–242. https://doi.org/10.1016/j.geotexmem.2020.10.025.
Shahu, J. T., S. Kumar, and R. Bhowmik. 2023. “Ground improvement for transportation infrastructure: Experimental investigations on cyclic behavior of a group of granular columns.” Int. J. Geomech. 23 (3): 04022309. https://doi.org/10.1061/IJGNAI.GMENG-7880.
Shahverdi, M., and A. Hadad. 2021. “Evaluation of recycled materials as aggregate of end bearing and floating stone columns: A comparative study.” J. Rehabil. Civ. Eng. 3 (9): 61–77. https://doi.org/10.22075/jrce.2021.21286.1443.
Shariatmadari, N., S. M. Zeinali, H. Mirzaeifar, and M. Keramati. 2018. “Evaluating the effect of using shredded waste tire in the stone columns as an improvement technique.” Constr. Build. Mater. 176 (Jul): 700–709. https://doi.org/10.1016/j.conbuildmat.2018.05.090.
Soleimanbeigi, A., and T. B. Edil. 2015. “Compressibility of recycled materials for use as highway embankment fill.” J. Geotech. Geoenviron. Eng. 141 (5): 04015011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001285.
Suleiman, M. T., and D. J. White. 2006. “Load transfer in rammed aggregate piers.” Int. J. Geomech. 6 (6): 389–398. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:6(389).
Suluguru, A. K., M. Jayatheja, A. Kar, A. GuhaRay, S. R. Surana, and N. James. 2017. “Experimental studies on the microstructural, physical and chemical characteristics of building derived materials to assess their suitability in ground improvement.” Constr. Build. Mater. 156 (Dec): 921–932. https://doi.org/10.1016/j.conbuildmat.2017.09.058.
Tan, X., L. Feng, Z. Hu, and M. Zhao. 2021. “Failure modes and ultimate bearing capacity of the isolated stone column in soft soil.” Bull. Eng. Geol. Environ. 80 (3): 2629–2642. https://doi.org/10.1007/s10064-020-02066-5.
Thum, T. S., A. Yerro, A. Saade, E. Ye, K. J. Wissmann, and R. A. Green. 2021. “Numerical modelling of rammed aggregate piers (RAP) in liquefiable soil.” Soil. Dyn. Earthquake Eng. 153 (Feb): 107088. https://doi.org/10.1016/j.soildyn.2021.107088.
Trautmann, C. H., and F. H. Kulhaey. 1988. “Uplift load-displacement behavior of spread foundations.” J. Geotech. Geoenviron. Eng. 114 (2): 168–184. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:2(168).
Vieira, G. L., J. Z. Schiavon, P. M. Borges, S. R. D. Silva, and J. J. D. O. Andrade. 2020. “Influence of recycled aggregate replacement and fly ash content in performance of pervious concrete mixtures.” J. Cleaner Prod. 271 (Oct): 122665. https://doi.org/10.1016/j.jclepro.2020.122665.
Wang, X., W. Guo, Y. Ren, H. Xu, and Y. Kang. 2024. “Installation behavior of an underwater rammed stone column in clay.” Acta Geotech. 19: 3213–3228. https://doi.org/10.1007/s11440-023-02131-9.
White, D. J., H. T. V. Pham, and K. K. Hoevelkamp. 2007. “Support mechanisms of rammed aggregate piers. I: Experimental results.” J. Geotech. Geoenviron. Eng. 133 (12): 1503–1511. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:12(1503).
Yaghoubi, E., M. M. Disfani, A. Arulrajah, and J. Kodikara. 2017. “Impact of compaction method on mechanical characteristics of unbound granular recycled materials.” Road Mater. Pavement Des. 19 (4): 912–934. https://doi.org/10.1080/14680629.2017.1283354.
Yeheyis, M., K. Hewage, M. S. Alam, C. Eskicioglu, and R. Sadiq. 2013. “An overview of construction and demolition waste management in Canada: A lifecycle analysis approach to sustainability.” Clean Technol. Environ. Policy 15 (1): 81–91. https://doi.org/10.1007/s10098-012-0481-6.
Yoo, C., and Q. Abbas. 2019. “Performance of geosynthetic-encased stone column-improved soft clay under vertical cyclic loading.” Soils Found. 59 (6): 1875–1890. https://doi.org/10.1016/j.sandf.2019.08.006.
Zhou, X., Y. Chen, C. Liu, and F. Wu. 2022. “Preparation of artificial lightweight aggregate using alkali-activated incinerator bottom ash from urban sewage sludge.” Constr. Build. Mater. 341 (Jul): 127844. https://doi.org/10.1016/j.conbuildmat.2022.127844.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 12December 2024

History

Received: Dec 6, 2023
Accepted: Apr 29, 2024
Published online: Sep 20, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 20, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Ph.D. Candidate, School of Civil Engineering, Tianjin Univ., 135 Yaguan Rd., Jinnan District, Tianjin 300072, China. Email: [email protected]
Shuangbao Li [email protected]
Shandong Electric Power Engineering Consulting Institute Corp. Ltd., 106 Minziqian Rd., Jinan, Shandong 250014, China. Email: [email protected]
Shouzhong Feng, Ph.D. [email protected]
Guangyi Yinlu Transportation Design Institute Corp. Ltd., 31 Guanghui Rd., Chuzhou, Anhui 239000, China. Email: [email protected]
Professor, School of Civil Engineering, Tianjin Univ., 135 Yaguan Rd., Jinnan District, Tianjin 300072, China (corresponding author). ORCID: https://orcid.org/0000-0002-2519-6818. Email: [email protected]
Yuxiao Ren, Ph.D. [email protected]
Postdoctor, School of Civil Engineering, Tianjin Univ., 135 Yaguan Rd., Jinnan District, Tianjin 300072, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share