Technical Papers
Feb 26, 2024

Effect of Protein Containing Hydrogels on the Self-Healing of Cementitious Materials

Publication: Journal of Materials in Civil Engineering
Volume 36, Issue 5

Abstract

This study examined the effect of hydrogels containing urease and proteins on the self-healing of cracked cementitious materials. The encapsulation of proteins and urease decreased the absorption of hydrogels. It was shown that proteins were able to release from hydrogels into the surrounding cementitious matrix. TGA, FTIR, and SEM showed increased calcium carbonate formation, and optical imaging indicated enhanced crack filling in the samples with hydrogels containing urease and proteins, compared to the control sample. This is attributed to the enhanced autogenous healing provided by water absorption/desorption of hydrogels as well as enzymatic reaction. Calcite was shown to be the dominant polymorph of calcium carbonate in the healing products. Interestingly, the mechanical strength regain was markedly higher in the samples with hydrogels containing urease and proteins compared to the control sample. Improved interfacial strength at the microstructure level enhances cohesion within healing products and adhesion between the healing products and crack surface, leading to overall increased mechanical strength regain. The electrical resistivity results were shown to be in agreement with the mechanical strength regain.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This study was supported in part by the National Science Foundation under the CAREER award number 1846984. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

Aldea, B. C., W. Song, J. S. Popovics, A. Member, and S. P. Shah. 2000. “Extent of healing of cracked normal strength concrete.” J. Mater. Civ. Eng. 12 (Feb): 92–96. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:1(92).
Almajed, A., H. K. Tirkolaei, E. Kavazanjian, and N. Hamdan. 2019. “Enzyme induced biocementated sand with high strength at low carbonate content.” Sci. Rep. 9 (1): 1–7. https://doi.org/10.1038/s41598-018-38361-1.
Arriaga, T. V. 2011. “Controlled and tailored denaturation and aggregation of whey proteins Tatiana Vieira Arriaga Engenharia Biológica Júri.” Master thesis, Instituto de Bioengenharia e Biociências, Instituto Superior Técnico.
Baffoe, E., and A. Ghahremaninezhad. 2022a. “The effect of biomolecules on enzyme-induced calcium carbonate precipitation in cementitious materials.” Constr. Build. Mater. 345 (Aug): 128323. https://doi.org/10.1016/j.conbuildmat.2022.128323.
Baffoe, E., and A. Ghahremaninezhad. 2022b. “On the interaction between proteins and cracked cementitious surface.” Constr. Build. Mater. 352 (Oct): 128982. https://doi.org/10.1016/j.conbuildmat.2022.128982.
Baffoe, E., and A. Ghahremaninezhad. 2023. “Effect of proteins on the mineralization, microstructure and mechanical properties of carbonation cured calcium silicate.” Cem. Concr. Compos. 141 (Feb): 105121. https://doi.org/10.1016/j.cemconcomp.2023.105121.
Bazhuni, M. F., M. Kamali, and A. Ghahremaninezhad. 2019. “An investigation into the properties of ternary and binary cement pastes containing glass powder.” Front. Struct. Civ. Eng. 13 (3): 741–750. https://doi.org/10.1007/s11709-018-0511-5.
Bian, H. 2012. “Colloidal behavior of casein biopolymer in alkaline solution and its application in self-levelling underlayments (SLUs).” Doctoral dissertation, Faculty of Chemistry, Technische Universität München.
Black, A. P. 2022. 2022 bridge report. Washington, DC: American Road and Transportation Builders Association.
Briegel, C., H. Coelfen, and J. Seto. 2012. “Single amino acids as additives modulating CaCO3 mineralization.” Adv. Topics Biomineralization 33 (Feb): 33–48. https://doi.org/10.5772/39297.
Bu, Y., and J. Weiss. 2014. “The influence of alkali content on the electrical resistivity and transport properties of cementitious materials.” Cem. Concr. Compos. 51 (Feb): 49–58. https://doi.org/10.1016/j.cemconcomp.2014.02.008.
Chindasiriphan, P., H. Yokota, and P. Pimpakan. 2020. “Effect of fly ash and superabsorbent polymer on concrete self-healing ability.” Constr. Build. Mater. 233 (Jan): 116975. https://doi.org/10.1016/j.conbuildmat.2019.116975.
Costa, O. Y. A., J. M. Raaijmakers, and E. E. Kuramae. 2018. “Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation.” Front. Microbiol. 9 (Jul): 1–14. https://doi.org/10.3389/fmicb.2018.01636.
Dakhane, A., et al. 2018. “Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: Quantification based on fracture response.” J. Mater. Civ. Eng. 30 (4): 04018035. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002218.
De Belie, N., et al. 2018. “A review of self-healing concrete for damage management of structures.” Adv. Mater. Interfaces 5 (17): 1800074. https://doi.org/10.1002/admi.201800074.
Delgado, A. H., R. M. Paroli, and J. J. Beaudoin. 1996. “Comparison of IR techniques for the characterization of construction cement minerals and hydrated products.” Appl. Spectrosc. 50 (8): 970–976. https://doi.org/10.1366/0003702963905312.
Edvardsen, C. 1999. “Water permeability and autogenous healing of cracks in concrete.” ACI Mater. J. 96 (4): 448–454.
Espinosa, H. D., A. L. Juster, F. J. Latourte, O. Y. Loh, D. Gregoire, and P. D. Zavattieri. 2011. “Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.” Nat. Commun. 2 (1): 173. https://doi.org/10.1038/ncomms1172.
Esteves, L. P. 2011. “On the hydration of water-entrained cement-silica systems: Combined SEM, XRD and thermal analysis in cement pastes.” Thermochim. Acta 518 (1–2): 27–35. https://doi.org/10.1016/j.tca.2011.02.003.
Fahimizadeh, M., A. D. Abeyratne, L. S. Mae, R. K. R. Singh, and P. Pasbakhsh. 2020. “Biological self-healing of cement paste and mortar by non-ureolytic bacteria encapsulated in alginate hydrogel capsules.” Materials 13 (17): 3711. https://doi.org/10.3390/ma13173711.
Farzanian, K., et al. 2016a. “The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers.” Constr. Build. Mater. 109 (Aug): 156–165. https://doi.org/10.1016/j.conbuildmat.2015.12.082.
Farzanian, K., and A. Ghahremaninezhad. 2017. “The effect of the capillary forces on the desorption of hydrogels in contact with porous cementitious material.” Mater. Struct. 50 (5): 216. https://doi.org/10.1617/s11527-017-1068-9.
Farzanian, K., and A. Ghahremaninezhad. 2018a. “Desorption of superabsorbent hydrogels with varied chemical compositions in cementitious materials.” Mater. Struct. 51 (Feb): 1–15. https://doi.org/10.1617/s11527-017-1128-1.
Farzanian, K., and A. Ghahremaninezhad. 2018b. “On the effect of chemical composition on the desorption of superabsorbent hydrogels in contact with a porous cementitious material.” Gels 4 (3): 70. https://doi.org/10.3390/gels4030070.
Farzanian, K., and A. Ghahremaninezhad. 2018c. “On the interaction between superabsorbent hydrogels and blended mixtures with supplementary cementitious materials.” Adv. Civ. Eng. Mater. 7 (4): 1–24. https://doi.org/10.1520/ACEM20180073.
Farzanian, K., K. Pimenta Teixeira, I. Perdiago Rocha, L. De Sa Carneiro, and A. Ghahremaninezhad. 2016b. “The mechanical strength, degree of hydration, and electrical resistivity of cement pastes modified with superabsorbent polymers.” Constr. Build. Mater. 109 (Jan): 156–165. https://doi.org/10.1016/j.conbuildmat.2015.12.082.
Farzanian, K., B. Vafaei, and A. Ghahremaninezhad. 2019. “The behavior of superabsorbent polymers (SAPs) in cement mixtures with glass powders as supplementary cementitious materials.” Materials 12 (21): 3597. https://doi.org/10.3390/ma12213597.
Farzanian, K., B. Vafaei, and A. Ghahremaninezhad. 2021. “The influence of the chemical composition of hydrogels on their behavior in cementitious materials.” Mater. Struct. 54 (6): 244. https://doi.org/10.1617/s11527-021-01838-z.
Flores, J., M. Kamali, and A. Ghahremaninezhad. 2015. “Electrical resistivity measurement to study alkali-silica-reaction cracking in mortar.” In Proc., 7th Congress on Forensic Engineering, Forensic Engineering 2015: Performance of the Built Environment. Reston, VA: ASCE. https://doi.org/10.1061/9780784479711.023.
Flores, J., M. Kamali, and A. Ghahremaninezhad. 2017. “An investigation into the properties and microstructure of cement mixtures modified with cellulose nanocrystal.” Materials 10 (5): 498. https://doi.org/10.3390/ma10050498.
Gallagher, W. 1958. “FTIR analysis of protein structure.” Nature 18: 662–666.
Ghosh, S. N., and S. K. Handoo. 1980. “Infrared and Raman spectral studies in cement and concrete (review).” Cem. Concr. Res. 10 (6): 771–782. https://doi.org/10.1016/0008-8846(80)90005-8.
Gollapudi, U. K., C. L. Knutson, S. S. Bang, and M. R. Islam. 1995. “A new method for controlling leaching through permeable channels.” Chemosphere 30 (4): 695–705. https://doi.org/10.1016/0045-6535(94)00435-W.
Huang, H., G. Ye, and D. Damidot. 2013. “Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste.” Cem. Concr. Res. 52 (Jun): 71–81. https://doi.org/10.1016/j.cemconres.2013.05.003.
Huang, H., G. Ye, C. Qian, and E. Schlangen. 2016. “Self-healing in cementitious materials: Materials, methods and service conditions.” Mater. Des. 92 (Feb): 499–511. https://doi.org/10.1016/j.matdes.2015.12.091.
Hughes, T. L., C. M. Methven, T. G. J. Jones, S. E. Pelham, P. Fletcher, and C. Hall. 1995. “Determining cement composition by Fourier transform infrared spectroscopy.” Adv. Cem. Based Mater. 2 (3): 91–104. https://doi.org/10.1016/1065-7355(94)00031-X.
Jain, J., and N. Neithalath. 2011. “Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration.” Mater. Chem. Phys. 129 (1–2): 569–579. https://doi.org/10.1016/j.matchemphys.2011.04.057.
Jiang, Z., W. Li, and Z. Yuan. 2015. “Cement & concrete composites influence of mineral additives and environmental conditions on the self-healing capabilities of cementitious materials.” Cem. Concr. Compos. 57 (Feb): 116–127. https://doi.org/10.1016/j.cemconcomp.2014.11.014.
Jonkers, H., and E. Schlangen. 2008. “Development of a bacteria-based self healing concrete.” Tailor Made Concr. Struct. 109: 109. https://doi.org/10/dgt799.
Jonkers, H. M., and E. Schlangen. 2007. “Self-healing of cracked concrete: A bacterial approach.” In Proc., FRACOS6: Fracture Mechanics of Concrete and Concrete Structures, 1821–1826. London: Taylor & Francis.
Jonkers, H. M., A. Thijssen, G. Muyzer, O. Copuroglu, and E. Schlangen. 2010. “Application of bacteria as self-healing agent for the development of sustainable concrete.” Ecol. Eng. 36 (2): 230–235. https://doi.org/10.1016/j.ecoleng.2008.12.036.
Kamali, M., and A. Ghahremaninezhad. 2015. “Effect of glass powders on the mechanical and durability properties of cementitious materials.” Constr. Build. Mater. 98 (Dec): 407–416. https://doi.org/10.1016/j.conbuildmat.2015.06.010.
Kamali, M., and A. Ghahremaninezhad. 2017. “An investigation into the influence of superabsorbent polymers on the properties of glass powder modified cement pastes.” Constr. Build. Mater. 149 (Mar): 236–247. https://doi.org/10.1016/j.conbuildmat.2017.04.125.
Kamali, M., and A. Ghahremaninezhad. 2018a. “Effect of biomolecules on the nanostructure and nanomechanical property of calcium-silicate-hydrate.” Sci. Rep. 8 (Sep): 1–16. https://doi.org/10.1038/s41598-018-27746-x.
Kamali, M., and A. Ghahremaninezhad. 2018b. “A study of calcium-silicate-hydrate/polymer nanocomposites fabricated using the layer-by-layer method.” Materials 11 (4): 527. https://doi.org/10.3390/ma11040527.
Kang, S. H., S. G. Hong, and J. Moon. 2017. “Absorption kinetics of superabsorbent polymers (SAP) in various cement-based solutions.” Cem. Concr. Res. 97 (Feb): 73–83. https://doi.org/10.1016/j.cemconres.2017.03.009.
Kang, S. H., S. G. Hong, and J. Moon. 2018. “Importance of monovalent ions on water retention capacity of superabsorbent polymer in cement based solutions.” Cem. Concr. Compos. 88 (Jun): 64–72. https://doi.org/10.1016/j.cemconcomp.2018.01.015.
Khan, R. I., W. Ashraf, and J. Olek. 2021. “Amino acids as performance-controlling additives in carbonation-activated cementitious materials.” Cem. Concr. Res. 147 (Jun): 106501. https://doi.org/10.1016/j.cemconres.2021.106501.
Khan, R. I., M. Intesarul, S. Siddique, E. N. Landis, and W. Ashraf. 2023. “Effects of amino acids on the multiscale properties of carbonated wollastonite composites.” Constr. Build. Mater. 374 (Jul): 130816. https://doi.org/10.1016/j.conbuildmat.2023.130816.
Kua, H. W., S. Gupta, A. N. Aday, and W. V. Srubar. 2019. “Biochar-immobilized bacteria and superabsorbent polymers enable self-healing of fiber-reinforced concrete after multiple damage cycles.” Cem. Concr. Compos. 100 (Feb): 35–52. https://doi.org/10.1016/j.cemconcomp.2019.03.017.
Lee, H., H. S. Wong, and N. R. Buenfeld. 2010. “Potential of superabsorbent polymer for self-sealing cracks in concrete.” Adv. Appl. Ceram. 109 (5): 296–302. https://doi.org/10.1179/174367609X459559.
Lee, H. X. D., H. S. Wong, and N. R. Buenfeld. 2018. “Effect of alkalinity and calcium concentration of pore solution on the swelling and ionic exchange of superabsorbent polymers in cement paste.” Cem. Concr. Compos. 88 (Jun): 150–164. https://doi.org/10.1016/j.cemconcomp.2018.02.005.
Li, Q., Z. Liu, W. Chen, B. Yuan, X. Liu, and W. Chen. 2019. “A novel bio-inspired bone-mimic self-healing cement paste based on hydroxyapatite formation.” Cem. Concr. Compos. 104 (Nov): 10335. https://doi.org/10.1016/j.cemconcomp.2019.103357.
Li, W., B. Dong, Z. Yang, J. Xu, Q. Chen, H. Li, F. Xing, and Z. Jiang. 2018. “Recent advances in intrinsic self-healing cementitious materials.” Adv. Mater. 30 (17): 1705679. https://doi.org/10.1002/adma.201705679.
Liu, Q., Z. Chen, and Y. Yang. 2020. “Study of the air-entraining behavior based on the interactions between cement particles and selected cationic, anionic and nonionic surfactants.” Materials 13 (16): 3514. https://doi.org/10.3390/ma13163514.
Lothenbach, B., G. Le Saout, M. Ben Haha, R. Figi, and E. Wieland. 2012. “Hydration of a low-alkali CEMIII/B-SiO2 cement (LAC).” Cem. Concr. Res. 42 (2): 410–423. https://doi.org/10.1016/j.cemconres.2011.11.008.
Magalhães, A. S. G., M. P. A. Neto, M. N. Bezerra, N. M. P. S. Ricardo, and J. P. A. Feitosa. 2012. “Application of FTIR in the determination of acrylate content in poly(sodium acrylate-CO-acrylamide) superabsorbent hydrogels.” Quim. Nova 35 (7): 1464–1467. https://doi.org/10.1590/S0100-40422012000700030.
Martin, K., H. K. Tirkolaei, and E. Kavazanjian. 2021. “Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution.” Constr. Build. Mater. 271 (Feb): 121529. https://doi.org/10.1016/j.conbuildmat.2020.121529.
Masoule, M. S. T., E. Baffoe, and A. Ghahremaninezhad. 2023. “On the physicochemical properties and foaming characteristics of proteins in cement environment.” Constr. Build. Mater. 366 (Oct): 130204. https://doi.org/10.1016/j.conbuildmat.2022.130204.
Mechtcherine, V., and H.-W. Reinhardt. 2012. Application of super absorbent polymers (SAP) in concrete construction. New York: Springer.
Mignon, A., G. J. Graulus, D. Snoeck, J. Martins, N. De Belie, P. Dubruel, and S. Van Vlierberghe. 2014. “pH-sensitive superabsorbent polymers: A potential candidate material for self-healing concrete.” J. Mater. Sci. 50 (2): 970–979. https://doi.org/10.1007/s10853-014-8657-6.
Mignon, A., D. Snoeck, P. Dubruel, S. Van Vlierberghe, and N. De Belie. 2017. “Crack mitigation in concrete: Superabsorbent polymers as key to success?” Materials 10 (3): 237. https://doi.org/10.3390/ma10030237.
Mignon, A., D. Snoeck, D. Schaubroeck, N. Luickx, P. Dubruel, S. Van Vlierberghe, N. De Belie, S. Van Vlierberghe, and N. De Belie. 2015. “PH-responsive superabsorbent polymers: A pathway to self-healing of mortar.” React. Funct. Polym. 93 (Mar): 68–76. https://doi.org/10.1016/j.reactfunctpolym.2015.06.003.
Mollah, M. Y. A., W. Yu, R. Schennach, and D. L. Cocke. 2000a. “Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate.” Cem. Concr. Res. 30 (2): 267–273. https://doi.org/10.1016/S0008-8846(99)00243-4.
Mollah, M. Y. A. A., W. J. Adams, R. Schennach, and D. L. Cocke. 2000b. “A review of cement–superplasticizer interactions and their models.” Adv. Cem. Res. 12 (4): 153–161. https://doi.org/10.1680/adcr.2000.12.4.153.
Neithalath, N., J. Weiss, and J. Olek. 2006. “Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance.” Cem. Concr. Compos. 36 (11): 2074–2085. https://doi.org/10.1016/j.cemconres.2006.09.001.
Pane, I., and W. Hansen. 2005. “Investigation of blended cement hydration by isothermal calorimetry and thermal analysis.” Cem. Concr. Res. 35 (6): 1155–1164. https://doi.org/10.1016/j.cemconres.2004.10.027.
Prabahar, J., B. Vafaei, E. Baffoe, and A. Ghahremaninezhad. 2021. “The effect of biochar on the properties of alkali-activated slag pastes.” Constr. Mater. 2 (1): 1–14. https://doi.org/10.3390/constrmater2010001.
Prabahar, J., B. Vafaei, and A. Ghahremaninezhad. 2022. “The effect of hydrogels with different chemical compositions on the behavior of alkali-activated slag pastes.” Gels 8 (11): 731. https://doi.org/10.3390/gels8110731.
Raydan, N. D. V., L. Leroyer, B. Charrier, and E. Robles. 2021. “Recent advances on the development of protein-based adhesives for wood composite materials—A review.” Molecules 26 (24): 7617. https://doi.org/10.3390/molecules26247617.
Reinhardt, H. W., and M. Jooss. 2003. “Permeability and self-healing of cracked concrete as a function of temperature and crack width.” Cem. Concr. Res. 33 (7): 981–985. https://doi.org/10.1016/S0008-8846(02)01099-2.
Rodriguez-Navarro, C., C. Jimenez-Lopez, A. Rodriguez-Navarro, M. T. Gonzalez-Muñoz, and M. Rodriguez-Gallego. 2007. “Bacterially mediated mineralization of vaterite.” Geochim. Cosmochim. Acta 71 (5): 1197–1213. https://doi.org/10.1016/j.gca.2006.11.031.
Rrustemi, T., Ö. G. Geyik, Z. Yüce, A. B. Özkaya, T. K. Öztürk, and A. Kilinç. 2020. “Acrylamide-encapsulated glucose oxidase inhibits breast cancer cell viability.” Turk. J. Biochem. 45 (6): 811–816. https://doi.org/10.1515/tjb-2020-0247.
Schlangen, E., N. ter Heide, and K. van Breugel. 2006. “Crack healing age cracks in concrete.” In Measuring, monitoring and modeling concrete properties, 273–284. Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-1-4020-5104-3_32.
Schröfl, C., V. Mechtcherine, and M. Gorges. 2012. “Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage.” Cem. Concr. Res. 42 (6): 865–873. https://doi.org/10.1016/j.cemconres.2012.03.011.
Shoulders, M. D., and R. T. Raines. 2009. “Collagen structure and stability.” Annu. Rev. Biochem. 78 (1): 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833.
Singh, M. 2007. “Structural interactions of globular proteins—Bovine serum albumin, egg albumin, and lysozyme, in aqueous medium, elucidated with molar volumes, viscosities, energy functions, and IR spectra from 293.15 to 303.15 K.” J. Appl. Polym. Sci. 103 (3): 1420–1429. https://doi.org/10.1002/app.24626.
Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. 1985. “Measurement of protein using bicinchoninic acid.” Anal. Biochem. 150 (1): 76–85. https://doi.org/10.1016/0003-2697(85)90442-7.
Snoeck, D., and N. De Belie. 2016. “Repeated autogenous healing in strain-hardening cementitious composites by using superabsorbent polymers.” J. Mater. Civ. Eng. 28 (1): 04015086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001360.
Snoeck, D., L. Pel, and N. De Belie. 2020. “Autogenous healing in cementitious materials with superabsorbent polymers quantified by means of NMR.” Sci. Rep. 10 (1): 1–6. https://doi.org/10.1038/s41598-020-57555-0.
Snoeck, D., D. Schaubroeck, P. Dubruel, N. De Belie, and N. De Belie. 2014a. “Effect of high amounts of superabsorbent polymers and additional water on the workability, microstructure and strength of mortars with a water-to-cement ratio of 0.50.” Constr. Build. Mater. 72 (Feb): 148–157. https://doi.org/10.1016/j.conbuildmat.2014.09.012.
Snoeck, D., K. Van Tittelboom, S. Steuperaert, P. Dubruel, and N. De Belie. 2014b. “Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers.” J. Intell. Mater. Syst. Struct. 25 (1): 13–24. https://doi.org/10.1177/1045389X12438623.
Snoeck, D., L. F. Velasco, A. Mignon, S. Van Vlierberghe, P. Dubruel, P. Lodewyckx, and N. De Belie. 2015. “The effects of superabsorbent polymers on the microstructure of cementitious materials studied by means of sorption experiments.” Cem. Concr. Res. 77 (Sep): 26–35. https://doi.org/10.1016/j.cemconres.2015.06.013.
Sondi, I., and E. Matijević. 2001. “Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction.” J. Colloid Interface Sci. 238 (1): 208–214. https://doi.org/10.1006/jcis.2001.7516.
Tang, W., O. Kardani, and H. Cui. 2015. “Robust evaluation of self-healing efficiency in cementitious materials—A review.” Constr. Build. Mater. 81 (Mar): 233–247. https://doi.org/10.1016/j.conbuildmat.2015.02.054.
Tantimongcolwat, T., C. Isarankura-Na-Ayudhya, A. Srisarin, H.J. Galla, and V. Prachayasittikul. 2014. “Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination.” Excli J. 13: 401–415.
Tourney, J., and B. T. Ngwenya. 2014. “The role of bacterial extracellular polymeric substances in geomicrobiology.” Chem. Geol. 386 (Jan): 115–132. https://doi.org/10.1016/j.chemgeo.2014.08.011.
Ur Rehman, H., M. A. Nawaz, S. Pervez, M. Jamal, M. Attaullah, A. Aman, and S. A. Ul Qader. 2020. “Encapsulation of pectinase within polyacrylamide gel: Characterization of its catalytic properties for continuous industrial uses.” Heliyon 6 (8): e04578. https://doi.org/10.1016/j.heliyon.2020.e04578.
Vafaei, B., K. Farzanian, and A. Ghahremaninezhad. 2020. “The influence of superabsorbent polymer on the properties of alkali-activated slag pastes.” Constr. Build. Mater. 236 (Feb): 117525. https://doi.org/10.1016/j.conbuildmat.2019.117525.
Vafaei, B., K. Farzanian, and A. Ghahremaninezhad. 2021. “Effect of hydrogels containing nanosilica on the properties of cement pastes.” J. Compos. Sci. 5 (4): 105. https://doi.org/10.3390/jcs5040105.
Valenzuela, C., L. Abugoch, C. Tapia, and A. Gamboa. 2013. “Effect of alkaline extraction on the structure of the protein of quinoa (Chenopodium quinoa Willd.) and its influence on film formation.” Int. J. Food Sci. Technol. 48 (4): 843–849. https://doi.org/10.1111/ijfs.12035.
Vignaga, E., H. Haynes, and W. T. Sloan. 2012. “Quantifying the tensile strength of microbial mats grown over noncohesive sediments.” Biotechnol. Bioeng. 109 (5): 1155–1164. https://doi.org/10.1002/bit.24401.
Wang, J. Y., D. Snoeck, S. Van Vlierberghe, W. Verstraete, and N. De Belie. 2014a. “Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete.” Constr. Build. Mater. 68 (Jul): 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018.
Wang, J. Y., H. Soens, W. Verstraete, N. De Belie, and N. De Belie. 2014b. “Self-healing concrete by use of microencapsulated bacterial spores.” Cem. Concr. Res. 56 (Sep): 139–152. https://doi.org/10.1016/j.cemconres.2013.11.009.
Wehbe, Y., and A. Ghahremaninezhad. 2017. “Combined effect of shrinkage reducing admixtures (SRA) and superabsorbent polymers (SAP) on the autogenous shrinkage and properties of cementitious materials.” Constr. Build. Mater. 138 (Oct): 151–162. https://doi.org/10.1016/j.conbuildmat.2016.12.206.
Weir, C. E., and E. R. Lippincott. 1961. “Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates.” J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 65 (3): 173. https://doi.org/10.6028/jres.065A.021.
Wu, N., H. Pan, D. Qiu, and Y. Zhang. 2014. “Feasibility of EPS-producing bacterial inoculation to speed up the sand aggregation in the Gurbantunggut Desert, Northwestern China.” J. Basic Microbiol. 54 (12): 1378–1386. https://doi.org/10.1002/jobm.201400355.
Xia, M. S., Z. T. Yao, L. Q. Ge, T. Chen, and H. Y. Li. 2015. “A potential bio-filler: The substitution effect of furfural modified clam shell for carbonate calcium in polypropylene.” J. Compos. Mater. 49 (7): 807–816. https://doi.org/10.1177/0021998314525981.
Xu, J., and W. Yao. 2014. “Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent.” Cem. Concr. Res. 64 (Nov): 1–10. https://doi.org/10.1016/j.cemconres.2014.06.003.
Yang, L., L. She, J. G. Zhou, Y. Cao, and X. M. Ma. 2006. “Interaction of lysozyme during calcium carbonate precipitation at supramolecular level.” Inorg. Chem. Commun. 9 (2): 164–166. https://doi.org/10.1016/j.inoche.2005.05.026.
Ye, G., X. Liu, G. De Schutter, A. M. Poppe, and L. Taerwe. 2007. “Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes.” Cem. Concr. Compos. 29 (2): 94–102. https://doi.org/10.1016/j.cemconcomp.2006.09.003.
Ylmén, R., U. Jäglid, B. M. Steenari, and I. Panas. 2009. “Early hydration and setting of portland cement monitored by IR, SEM and Vicat techniques.” Cem. Concr. Res. 39 (5): 433–439. https://doi.org/10.1016/j.cemconres.2009.01.017.
Yousuf, M., A. Mollah, T. R. Hess, Y. N. Tsai, D. L. Cocke, and A. Ftir. 1993. “An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-portland type V with zinc.” Cem. Concr. Res. 23 (4): 773–784. https://doi.org/10.1016/0008-8846(93)90031-4.
Zhu, B., Q. Li, W. Chen, W. Zou, and W. Chen. 2020. “A novel method of self-healing in cementitious materials by using polyacrylic hydrogel.” KSCE J. Civ. Eng. 24 (11): 3406–3415. https://doi.org/10.1007/S12205-020-0090-6.
Zhu, Q., C. W. Barney, and K. A. Erk. 2015. “Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete.” Mater. Struct. 48 (7): 2261–2276. https://doi.org/10.1617/s11527-014-0308-5.

Information & Authors

Information

Published In

Go to Journal of Materials in Civil Engineering
Journal of Materials in Civil Engineering
Volume 36Issue 5May 2024

History

Received: May 25, 2023
Accepted: Nov 3, 2023
Published online: Feb 26, 2024
Published in print: May 1, 2024
Discussion open until: Jul 26, 2024

Permissions

Request permissions for this article.

Authors

Affiliations

Elvis Baffoe, S.M.ASCE [email protected]
Doctoral Student, Dept. of Civil and Architectural Engineering, Univ. of Miami, Coral Gables, FL 33146. Email: [email protected]
Associate Professor, Chair of the Experimental Analysis and Instrumentation Committee, Dept. of Civil and Architectural Engineering, Univ. of Miami, Coral Gables, FL 33146 (corresponding author). ORCID: https://orcid.org/0000-0001-9269-801X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share