Technical Papers
Sep 26, 2024

Influence of Iron-Containing Components on the Curing and Hardening Properties of Magnesium Oxychloride Binders

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 12

Abstract

The article presents the results of studies of composite magnesium oxychloride iron-containing binders. The research is aimed at solving the problem of increasing operational durability and expanding the scope of application of magnesium materials. The purpose of the work is to study hydrate formation, hardening, and properties of composite magnesium binders with varying contents of iron compounds. Compositions of caustic magnesite (magnesium oxide) with iron oxides, with ferruginous minerals (andradite and pyrite), and with waste from the enrichment of magnetite ores have been studied. The scientific novelty of the research results lies in the identification of patterns of hydration of magnesium oxychloride binder with a high content (at least 50%) of iron compounds. The mutual influence of magnesium and ferruginous components during hydration and formation of the binder structure has been established. Schemes for the formation of hydrates involving andradite and pyrite have been proposed. The qualitative composition of the main hydrates of composite binders was determined by diffractometric and differential thermal analysis methods. The microstructure of the materials was studied by electron microscopy. The structure of magnesium paste made from a composite binder is formed by crystals of magnesium pentahydroxychloride and amorphous gel-like iron-containing hydrates. In composite binders containing iron oxide or andradite, magnesium hydroxychlorocarbonate is formed. The dependence of the stability of magnesium hydroxychlorocarbonate on the content of magnesium oxide and chloride was revealed. The patterns of the influence of iron compounds on the hydration and hardening of magnesium oxide form the basis for the development of a composite binder containing 50%–70% magnetite ore enrichment waste. A composite binder containing a ferrous man-made component is not inferior in strength properties to caustic magnesite and is characterized by high structural resistance to long-term operational impacts.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP 23487805).

References

Ba, M., T. Xue, Z. He, H. Wang, and J. Liu. 2019. “Carbonation of magnesium oxysulfate cement and its influence on mechanical performance.” Constr. Build. Mater. 223 (Oct): 1030–1037. https://doi.org/10.1016/j.conbuildmat.2019.07.341.
Barbieri, V., M. Lassinantti Gualtieri, T. Manfredini, and C. Siligardi. 2021. “Lightweight concretes based on wheat husk and hemp hurd as bio-aggregates and modified magnesium oxysulfate binder: Microstructure and technological performances.” Constr. Build. Mater. 284 (May): 122751. https://doi.org/10.1016/j.conbuildmat.2021.122751.
Bilinski, H., B. Matkovic, C. Mazuranic, and T. B. Žunic. 1984. “The formation of magnesium oxychloride phases in the systems MgO-MgCl2-H2O and NaOH-MgCl2-H2O.” J. Am. Ceram. Soc. 67 (4): 266–269. https://doi.org/10.1111/j.1151-2916.1984.tb18844.x.
Chaudhury, R., U. Sharma, P. C. Thapliyal, and L. P. Singh. 2023. “Low-CO2 emission strategies to achieve net zero target in cement sector.” J. Cleaner Prod. 417 (Jul): 137466. https://doi.org/10.1016/j.jclepro.2023.137466.
Danish, A., M. A. Mosaberpanah, M. U. Salim, R. Fediuk, M. F. Rashid, and R. M. Waqas. 2021. “Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges.” J. Build. Eng. 44 (Dec): 102600. https://doi.org/10.1016/j.jobe.2021.102600.
de Oliveira, L. B., A. R. G. de Azevedo, M. T. Marvila, E. C. Pereira, R. Fediuk, and C. M. F. Vieira. 2022. “Durability of geopolymers with industrial waste.” Case Stud. Constr. Mater. 16 (Jun): e00839. https://doi.org/10.1016/j.cscm.2021.e00839.
Du, H., J. Li, W. Ni, C. Hou, and W. Liu. 2022. “The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts.” J. Mater. Res. Technol. 17 (Mar): 1211–1220. https://doi.org/10.1016/j.jmrt.2022.01.070.
El-Feky, M. S., A. Mohsen, A. Maher El-Tair, and M. Kohail. 2022. “Microstructural investigation for micro - nano-silica engineered magnesium oxychloride cement.” Constr. Build. Mater. 342 (Aug): 127976. https://doi.org/10.1016/j.conbuildmat.2022.127976.
Erdman, S. V., K. M. Gapparova, T. M. Khudyakova, and A. V. Tomshina. 2014. “Magnesia binder preparation from local natural and technogenic raw materials.” Procedia Chem. 10 (Jan): 310–313. https://doi.org/10.1016/j.proche.2014.10.052.
Fediuk, R., A. Smoliakov, and N. Stoyushko. 2016. “Increase in composite binder activity.” IOP Conf. Ser. Mater. Sci. Eng. 156 (1): 012042. https://doi.org/10.1088/1757-899X/156/1/012042.
Fediuk, R. S., V. S. Lesovik, Y. L. Liseitsev, R. A. Timokhin, A. V. Bituyev, M. Y. Zaiakhanov, and A. V. Mochalov. 2019. “Composite binders for concretes with improved shock resistance.” Mag. Civ. Eng. 85 (1): 28–38. https://doi.org/10.17213/0321-2653-2018-4-85-91.
Fediuk, R. S., V. S. Lesovik, A. V. Mochalov, K. A. Otsokov, I. V. Lashina, and R. A. Timokhin. 2018. “Composite binders for concrete of protective structures.” Mag. Civ. Eng. 6 (82): 208–218. https://doi.org/10.18720/MCE.82.19.
Gao, Y., F. Wang, P. Liu, W. Zhang, and L. Yang. 2019. “Superhydrophobic behavior of magnesium oxychloride cement surface with a dual-level fractal structure.” Constr. Build. Mater. 210 (Jun): 132–139. https://doi.org/10.1016/j.conbuildmat.2019.03.158.
Grünhäuser Soares, E., and J. Castro-Gomes. 2021. “Carbonation curing influencing factors of carbonated reactive magnesia cements (CRMC)–A review.” J. Cleaner Prod. 305 (Jul): 127210. https://doi.org/10.1016/j.jclepro.2021.127210.
Gu, K., B. Chen, H. Yu, N. Zhang, W. Bi, and Y. Guan. 2021. “Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum.” Cem. Concr. Compos. 121 (Aug): 104091. https://doi.org/10.1016/j.cemconcomp.2021.104091.
Guan, B., W. Di, J. Wu, F. Wang, S. Zhang, and Z. He. 2023. “Influence of mineral admixtures on the properties of magnesium oxychloride cement lean concrete.” Adv. Mater. Sci. Eng. 2023 (1): 2817469. https://doi.org/10.1155/2023/2817469.
Guan, H., and H. Wu. 2011. “Thermodynamics of MgO-MgCl2-H2O system.” In Proc., 2011 Int. Conf. on Electric Technology and Civil Engineering, 5666–5669. New York: IEEE.
Hao, Y., and Y. Li. 2021. “Study on preparation and properties of modified magnesium oxychloride cement foam concrete.” Constr. Build. Mater. 282 (May): 122708. https://doi.org/10.1016/j.conbuildmat.2021.122708.
Harmuth, H., H. Neuherz, and S. Schrempf. 1998. “Investigation of a magnesia binder in the system MgO-Mg(CH3COO)2-H2O.” Cem. Concr. Res. 28 (6): 811–814. https://doi.org/10.1016/S0008-8846(98)00047-7.
He, P., C. S. Poon, and D. C. W. Tsang. 2018. “Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement.” Cem. Concr. Compos. 86 (Feb): 98–109. https://doi.org/10.1016/j.cemconcomp.2017.11.010.
Hu, C., B. Xu, H. Ma, B. Chen, and Z. Li. 2016. “Micromechanical investigation of magnesium oxychloride cement paste.” Constr. Build. Mater. 105 (Feb): 496–502. https://doi.org/10.1016/j.conbuildmat.2015.12.182.
Huang, Q., W. Zheng, J. Dong, J. Wen, C. Chang, and X. Xiao. 2022. “Influences of different bischofite on the properties of magnesium oxychloride cement.” J. Build. Eng. 57 (Oct): 104923. https://doi.org/10.1016/j.jobe.2022.104923.
Huang, X., S. Wang, Y. Wu, J. Wang, and Y. Zuo. 2021. “Preparation and characterization of high-strength and water-resistant waterborne epoxy resin/magnesium oxychloride composite based on cross-linked network structure.” Constr. Build. Mater. 285 (May): 122902. https://doi.org/10.1016/j.conbuildmat.2021.122902.
Jiříčková, A., M. Lojka, A.-M. Lauermannová, F. Antončík, D. Sedmidubský, M. Pavlíková, M. Záleská, Z. Pavlík, and O. Jankovský. 2020. “Synthesis, structure, and thermal stability of magnesium oxychloride 5Mg(OH)2·MgCl2·8H2O.” Appl. Sci. 10 (5): 1683. https://doi.org/10.3390/app10051683.
Kandeel, A. M., M. S. El-Mahllawy, H. A. Hassan, W. H. Sufe, and S. R. Zeedan. 2012. “Effect of type of mixing water and sand on the physico–mechanical properties of magnesia cement masonry units.” HBRC J. 8 (1): 8–13. https://doi.org/10.1016/j.hbrcj.2012.08.002.
Kashapov, R. N., N. F. Kashapov, L. N. Kashapov, and V. Y. Chebakova. 2022. “Study of the plasma-electrolyte process for producing titanium oxide nanoparticles.” Constr. Mater. Prod. 5 (5): 70–79. https://doi.org/10.58224/2618-7183-2022-5-5-70-79.
Khalil, A., X. Wang, and K. Celik. 2020. “3D printable magnesium oxide concrete: Towards sustainable modern architecture.” Addit. Manuf. 33 (May): 101145. https://doi.org/10.1016/j.addma.2020.101145.
Khan, R. I., S. Siddique, and W. Ashraf. 2022. “Effects of magnesia in semi-hydraulic and non-hydraulic calcium silicate binders during carbonation curing.” Constr. Build. Mater. 338 (Jul): 127628. https://doi.org/10.1016/j.conbuildmat.2022.127628.
Kharun, M., S. Klyuev, D. Koroteev, P. C. Chiadighikaobi, R. Fediuk, A. Olisov, N. Vatin, and N. Alfimova. 2020. “Heat treatment of basalt fiber reinforced expanded clay concrete with increased strength for cast-in-situ construction.” Fibers 8 (11): 67. https://doi.org/10.3390/fib8110067.
Klimenko, V. G., A. N. Volodchenko, and R. V. Sidelnikov. 2021. “Lead oxides as fillers of composite materials for protection against ionizing radiation based on building gypsum.” In Proc., Int. Conf. Industrial and Civil Construction, 203–209. Cham, Switzerland: Springer.
Lauermannová, A.-M., O. Jankovský, D. Sedmidubský, M. Lojka, M. Pavlíková, A. Pivák, M. Záleská, and Z. Pavlík. 2023. “Case study on MOC composites enriched by foamed glass and ground glass waste: Experimental assessment of material properties and performance.” Case Stud. Constr. Mater. 18 (Jul): e01836. https://doi.org/10.1016/j.cscm.2023.e01836.
Lauermannová, A.-M., M. Lojka, O. Jankovský, I. Faltysová, M. Pavlíková, A. Pivák, M. Záleská, and Z. Pavlík. 2021a. “High-performance magnesium oxychloride composites with silica sand and diatomite.” J. Mater. Res. Technol. 11 (Mar): 957–969. https://doi.org/10.1016/j.jmrt.2021.01.028.
Lauermannová, A.-M., M. Lojka, J. Sklenka, M. Záleská, M. Pavlíková, A. Pivák, Z. Pavlík, and O. Jankovský. 2021b. “Magnesium oxychloride-graphene composites: Towards high strength and water resistant materials for construction industry.” FlatChem 29 (Sep): 100284. https://doi.org/10.1016/j.flatc.2021.100284.
Li, Y., Z. Li, H. Pei, and H. Yu. 2016. “The influence of FeSO4 and KH2PO4 on the performance of magnesium oxychloride cement.” Constr. Build. Mater. 102 (Jan): 233–238. https://doi.org/10.1016/j.conbuildmat.2015.10.186.
Li, Z., and C. K. Chau. 2007. “Influence of molar ratios on properties of magnesium oxychloride cement.” Cem. Concr. Res. 37 (6): 866–870. https://doi.org/10.1016/j.cemconres.2007.03.015.
Li, Z., J. Qian, J. Qin, Y. Hua, Y. Yue, and H. Tang. 2023. “Cementitious and hardening properties of magnesia (MgO) under ambient curing conditions.” Cem. Concr. Res. 170 (Aug): 107184. https://doi.org/10.1016/j.cemconres.2023.107184.
Liu, Z., S. Wang, J. Huang, Z. Wei, B. Guan, and J. Fang. 2015. “Experimental investigation on the properties and microstructure of magnesium oxychloride cement prepared with caustic magnesite and dolomite.” Constr. Build. Mater. 85 (Jun): 247–255. https://doi.org/10.1016/j.conbuildmat.2015.01.056.
Lojka, M., A.-M. Lauermannová, D. Sedmidubský, M. Pavlíková, M. Záleská, Z. Pavlík, A. Pivák, and O. Jankovský. 2021. “Magnesium oxychloride cement composites with MWCNT for the construction applications.” Materials 14 (3): 484. https://doi.org/10.3390/ma14030484.
Ma, C., G. Chen, L. Cao, H. Zhou, and W. Ren. 2022. “Effects and mechanisms of waste gypsum influencing the mechanical properties and durability of magnesium oxychloride cement.” J. Cleaner Prod. 339 (Mar): 130679. https://doi.org/10.1016/j.jclepro.2022.130679.
Makul, N., R. Fediuk, M. Amran, A. M. Zeyad, S. Klyuev, I. Chulkova, T. Ozbakkaloglu, N. Vatin, M. Karelina, and A. Azevedo. 2021. “Design strategy for recycled aggregate concrete: A review of status and future perspectives.” Crystals 11 (6): 695. https://doi.org/10.3390/cryst11060695.
Miryuk, O. 2022. “Magnesia composites formation as a result of furniture production wood waste processing.” Environ. Clim. Technol. 26 (1): 836–847. https://doi.org/10.2478/rtuect-2022-0063.
Miryuk, O., R. Fediuk, and M. Amran. 2022. “Porous fly ash/aluminosilicate microspheres-based composites containing lightweight granules using liquid glass as binder.” Polymers 14 (17): 3461. https://doi.org/10.3390/polym14173461.
Miryuk, O., and T. Grabovetsv. 2023. “Magnesia composite materials with porous aggregate.” AIP Conf. Proc. 2701 (1): 020030. https://doi.org/10.1063/5.0121029.
Miryuk, O. A. 2021. “Granular magnesia compositions.” Kompleks. Ispol′zovanie Miner. syr′â/Complex Use Miner. Resour. Shikisattardy Keshendi Paid. 316 (1): 32–39. https://doi.org/10.31643/2021/6445.04.
Mukhametrakhimov, R. K. 2022. “Investigation of plasticizing additives based on polycarboxilate esters on the properties of concretes formed by 3D printing.” Constr. Mater. Prod. 5 (5): 42–58. https://doi.org/10.58224/2618-7183-2022-5-5-42-58.
Nie, Y., J. Lu, Z. Liu, D. Meng, Z. He, and J. Shi. 2022. “Mechanical, water resistance and environmental benefits of magnesium oxychloride cement incorporating rice husk ash.” Sci. Total Environ. 849 (Nov): 157871. https://doi.org/10.1016/j.scitotenv.2022.157871.
Osio-Norgaard, J., A. C. Hayes, and G. L. Whiting. 2021. “Sintering of 3D printable simulated lunar regolith magnesium oxychloride cements.” Acta Astronaut. 183 (Jun): 227–232. https://doi.org/10.1016/j.actaastro.2021.03.016.
Pavlíková, M., A. Pivák, M. Záleská, A.-M. Lauermannová, F. Antončík, M. Lojka, O. Jankovský, and Z. Pavlík. 2022. “Assessment of wood chips ash as efficient admixture in foamed glass-MOC composites.” J. Mater. Res. Technol. 19 (Jul): 2287–2300. https://doi.org/10.1016/j.jmrt.2022.06.012.
Pepin, S. 2018. “Using RESRAD-BUILD to assess the external dose from the natural radioactivity of building materials.” Constr. Build. Mater. 168 (Apr): 1003–1007. https://doi.org/10.1016/j.conbuildmat.2018.02.015.
Qu, Z. Y., F. Wang, P. Liu, Q. L. Yu, and H. J. H. Brouwers. 2020. “Super-hydrophobic magnesium oxychloride cement (MOC): From structural control to self-cleaning property evaluation.” Mater. Struct. 53 (2): 30. https://doi.org/10.1617/s11527-020-01462-3.
Schroeyers, W., Z. Sas, G. Bator, R. Trevisi, C. Nuccetelli, F. Leonardi, S. Schreurs, and T. Kovacs. 2018. “The NORM4Building database, a tool for radiological assessment when using by-products in building materials.” Constr. Build. Mater. 159 (Jan): 755–767. https://doi.org/10.1016/j.conbuildmat.2017.11.037.
Sheng, G., L. Zheng, P. Li, B. Sun, X. Li, and Y. Zuo. 2022. “The water resistance and mechanism of FeSO4 enhancing bamboo scraps/magnesium oxychloride cement composite.” Constr. Build. Mater. 317 (Jan): 125942. https://doi.org/10.1016/j.conbuildmat.2021.125942.
Singh, A., R. Kumar, and P. Goel. 2021. “Factors influencing strength of magnesium oxychloride cement.” Constr. Build. Mater. 303 (Oct): 124571. https://doi.org/10.1016/j.conbuildmat.2021.124571.
Tan, Y., C. Wu, H. Yu, Y. Li, and J. Wen. 2021. “Review of reactive magnesia-based cementitious materials: Current developments and potential applicability.” J. Build. Eng. 40 (Aug): 102342. https://doi.org/10.1016/j.jobe.2021.102342.
Tang, S., C. Wei, R. Cai, J. Huang, E. Chen, and J. Yuan. 2020a. “In situ monitoring of pore structure of magnesium oxysulfate cement paste: Effect of MgSO4/H2O ratio.” J. Ind. Eng. Chem. 83 (Mar): 387–400. https://doi.org/10.1016/j.jiec.2019.12.012.
Tang, X., L. Guo, C. Chen, Q. Liu, T. Li, and Y. Zhu. 2014. “The analysis of magnesium oxide hydration in three-phase reaction system.” J. Solid State Chem. 213 (May): 32–37. https://doi.org/10.1016/j.jssc.2014.01.036.
Tang, X.-J., Z.-Y. Du, Y.-M. Zhu, P.-F. Liu, X.-Y. Li, X.-L. Xu, Y.-Z. Zhao, and H.-B. Kuang. 2020b. “Correlation between microstructure and dissolution property of magnesium hydroxide synthesized via magnesia hydroxylation: Effect of hydration agents.” J. Cleaner Prod. 249 (Mar): 119371. https://doi.org/10.1016/j.jclepro.2019.119371.
Temiz, H., and E. Tandirci. 2023. “Investigation of mechanical and insulation properties of Sorel cement binding light concrete.” Constr. Build. Mater. 379 (May): 131270. https://doi.org/10.1016/j.conbuildmat.2023.131270.
Urwongse, L., and C. A. Sorrell. 1980. “The system MgO-MgCl2-H2O at 23°C.” J. Am. Ceram. Soc. 63 (9–10): 501–504. https://doi.org/10.1111/j.1151-2916.1980.tb10752.x.
Ustinova, Y. V., and T. P. Nikiforova. 2015. “Effect of various additives on the mechanical properties of magnesia binder based materials.” Procedia Eng. 111 (Jan): 807–814. https://doi.org/10.1016/j.proeng.2015.07.150.
Walling, S. A., and J. L. Provis. 2016. “Magnesia-based cements: A journey of 150 years, and cements for the future?” Chem. Rev. 116 (7): 4170–4204. https://doi.org/10.1021/acs.chemrev.5b00463.
Wang, C., P. Zhang, J. Guo, H. Zhang, and T. Wang. 2022. “Effect of municipal solid waste incineration ash on microstructure and hydration mechanism of geopolymer composites.” Buildings 12 (6): 723. https://doi.org/10.3390/buildings12060723.
Wang, Y., L. Wei, J. Yu, and K. Yu. 2019. “Mechanical properties of high ductile magnesium oxychloride cement-based composites after water soaking.” Cem. Concr. Compos. 97 (Mar): 248–258. https://doi.org/10.1016/j.cemconcomp.2018.12.028.
Wei, L., Y. Wang, J. Yu, J. Xiao, and S. Xu. 2018. “Feasibility study of strain hardening magnesium oxychloride cement-based composites.” Constr. Build. Mater. 165 (Mar): 750–760. https://doi.org/10.1016/j.conbuildmat.2018.01.041.
Wu, J., B. Guan, H. Chen, H. Tian, J. Liu, and R. Xiong. 2020. “Effects of polycarboxylate superplasticiser on the early hydration properties of magnesium oxychloride cement.” Constr. Build. Mater. 259 (Oct): 119862. https://doi.org/10.1016/j.conbuildmat.2020.119862.
Xu, B., H. Ma, C. Hu, S. Yang, and Z. Li. 2016. “Influence of curing regimes on mechanical properties of magnesium oxychloride cement-based composites.” Constr. Build. Mater. 102 (Jan): 613–619. https://doi.org/10.1016/j.conbuildmat.2015.10.205.
Xu, M., X. Chen, and L. Han. 2023. “Effect of tartaric acid on the early hydration process and water resistance of magnesium oxychloride cement.” J. Build. Eng. 66 (May): 105838. https://doi.org/10.1016/j.jobe.2023.105838.
Yang, J., H. Zhang, T. Yu, Y. Zheng, and K. Sun. 2022. “Study on the modification mechanism of modifiers on the properties of sawdust-magnesium oxychloride cement composite.” Constr. Build. Mater. 344 (Aug): 128172. https://doi.org/10.1016/j.conbuildmat.2022.128172.
Yu, K., Y. Guo, Y. X. Zhang, and K. Soe. 2020. “Magnesium oxychloride cement-based strain-hardening cementitious composite: Mechanical property and water resistance.” Constr. Build. Mater. 261 (Nov): 119970. https://doi.org/10.1016/j.conbuildmat.2020.119970.
Zakrevskaya, L. V., A. A. Gavrilenko, I. R. Kapush, and P. A. Lyubin. 2022. “Creating groung concrete and strengthening substrates using mining waste.” Constr. Mater. Prod. 5 (3): 35–44. https://doi.org/10.58224/2618-7183-2022-5-3-35-44.
Zhang, N., H. Yu, W. Gong, T. Liu, N. Wang, Y. Tan, and C. Wu. 2020. “Effects of low- and high-calcium fly ash on the water resistance of magnesium oxysulfate cement.” Constr. Build. Mater. 230 (Jan): 116951. https://doi.org/10.1016/j.conbuildmat.2019.116951.
Zhang, X., S. Ge, H. Wang, and R. Chen. 2017. “Effect of 5-phase seed crystal on the mechanical properties and microstructure of magnesium oxychloride cement.” Constr. Build. Mater. 150 (Sep): 409–417. https://doi.org/10.1016/j.conbuildmat.2017.05.211.
Zhao, J., J. Xu, C. Cui, C. Yu, J. Chang, Z. Hu, and W. Bi. 2020. “Stability and phase transition of 5·1·7 phase in alkaline solutions.” Constr. Build. Mater. 258 (Oct): 119683. https://doi.org/10.1016/j.conbuildmat.2020.119683.
Zimich, V. 2017. “Effect of ferrous additives on magnesia stone hydration.” IOP Conf. Ser. Mater. Sci. Eng. 262 (1): 012001. https://doi.org/10.1088/1757-899X/262/1/012001.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 12December 2024

History

Received: Oct 9, 2023
Accepted: May 2, 2024
Published online: Sep 26, 2024
Published in print: Dec 1, 2024
Discussion open until: Feb 26, 2025

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Olga Miryuk, Ph.D.
Head of Department, Dept. of Construction and Building Materials Science, Rudny Industrial Univ., 50 let Oktyabrya St. 38, Kostanay Region, Rudny 111500, Kazakhstan.
Yury Liseitsev, Ph.D. [email protected]
Lecturer, Sholom-Aleichem Priamursky State Univ., Birobidzhan 679015, Russia (corresponding author). Email: [email protected]
Professor, Polytechnic Institute, Far Eastern Federal Univ., Vladivostok 690922, Russia. ORCID: https://orcid.org/0000-0002-2279-1240

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share