Technical Papers
Mar 25, 2024

Experimental Assessment of Compressive and Shear Behavior of Adobe Masonry

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 6

Abstract

This paper presents the results of experimental testing of adobe masonry assemblages to study their compressive and shear behaviors. These behaviors were studied using masonry prisms and triplets, respectively. Adobe mortar specimens were also tested in compression and tension. Mortar cylinders provided higher compressive strength as compared to cubes. The cube compressive strength was, however, higher than that reported in the literature. Similarly, the elastic modulus of mortar was also higher as compared to that reported by other researchers in different parts of the world. No effects of the height/thickness ratio of the compression prisms were found on the adobe masonry compressive strength. The initial shear strength of the adobe masonry was smaller as compared to that reported in the existing literature. Analytical models for predicting compressive and shear strengths of the adobe masonry have been suggested which may be employed for the structural design of adobe masonry structures.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors wish to acknowledge the financial support provided by the International Organization for Migration (IOM) for this project. Help from all the laboratory technical staff members is also acknowledged.

References

Adorni, E., E. Coïsson, and D. Ferretti. 2013. “In situ characterization of archaeological adobe bricks.” Constr. Build. Mater. 40 (Mar): 1–9. https://doi.org/10.1016/j.conbuildmat.2012.11.004.
Ahmadizadeh, M., and H. Shakib. 2004. “On the December 26, 2003, Southeastern Iran Earthquake in Bam region.” Eng. Struct. 26 (8): 1055–1070. https://doi.org/10.1016/j.engstruct.2004.03.006.
Alecci, V., M. Fagone, T. Rotunno, and M. De Stefano. 2013. “Shear strength of brick masonry walls assembled with different types of mortar.” Constr. Build. Mater. 40 (Mar): 1038–1045. https://doi.org/10.1016/j.conbuildmat.2012.11.107.
Angiolilli, M., and A. Gregori. 2020. “Triplet test on rubble stone masonry: Numerical assessment of the shear mechanical parameters.” Buildings 10 (3): 49. https://doi.org/10.3390/buildings10030049.
ASTM. 2002. Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192/C192M-02. West Conshohocken, PA: ASTM.
ASTM. 2003. Standard test method for compressive strength of cylindrical concrete specimens. ASTM C39/C39M-03. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM C496/C496M-11. West Conshohocken, PA: ASTM.
ASTM. 2014. Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM C469/C469M-14. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-17. West Conshohocken, PA: ASTM.
ASTM. 2021a. Standard test method for compressive strength of masonry prisms. ASTM C1314. West Conshohocken, PA: ASTM.
ASTM. 2021b. Standard test method for diagonal tension (shear) in masonry assemblages. ASTM E519/E519M-21. West Conshohocken, PA: ASTM.
Balkis, A. P. 2017. “The effects of waste marble dust and polypropylene fiber contents on mechanical properties of gypsum stabilized earthen.” Constr. Build. Mater. 134 (Mar): 556–562. https://doi.org/10.1016/j.conbuildmat.2016.12.172.
Binici, H., O. Aksogan, and T. Shah. 2005. “Investigation of fibre reinforced mud brick as a building material.” Constr. Build. Mater. 19 (4): 313–318. https://doi.org/10.1016/j.conbuildmat.2004.07.013.
BIS (Bureau of Indian Standards). 1993. Improving earthquake resistance of earthen buildings-guidelines. New Delhi, India: BIS.
Blondet, M., G. V. Garcia, and S. Brzev. 2003. Earthquake-resistant construction of adobe buildings: A tutorial. Oakland, CA: Earthquake Engineering Research Institute.
Blondet, M., and J. Vargas. 1978. Investigación sobre vivienda rural. Lima, Peru: Pontificia Universidad Católica del Perú.
Blondet, M., J. Vargas, and N. Tarque. 2008. “Low-cost reinforcement of earthen houses in seismic areas.” In Proc., 14th World Conf. on Earthquake Engineering. Kanpur, India: Indian Institute of Technology Kanpur.
Bouhicha, M., F. Aouissi, and S. Kenai. 2005. “Performance of composite soil reinforced with barley straw.” Cem. Concr. Compos. 27 (5): 617–621. https://doi.org/10.1016/j.cemconcomp.2004.09.013.
Brignola, A., S. Frumento, S. Lagomarsino, and S. Podesta. 2008. “Identification of shear parameters of masonry panels through the in-situ diagonal compression test.” Int. J. Archit. Heritage 3 (1): 52–73. https://doi.org/10.1080/15583050802138634.
BSI (British Standard Institution). 1995. Code of practice for Use of masonry—Part 2: Structural use of reinforced and prestressed masonry. BS 5628-2:1995. London: BSI.
BSI (British Standard Institution). 2019. Testing hardened concrete—Part 3: Compressive strength of test specimens. BS EN 12390-3. London: BSI.
Calayir, Y., E. Sayin, and B. Yon. 2012. “Performance of structures in the rural area during the March 8, 2010 Elazıg-Kovancılar earthquake.” Nat. Hazards 61 (Mar): 703–717. https://doi.org/10.1007/s11069-011-0056-6.
Calderoni, B. 1996. “Valutazione sperimentale delle caratteristiche meccaniche di muratura di tufo per modelli in scala intermedia.” In Proc., Atti del Convegno Nazionale: La Meccanica delle Murature tra Teoria e Progetto, Messina, 95–104. Bologna, Italy: Pitagora Editrice.
Caporale, A., F. Parisi, D. Asprone, R. Luciano, and A. Prota. 2014a. “Critical surfaces for adobe masonry: Micromechanical approach.” Composites, Part B 56 (Jan): 790–796. https://doi.org/10.1016/j.compositesb.2013.08.087.
Caporale, A., F. Parisi, D. Asprone, R. Luciano, and A. Prota. 2014b. “Micromechanical analysis of adobe masonry as two-component composite: Influence of bond and loading schemes.” Compos. Struct. 112 (Jun): 254–263. https://doi.org/10.1016/j.compstruct.2014.02.020.
Caporale, A., F. Parisi, D. Asprone, R. Luciano, and A. Prota. 2015. “Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets.” Compos. Struct. 120 (Feb): 208–220. https://doi.org/10.1016/j.compstruct.2014.09.046.
Cárdenas-Haro, X., L. Todisco, and J. León. 2021. “Database with compression and bending tests on unbaked earth specimens and comparisons with international code provisions.” Constr. Build. Mater. 276 (Mar): 122232. https://doi.org/10.1016/j.conbuildmat.2020.122232.
Cassese, P., C. Balestrieri, L. Fenu, D. Asprone, and F. Parisi. 2021. “In-plane shear behaviour of adobe masonry wallets strengthened with textile reinforced mortar.” Constr. Build. Mater. 306 (Nov): 124832. https://doi.org/10.1016/j.conbuildmat.2021.124832.
CDIT (Coastal Development Institute of Technology). 2002. The deep mixing method: Principle, design, and construction. Lisse, Netherlands: Swets & Zeitlinger Publishers.
CEN (European Committee for Standardization). 2005. Design of masonry structures—Part 1-1: General rules for reinforced and unreinforced masonry structures. EN 1996-1-1. Brussels, Belgium: CEN.
Chiostrini, S., L. Galano, and A. Vignoli. 2000. “On the determination of strength of ancient masonry walls via experimental tests.” In Proc., of 12th World Conf. Earthquake Engineering. Upper Hutt, New Zealand: New Zealand Society for Earthquake Engineering.
Conte, E., R. M. Cosentini, and A. Troncone. 2009. “Geotechnical parameters from VP and VS measurements in unsaturated soils.” Soils Found. 49 (5): 689–698. https://doi.org/10.3208/sandf.49.689.
Corrêa, A. A. R., V. H. Teixeira, S. P. Lopes, and M. S. Oliveira. 2006. “Evaluation of physical and mechanical properties of adobe bricks.” Ciência e Agrotecnologia 30 (3): 503–515. https://doi.org/10.1590/S1413-70542006000300017.
CSA (Canadian Standards Association). 2010. Design of masonry structures. S304.1:2004. Rexdale, ON, Canada: CSA.
Delgado, M. C. J., and I. C. Guerrero. 2006. “Earth building in Spain.” Constr. Build. Mater. 20 (9): 679–690. https://doi.org/10.1016/j.conbuildmat.2005.02.006.
Donkor, P., and E. Obonyo. 2015. “Earthen construction materials: Assessing the feasibility of improving strength and deformability of compressed earth blocks using polypropylene fibers.” Mater. Des. 83 (Oct): 813–819. https://doi.org/10.1016/j.matdes.2015.06.017.
Dowling, D. M. 2004. “Adobe housing in El-Salvador: Earthquake performance and seismic improvement.” In Geological society of America, Special Paper 375, 281–300. New York: The Society.
Elnashai, A. S., B. Gencturk, O. S. Kwon, I. L. Al-Qadi, Y. Hashash, J. R. Roesler, S. J. Kim, S.-H. Jeong, J. Dukes, and A. Valdivia. 2010. The Maule (Chile) earthquake of February 27, 2010: Consequence assessment and case studies. Urbana, IL: Mid-America Earthquake Center.
Fages, J. M., N. Tarque, J. D. Rodríguez-Mariscal, and M. Solís. 2022. “Calibration of a total strain crack model for adobe masonry based on compression and diagonal compression tests.” Constr. Build. Mater. 352 (Oct): 128965. https://doi.org/10.1016/j.conbuildmat.2022.128965.
Figueiredo, A., H. Varum, A. Costa, D. Silveira, and C. Oliveira. 2013. “Seismic retrofitting solution of an adobe masonry wall.” Mater. Struct. 46 (1–2): 203–219. https://doi.org/10.1617/s11527-012-9895-1.
Fontana, P., L. Miccoli, and U. Grünberg. 2018. “Experimental investigations on the initial shear strength of masonry with earth mortars.” Int. J. Masonry Res. Innov. 3 (1): 34–49. https://doi.org/10.1504/IJMRI.2018.089051.
Fratini, F., E. Pecchioni, L. Rovero, and U. Tonietti. 2011. “The earth in the architecture of the historical centre of Lamezia Terme (Italy): Characterization for restoration.” Appl. Clay Sci. 53 (3): 509–516. https://doi.org/10.1016/j.clay.2010.11.007.
Galán-Marín, C., C. Rivera-Gómez, and J. Petric. 2010. “Clay-based composite stabilized with natural polymer and fibre.” Constr. Build. Mater. 24 (8): 1462–1468. https://doi.org/10.1016/j.conbuildmat.2010.01.008.
Gandia, R. M., F. C. Gomes, A. A. R. Corrêa, M. C. Rodrigues, and R. F. Mendes. 2019. “Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste.” Constr. Build. Mater. 222 (Oct): 168–182. https://doi.org/10.1016/j.conbuildmat.2019.06.107.
General para la Vivienda y la Arquitectura, MOPT. 1992. Bases para el diseño y construcción con tapial. Madrid, Spain: Secretaría General Técnica Ministerios de Obras Públicas y Transporte.
Hebib, S., and E. R. Farrell. 2003. “Some experiences on the stabilization of Irish peats.” Can. Geotech. J. 40 (1): 107–120. https://doi.org/10.1139/t02-091.
Hegemier, G. A., G. Krishnamoorthy, and R. O. Nunn. 1976. “An experimental study of concrete masonry under seismic—Type loading.” In Proc., National Workshop at Earthquake Resistant Masonry Construction, edited by R. A. Crist and L. E. Cattaneo, 114–153. Boulder, CO: National Bureau of Standards.
Hugón, J.-G., S.-Z. Emilio, G.-B. Alonso, and T.-G. Amador. 2000. “Structural behavior during three moderate Mexican earthquakes.” In Proc., 12WCEE. Upper Hutt, New Zealand: New Zealand Society for Earthquake Engineering.
Hurol, Y., H. Yüceer, and Ö. Sahali. 2015. “Building code challenging the ethics behind adobe architecture in north Cyprus.” Sci. Eng. Ethics 21 (Apr): 381–399. https://doi.org/10.1007/s11948-014-9533-0.
IAEE (International Association for Earthquake Engineering). 2004. Guidelines for earthquake resistant non-engineered construction. Tokyo: International Association for Earthquake Engineering.
Illampas, R., I. Ioannou, and D. Charmpis. 2017. “Experimental assessment of adobe masonry assemblages under monotonic and loading–unloading compression.” Mater. Struct. 50 (1): 79. https://doi.org/10.1617/s11527-016-0952-z.
Illampas, R., I. Ioannou, and D. C. Charmpis. 2014. “Adobe bricks under compression: Experimental investigation and derivation of stress–strain equation.” Constr. Build. Mater. 53 (Feb): 83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103.
Inci, G., N. Yesiller, and T. Kagawa. 2003. “Experimental investigation of dynamic response of compacted clayey soils.” Geotech. Test. J. 26 (2): 125–141. https://doi.org/10.1520/GTJ11328J.
Kent, D. C., and R. Park. 1971. “Flexural members with confined concrete.” J. Struct. Div. 97 (7): 1969–1990. https://doi.org/10.1061/JSDEAG.0002957.
Khorasani, F. F., and M. Z. Kabir. 2022. “Experimental study on the effectiveness of short fiber reinforced clay mortars and plasters on the mechanical behavior of adobe masonry walls.” Case Stud. Constr. Mater. 16 (2022): e00918. https://doi.org/10.1016/j.cscm.2022.e00918.
Kouakou, C. H., and J. C. Morel. 2009. “Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder.” Appl. Clay Sci. 44 (1–2): 27–34. https://doi.org/10.1016/j.clay.2008.12.019.
Kuwata, Y., S. Takada, and M. Bastami. 2005. “Building damage and human casualties during the Bam-Iran earthquake.” Asian J. Civ. Eng. 6 (1–2): 1–19.
Lan, G., Y. Wang, G. Zeng, and J. Zhang. 2020. “Compressive strength of earth block masonry: Estimation based on neural networks and adaptive network-based fuzzy inference system.” Compos. Struct. 235 (Mar): 111731. https://doi.org/10.1016/j.compstruct.2019.111731.
Levtchitch, V., Y. Fessas, and G. Nikitas. 2005. “Seismic performance of adobe buildings in Cyprus.” In Proc., SeismoAdobe 2005. Lima, Peru: Catholic Univ. of Peru.
Liberatore, D., G. Spera, M. Mucciarelli, M. R. Gallipoli, D. Santarsiero, and C. Tancredi. 2006. “Typological and experimental investigation on the adobe buildings of aliano (Basilicata, Italy).” In Proc., Structural Analysis of Historical Constructions, 851–858. New Delhi, India: European Commission EU-India Economic Cross Cultural Programme.
Lourenço, P. B. 1996. “Computational strategies for masonry structures.” Ph.D. thesis, Faculty of Civil Engineering and Geosciences, Delft Univ. of Technology.
Madhavi, K., M. V. Renukadevi, K. S. Jagadish, and S. M. Basutkar. 2023. “Studies on shear strength and stiffness of brick masonry walls.” Mater. Today: Proc. https://doi.org/10.1016/j.matpr.2023.03.682.
Mahdi, T. 2005. “Behaviour of adobe buildings in the 2003 Bam earthquake.” In Proc., Seismo Adobe 2005. Lima, Peru: Catholic Univ. of Peru.
Maheri, M. R. 2005. “Seismic performance of adobe construction during recent Iranian earthquakes.” In Proc., SeismoAdobe 2005, 1–8. Lima, Peru: Catholic Univ. of Peru.
Maheri, M. R., F. Naeim, and M. Mehrain. 2005. “Performance of adobe residential buildings in the 2003 Bam, Iran, earthquake.” Supplement, Earthquake Spectra 21 (1_suppl): 337–344. https://doi.org/10.1193/1.2098861.
Maqsood, S. T., and J. Schwarz. 2008. “Seismic vulnerability of existing building stock in Pakistan.” In Proc., 14th World Conf. on Earthquake Engineering. Beijing: International Association for Earthquake Engineering and Chinese Association of Earthquake Engineering.
Martins, T., J. Fernández, and H. Varum. 2019. “Influence of moisture on the mechanical properties of load-bearing adobe masonry walls.” Int. J. Archit. Heritage 13 (6): 841–854. https://doi.org/10.1080/15583058.2018.1482384.
Martins, T., and H. Varum. 2006. “Adobe’s mechanical characterization in ancient constructions: The case of Aveiro’s region.” In Materials science forum. Aedermannsdorf, Switzerland: Trans Tech Publications.
McGinn, A. J., and T. D. O’Rourke. 2003. Performance of deep mixing methods at fort point channel. Washington, DC: Federal Highway Administration.
Miccoli, L., A. Garofano, P. Fontana, and U. Muller. 2015. “Experimental testing and finite element modelling of earth block masonry.” Eng. Struct. 104 (Dec): 80–94. https://doi.org/10.1016/j.engstruct.2015.09.020.
Miccoli, L., U. Müller, and P. Fontana. 2014. “Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob.” Constr. Build. Mater. 61 (Jun): 327–339. https://doi.org/10.1016/j.conbuildmat.2014.03.009.
Millán, R. 1987. “Estudio experimental de adobes estabilizados.” Tesis Profesional, Facultad de Ingeniería, Universidad Autónoma del Estado de México.
Ministerio de Transportes, Comunicaciones, Vivienda y Construcción. 2000. Adobe: Norma Técnica de Edificación E-080. Lima, Peru: Ministerio de Transportes, Comunicaciones, Vivienda y Construcción/Servicio Nacional de Capacitación para la Industria de la Construcción.
Morel, J.-C., A. Mesbah, M. Oggero, and P. Walker. 2001. “Building houses with local materials: Means to drastically reduce the environmental impact of construction.” Build. Environ. 36 (10): 1119–1126. https://doi.org/10.1016/S0360-1323(00)00054-8.
Nakamatsu, J., S. Kim, J. Ayarza, E. Ramírez, M. Elgegren, and R. Aguilar. 2017. “Eco-friendly modification of earthen construction with carrageenan: Water durability and mechanical assessment.” Constr. Build. Mater. 139 (May): 193–202. https://doi.org/10.1016/j.conbuildmat.2017.02.062.
NZS (Standards New Zealand). 2004. Design of reinforced concrete masonry structures. NZS 4230:2004. Wellington, New Zealand: NZS.
NZS (Standards New Zealand). 2020. Engineering design of earth buildings. NZS 4297. Wellington, New Zealand: NZS.
Pacheco-Torgal, F., and S. Jalali. 2012. “Earth construction: Lessons from the past for future eco-efficient construction.” Constr. Build. Mater. 29 (Apr): 512–519. https://doi.org/10.1016/j.conbuildmat.2011.10.054.
Palme, M., J. Guerra, and S. Alfaro. 2014. “Thermal performance of traditional and new concept houses in the ancient village of San Pedro de Atacama and surroundings.” Sustainability 6 (6): 3321–3337. https://doi.org/10.3390/su6063321.
Parisi, F., D. Asprone, L. Fenu, and A. Prota. 2015. “Experimental characterization of Italian composite adobe bricks reinforced with straw fibers.” Compos. Struct. 122 (Apr): 300–307. https://doi.org/10.1016/j.compstruct.2014.11.060.
Parisi, F., C. Balestrieri, and H. Varum. 2019. “Nonlinear finite element model for traditional adobe masonry.” Constr. Build. Mater. 223 (Oct): 450–462. https://doi.org/10.1016/j.conbuildmat.2019.07.001.
Park, R. 1989. “Evaluation of ductility of structures and structural assemblages from laboratory testing.” Bull. N. Z. Soc. Earthquake Eng. 22 (3): 155–166. https://doi.org/10.5459/bnzsee.22.3.155-166.
Popovics, S. 1973. “A numerical approach to the complete stress-strain curve of concrete.” Cem. Concr. Res. 3 (5): 583–599. https://doi.org/10.1016/0008-8846(73)90096-3.
Porbaha, A., D. Weatherby, A. Macnab, J. Lambrechts, G. Burke, D. Yang, and A. J. Puppala. 2005. “Regional report: North American practice of deep mixing technology.” In Proc., Int. Conf. on Deep Mixing Best Practice and Recent Advances, R47–R73. Stockholm, Sweden: Swedish Deep Stabilization Research Centre.
Quagliarini, E., S. Lenci, and M. Iorio. 2010. “Mechanical properties of adobe walls in a Roman republican domus at Suasa.” J. Cult. Herit. 11 (2): 130–137. https://doi.org/10.1016/j.culher.2009.01.006.
Rafi, M. M., M. S. Khan, S. Ahmed, and A. Rais. 2022a. “Study of experimental behaviour of seismically retrofitted earthen structures.” Int. J. Masonry Res. Innov. 7 (5): 549–568. https://doi.org/10.1504/IJMRI.2022.125357.
Rafi, M. M., M. S. Khan, A. Rais, and S. Ahmed. 2022b. “Experimental assessment of proposed seismic strengthening scheme for adobe structures.” Adv. Struct. Eng. 25 (15): 3044–3058. https://doi.org/10.1177/13694332221114072.
Rafi, M. M., and S. Khan. 2023. “Assessment of mechanical properties of concrete block masonry under uniaxial compression for design applications.” J. Mater. Civ. Eng. 36 (4): 1–15. https://doi.org/10.1061/JMCEE7/MTENG-16417.
Rafi, M. M., S. Khan, and M. A. Bhutto. 2023. “Experimental assessment of mechanical properties of adobe masonry.” J. Mater. Civ. Eng. 35 (9): 04023319. https://doi.org/10.1061/JMCEE7.MTENG-15430.
Rafi, M. M., A. H. Lodi, S. A. Qazi, A. Kumar, and F. Verjee. 2018. “Seismic response of reduced scale stone masonry building.” Proc. Inst. Civ. Eng. Struct. Build. 171 (7): 528–541. https://doi.org/10.1680/jstbu.16.00031.
Rafi, M. M., S. H. Lodi, M. Ahmed, and N. Alam. 2015. “Observed damages in Pakistan due to 16 April 2013 Iran earthquake.” Bull. Earthquake Eng. 13 (Feb): 703–724. https://doi.org/10.1007/s10518-014-9638-5.
Rafi, M. M., S. H. Lodi, H. Varum, N. Alam, M. Ahmed, and D. Silveira. 2012. “Assessment of Seismic Performance of Adobe Structures in Pakistan and Portugal.” In Proc., 15 World Conf. on Earthquake Engineering. Lisbon, Portugal: Sociedade Portuguesa de Engenharia Sismica.
Reyes, J. C., L. E. Yamin, W. M. Hassan, J. D. Sandoval, C. D. Gonzalez, and F. A. Galvis. 2018. “Shear behavior of adobe and rammed earth walls of heritage structures.” Eng. Struct. 174 (Nov): 526–537. https://doi.org/10.1016/j.engstruct.2018.07.061.
Rodriguez-Mariscal, J. D., Q. Ma, and M. Solis. 2020. “Experimental analysis of diagonal compression and splitting tests for the characterization of shear and tensile behavior of adobe masonry.” Eng. Struct. 215 (Jul): 110633. https://doi.org/10.1016/j.engstruct.2020.110633.
Rodríguez-Mariscal, J. D., M. Solís, and H. Cifuentes. 2018. “Methodological issues for the mechanical characterization of unfired earth bricks.” Constr. Build. Mater. 175 (Jun): 804–814. https://doi.org/10.1016/j.conbuildmat.2018.04.118.
Sarrico, P. 2014. “Caracterização mecânica de paredes e construções de alvenaria de adobe.” [In Portuguese.] M.S. thesis, Dept. of Civil Engineering, Univ. of Aveiro.
Sayin, E., B. Yon, Y. Calayir, and M. Gor. 2014. “Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey.” Struct. Eng. Mech. 51 (3): 503–518. https://doi.org/10.12989/sem.2014.51.3.503.
Schroeder, H. 2012. “Modern earth building codes, standards and normative development.” In Modern earth buildings, edited by M. R. Hall, R. Lindsay, and M. Krayenhoff, 72–109. Oxford: Woodhead Publishing.
Shukla, A., G. N. Tiwari, and M. S. Sodha. 2009. “Embodied energy analysis of adobe house.” Renewable Energy 34 (3): 755–761. https://doi.org/10.1016/j.renene.2008.04.002.
Silveira, D., H. Varum, A. Costa, and J. Carvalho. 2014. “Mechanical properties and behavior of traditional adobe wall panels of the Aveiro district.” J. Mater. Civ. Eng. 27 (9): 04014253. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001194.
Tarque, N. 2008. “Seismic risk assessment of adobe dwellings.” Master’s thesis, Dept. of Civil Engineering and Architecture, Università degli Studi di Pavia, Italy.
Tarque, S. N., G. Camata, E. Spacone, H. Varum, and J. M. Blondet. 2014. “Non-linear dynamic analysis of a full-scale unreinforced adobe model.” Earthquake Spectra 30 (4): 1643–1661. https://doi.org/10.1193/022512EQS053M.
Terashi, M. 2003. “The state of practice in deep mixing methods.” In Proc., Grouting and Ground Treatment: Proc., 3rd Int. Conf., Geotechnical Special Publication 120, 25–49. Reston, VA: ASCE.
The Masonry Society. 2016. Building code requirements and specification for masonry structures 2016. TMS Committee 402/602. Longmont, CO: The Masonry Society.
Thota, S. K., T. D. Cao, and F. Vahedifard. 2021. “Poisson’s ratio characteristic curve of unsaturated soils.” J. Geotech. Geoenviron. Eng. 147 (1): 04020149. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002424.
TSI (Turkish Standard Institution). 1997. Adobe blocks and production methods. TS 2514. Ankara, Turkey: TSI.
Tubi, N. 1993. La realizzazione di murature in laterizio, Andil, Sezione Murature. [In Italian.] Los Angeles: Getty Publications.
Turnsek, V., and F. Cacovic. 1971. “Some experimental of the strength of brick masonry walls.” In Proc., 2nd Brick Masonry Conf., 149–156. Penkhull, UK: British Ceramic Research Association.
Ural, A. 2021. “Triplet tests and numerical validations of stone masonry with dowels under shear.” Arab. J. Sci. Eng. 46 (5): 4765–4779. https://doi.org/10.1007/s13369-020-05152-8.
Vargas, J., M. Blondet, F. Ginocchio, and G. Garcia. 2005. 35 years of research on earthquake-resistant adobe: Reinforced earth. Lima, Peru: Pontifical Catholic Univ. of Peru.
Varum, H., A. Costa, D. Silveira, and M. Fernandes. 2008. “Study of the structural behavior of traditional adobe constructions.” In Proc., 10th Int. Conf. on the Study and Conservation of Earthen Architectural Heritage (Terre 2008), 307–311. Los Angeles: Getty Publications.
Varum, H., A. Costa, D. Silveira, and M. Fernandes. 2011. “Study of the structural behaviour of traditional adobe constructions.” In Proc., Terra 2008. Los Angeles: Getty Publications.
Varum, H., A. Costa, D. Silveira, H. Pereira, J. Almeida, and T. Martins. 2007. “Structural behaviour assessment and material characterization of traditional adobe construction.” In Proc., Fourth Int. Adobe Conf. of the Adobe Association of the Southwest AdobeUSA, 138–145. El Rito, NM: Adobe Association of the Southwest.
Vicente, E., and D. Torrealva. 2016. “Mechanical properties of historical adobe in Perú.” In Proc., Terra 2016. Lyon, France: CRATerre.
Vicente, E. F., and D. E. Torrealva. 2014. “Mechanical properties of adobe masonry of historical buildings in Peru.” In Proc., 9th Int. Conf. on Structural Analysis of Historical Constructions (SAHC2014), edited by F. Peña and M. Chávez, 1–12. Lima, Peru: Pontifical Catholic Univ. of Peru.
Webster, F. A., and E. L. Tolles. 2000. “Earthquake damage to historic and older adobe buildings during the 1994 Northridge, California earthquake.” In Proc., 12WCEE, Paper 0628. Upper Hutt, New Zealand: New Zealand Society for Earthquake Engineering.
Wu, F., G. Li, H.-N. Li, and J.-Q. Jia. 2013. “Strength and stress–strain characteristics of traditional adobe block and masonry.” Mater. Struct. 46 (9): 1449–1457. https://doi.org/10.1617/s11527-012-9987-y.
Yamin, L., C. A. Phillips, J. Reyes, and J. C. Ruiz. 2004. “Seismic behaviour and rehabilitation alternatives for adobe buildings and rammed earth buildings.” In Proc., 13 World Conf. on Earthquake Engineering. Vancouver, BC, Canada: Canadian Association for Earthquake Engineering.
Yetgin, S., Ö. Çavdar, and A. Çavdar. 2008. “The effects of the fiber contents on the mechanic properties of the adobes.” Constr. Build. Mater. 22 (3): 222–227. https://doi.org/10.1016/j.conbuildmat.2006.08.022.
Yoshimura, K., and M. Kuroki. 2001. “Damage to masonry buildings caused by the El Salvador earthquake of January 13, 2001.” J. Nat. Disaster Sci. 23 (2): 53–63.
Zhang, K., B. Lu, Y. Wang, Z. Lei, and Z. Yang. 2019. “Experimental strength of earth-based construction materials in different regions of China.” Adv. Mater. Sci. Eng. 2019 (Mar): 8130743. https://doi.org/10.1155/2019/8130743.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 6June 2024

History

Received: Aug 8, 2023
Accepted: Nov 14, 2023
Published online: Mar 25, 2024
Published in print: Jun 1, 2024
Discussion open until: Aug 25, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Dept. of Earthquake Engineering, NED Univ. of Engineering and Technology, Karachi 75270, Pakistan (corresponding author). ORCID: https://orcid.org/0000-0002-0968-2920. Email: [email protected]
Research Assistant, Dept. of Earthquake Engineering, NED Univ. of Engineering and Technology, Karachi 75270, Pakistan. ORCID: https://orcid.org/0000-0002-1579-278X. Email: [email protected]
Muhammad Aslam Bhutto [email protected]
Associate Professor, Dept. of Civil Engineering, Thar Institute of Engineering, Sciences and Technology, Mithi, Pakistan. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share